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Beam Wander of the Multi-Gaussian Schell-Model Beam
in Anisotropic Turbulence

Jie Shu1, Huafeng Xu2, Zheng-Lan Zhou1, and Jun Qu1, *

Abstract—Based on the extended Huygens-Fresnel principle, the expressions of degree of coherence,
ellipticity, and beam wander of multi-Gaussian Schell-model beam through the anisotropic turbulence
are derived. Their statistical properties in anisotropic turbulence are illustrated numerically. The results
show that the beam width and beam wander of multi-Gaussian Schell-model beam decrease with the
increase of the mode order or the decrease of the turbulence structure parameter and initial coherence
and that the degree of coherence of multi-Gaussian Schell-model beam decreases with the increase of
the turbulence structure parameter or the decrease of the mode order. Furthermore, the beam wander
of multi-Gaussian Schell-model beam is smaller than that of Gaussian Schell-model beam under the
same conditions.

1. INTRODUCTION

In the past decades, the propagation properties of beams in turbulent atmosphere have been studied in
detail both theoretically and experimentally. More and more attention has been paid to the partially
coherent beams propagating in free space and isotropic random media [1, 2]. Since the sufficient
conditions for devising genuine correlation functions of scalar and vector partially coherent beams were
discussed by Gori and collaborators [3], the propagation characteristics of partially coherent beams,
such as multi-Gaussian Schell-model (MGSM) beam [4], Laguerre-Gaussian Schell-model beam [5], and
Bessel-Gaussian Schell-model beam [6], have been proposed and studied.

It is well known that random variations of the refractive index of atmosphere can cause beam
spreading, beam wander, and scintillations of beams, which affect the quality of beam seriously [7],
and it should be considered in the application of laser communication. To our knowledge, the beam
wander of coherent Gaussian beam [8] and partially coherent Gaussian Schell-model (GSM) beam [9]
have been researched extensively, based on the turbulence theory of the refractive power spectrum
of Kolmogorov [10, 11]. Lots of researches show that atmospheric turbulence is anisotropic rather
than isotropic in the actual situation [12–15]. In other words, anisotropy models are more accurately
compared to isotropic models.

Expressly, Wang et al. proposed a generalized multi-Gaussian Schell-model beam [16]. The first
kind of it generates a dark hollow beam profile, and the other generates a flat-topped beam profile in
the far field. Korotkova and her collaborators studied the propagation properties of MGSM beams in
free space and isotropic random media [4], and Yuan et al. discussed the scintillation factor of MGSM
beams propagation in atmospheric turbulence, and the results show that the scintillation indices of
higher order MGSM beams are smaller than that of GSM beams [17].

In view of this, based on the extended Huygens-Fresnel principle, the analytical expressions of the
spectral density (SD), degree of coherence (DOC), and beam wander of MGSM beam in anisotropic

Received 6 December 2018, Accepted 8 February 2019, Scheduled 11 February 2019
* Corresponding author: Jun Qu (qujun70@ahnu.edu.cn).
1 College of Physics and Electronic Information, Anhui Normal University, Wuhu, Anhui 241000, China. 2 School of Mechanics and
Photoelectric Physics, Anhui University of Science and Technology, Huainan, Anhui 232001, China.



186 Shu et al.

turbulence are given in this paper. The theoretical results may be useful for the potential applications
of MGSM beam in free-space optical communications.

2. THEORETICAL MODEL

2.1. DOC, Beam Spreading and Ellipticity

The expression of the generalized Huygens-Fresnel diffraction integral formula is as follows
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Here k = 2π/λ is the wavenumber at the wavelength of λ, and Ψ (r,ρ, z) is the complex phase
perturbation of a spherical wave propagating through the anisotropic turbulence from (r, 0) to (ρ, z).

The cross-spectral density (CSD) function of the MGSM beam in the source field is [18]
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where r1 and r2 are two arbitrary points in the source plane, C0 =
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m is the

normalization factor with M being the beam index; σ0 denotes the transverse beam width of the
source plane; δ0 denotes the initial coherence width; and M is the beam index.

According to Eqs. (1) and (2), the CSD function of an MGSM beam after propagating through
anisotropic turbulence at distance z is [19]
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here ρ1 ≡ (ξ1, η1) and ρ2 ≡ (ξ2, η2) denote two arbitrary points in the plane z > 0, and Ψ∗ (r,ρ, z)
denotes complex conjugate [19]
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The power spectrum is chosen as [19]
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structure parameter of refractive index with unit m3−α; A (α) = Γ (α − 1) cos (απ/2)
/
4π2; α is the

non-Kolmogorov slope; Γ1 (., .) denotes the incomplete Gamma function; Φ′
n (κ) is the spectral power

spectrum of the refractive-index fluctuation in turbulence; μx and μy are the anisotropic factors in two
transverse directions; and μz is the anisotropic factor in direction of propagation.

Substituting Eqs. (2), (4), (5), and (6) into Eq. (3) and complex operation, we obtain the following
expression for the CSD of MGSM beam in the receiver plane in turbulent atmospheric [19]

W (ρ1,ρ2, z) = Wx (ξ1, ξ2)Wy (η1, η2) , (7)
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The parameter Δx (z) in Eq. (8) is
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In the above derivation, the following integral formula is used [20]∫ ∞

−∞
exp
(−p2x2 ± qx

)
dx =

√
π

p
exp
(

q2

4p2

)
. (10)

The factor Wy (η1, η2) has the same form as Wx (ξ1, ξ2)
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The parameter Δy (z) in Eq. (11) is
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From [19]
S (ρ, z) = W (ρ,ρ, z) , (13)
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We obtain the following expression for the beam width and coherence width of MGSM beam along
x (y) direction
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In order to quantitatively analyze the changes of the SD and DOC of the MGSM beam propagating
in the anisotropic turbulence, ellipticity is defined as [19]

f (z) =
P (z) − Q (z)

P (z)
. (17)

Form Eq. (17), P (z) (Q(z)) denotes the r.m.s. beam width (or coherence width) along x(y) direction,
and f (z) satisfies 0 ≤ f (z) < 1. The ellipse is reduced to a circle when f (z) = 0. The larger the value
of f (z) is, the larger the ellipticity is. Under the condition μx > μy, the ellipticities of the SD and DOC
are expressed as (σy (z) − σx (z))/σy (z) and (δx (z) − δy (z))/δx (z).
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2.2. Beam Wander

Beam wander is an important characteristic of laser beams, defined as [21]
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WLT and WFS are the beam radii with or without random media disturbed on propagation distance z;
L is the total propagation distance; κ is the spatial frequency. From [21], Eq. (18) can be expressed as
follows
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Substituting Eqs. (15), (19), and (5) into Eq. (18), we can derive the beam wander of MGSM beam
in turbulent atmosphere
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where the beam width of MGSM beam in anisotropic turbulence is
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3. NUMERICAL EXAMPLES

Based on Eqs. (13), (14), and (15), we illustrate the evolution of the beam width, SD, and DOC of
MGSM beam propagation in anisotropic turbulence. The initial parameters in the numerical calculation
are chosen to be σ0 = 5 mm, λ = 632.8 nm, l0 = 0.01 m, L0 = 1.0 m, μx = μz = 3, μy = 1, α = 11/3
and C̃2

n = 3 × 10−14 m3−α unless different values are specified.
Figure 1 shows the relationship between r.m.s. beam width and propagation distance for different

orders of MGSM beams. It can be seen from Figs. 1(a) and 1(b) that the r.m.s. beam width of the higher
order of the MGSM beam is smaller than that of the lower one under the same initial coherence. We
also notice that the beam width in y direction is always larger than that in x direction. In addition, the
r.m.s. beam width of the MGSM beam increases with further increase of turbulence structure parameter.
As can be seen from Figs. 1(a) and 1(c), the r.m.s. beam width decreases with the further decrease of
initial coherence. Fig. 1 also shows that under the same conditions, the beam width of the MGSM
beam is smaller than that of the GSM beam, indicating that the MGSM beam can mitigate the effects
of anisotropic turbulence.

Figure 2 shows the relationship between the r.m.s. DOC of MGSM beam and the propagation
distance under different initial coherence and turbulence structure parameters. In Figs. 2(a) and 2(b),
the r.m.s. DOC of GSM beam decreases with the further increase of turbulence structure parameter.
From Figs. 2(a) and 2(c), one can see that the r.m.s. DOCs of MGSM beam in x and y directions are
approximately equal when the propagation distance is less than about 1 km. Therefore, the MGSM
beam is less affected by external interference, and the DOC is distributed in a circle over a short
propagation distance, because of the diffraction by the initial coherence. The r.m.s. DOC of MGSM
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(b)(a)

(d)(c)

Figure 1. R.m.s. beam widths in x and y directions of MGSM beam on propagation in turbulent
anisotropic for different values of initial degree of coherence for δ0 = 5 mm [(a), (b)], δ0 = 1 mm [(c),
(d)] and turbulence structure parameter for C̃2

n = 3 × 10−15 m−2/3 [(a), (c)], C̃2
n = 1.5 × 10−15 m−2/3

[(b), (d)].

(b)(a)

(d)(c)

Figure 2. R.m.s. DOC in x and y directions of MGSM beam on propagation in turbulent anisotropic
for different values of initial degree of coherence for δ0 = 5 mm [(a), (b)], δ0 = 1mm [(c), (d)] and
turbulence structure parameter for C̃2

n = 3 × 10−15m−2/3 [(a), (c)], C̃2
n = 1.5 × 10−15m−2/3 [(b), (d)].

beam increases with the further increase of propagation distance, and then the r.m.s. DOC of MGSM
beam gradually decreases due to the de-coherence effect.

Figure 3(a) shows the dependence of the ellipticity of SD on the propagation distance. One can
see that the SD of the MGSM beam on the cross section maintains a circular distribution as z ≤ 1 km,
and then the SD of the MGSM beam transitions into an elliptical distribution gradually. Moreover, the
SD of the higher order MGSM beam transitions into an elliptical distribution faster than the lower one.
At fixed propagation distance of 2 km, the changes of the ellipticities of SD with the anisotropic factor
μx [see in Fig. 3(b)], the power law α [see in Fig. 3(c)], and the turbulence structure parameter [see in
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Fig. 3(d)] are shown. It is shown that the ellipticity of the SD increases with the increase of anisotropic
factor, and in the range of the power law (3 < α < 4), the ellipticity of SD increases firstly and
then decreases, and the ellipticity of SD increases with the further increase of turbulence structure
parameter. Thus, the SD of MGSM beam has better ellipticity than that of the GSM beam under the
same conditions.

Figure 4(a) illustrates the dependence of the ellipticities of DOC distribution on the propagation
distance. The ellipticity of DOC distribution with small initial coherence approaches zero when the
propagation distance is less than about 100 m and then increases with the further propagation distance,
and ellipticity of DOC increases gradually. At fixed propagation of about 200 m, the changes of the
ellipticity of DOC with the anisotropic factor μx [see in Fig. 4(b)], the power law α [see in Fig. 4(c)], and
the turbulence structure parameter [see in Fig. 4(d)] are shown. It is found that the ellipticity of DOC

(b)(a)

(d)(c)

Figure 3. Changes of the ellipticity of SD with (a) propagation distance, (b) anisotropic factor μx,
(c) power law α and (d) turbulence structure parameter.

(b)(a)

(d)(c)

Figure 4. Changes of the ellipticity of DOC distribution with (a) propagation distance, (b) anisotropic
factor μx, (c) power law α and (d) turbulence structure parameter.
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(b)(a)

(d)(c)

Figure 5. Changes of the beam wander of MGSM beam with (a) mode orders, (b) initial degree of
coherence, (c) turbulence structure parameter and (d) power law α.

increases with the further increase of anisotropic factor, and in the range of the power law (3 < α < 4),
the ellipticity of DOC increases firstly and then decreases, and the ellipticity of DOC increases with the
further increase of turbulence structure parameter.

Figure 5 illustrates the dependence of the beam wander of MGSM beam on the mode orders, initial
degree of coherence, turbulence structure parameter, and power law. With the same initial coherence
in Fig. 5(a), the beam wander of the highorder MGSM beam is smaller than that of the lower one with
increasing propagation distance, and among the parameters are C̃2

n = 3 × 10−14 m−2/3, δ0 = 5mm. As
seen from Fig. 5(b), under the same conditions of M = 3, C̃2

n = 3× 10−14 m−2/3, when initial coherence
decreases, the beam wander of MGSM beam decreases. The beam wander of MGSM beam decreases
with the decrease of turbulence structure parameter when the initial coherence and order are constant.
Under the same order and initial coherence, the beam wander of MGSM beam increases in the beginning
and then decreases in the range of the power law (3 < α < 4). Thus, the beam wander of MGSM beam
is smaller than that of the GSM beam under the same conditions in Fig. 5, and the MGSM beam is less
affected by the anisotropic turbulence than the GSM beam as expected.

4. CONCLUSION

In conclusion, based on the extended Huygens-Fresnel principle, the DOC, ellipticity, and beam
wander of MGSM beam through turbulent anisotropy are derived. After the corresponding numerical
calculation, its propagation distance is longer due to less coherence and beam wander than that of
GSM beam. The beam width and beam wander of MGSM beam decrease with the increase of the
mode order or the decrease of the turbulence structure parameter and initial coherence, and the DOC
of MGSM beam decreases with the increase of the turbulence structure parameter or the decrease of
mode order. The beam wander of MGSM beam will be smaller than that of GSM beam under the
same conditions. Thus, the MGSM beam can mitigate the influence of the anisotropic turbulence. The
conclusions obtained have certain reference significance for optical communication.
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