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MWF-NW Algorithm for Space-Time Antijamming

Fulai Liu1, 2, Miao Zhang2, Fan Gao2, *, and Ruiyan Du1, 2

Abstract—Space-time antijamming problem has received significant concern recently in global
navigation satellite. Space-time null widening technique is an effective technique to suppress interference
signals in the case of rapidly moving environments. However, the computational complexity of
traditional null widening algorithms is usually so high that it is difficult to apply in engineering
problems. In order to solve this problem, a novel null widening algorithm based on multistage wiener
filter (named as MWF-NW algorithm) is proposed for reducing the computational complexity of space-
time antijamming algorithms. By using the Hadamard product and Khtri-Rao product, the space-time
covariance matrix taper problem can be transformed into a space-time data taper problem. Then, the
dimension of the tapered data is reduced by multistage wiener filter theory, and the optimal weight vector
is also given by multistage wiener filter theory. Thus the algorithm can reduce computational complexity
significantly and suppress interference signals effectively when the receiver is shaking. Simulation results
are presented to verify the feasibility and effectiveness of the proposed algorithm.

1. INTRODUCTION

Global navigation satellite system (GNSS) provides accurate position and velocity information to users
with appropriate receiving equipment at any time [1]. However, due to the long distance between satellite
and receiver, the power level of satellite signals is so weak that the performance of GNSS can be affected
by various interference signals, thus the performance of navigation and positioning might dramatically
descend. In real application, the receiver usually moves with large rate change of the motion velocity in
practical applications such as the maneuvering flight of fighter aircraft and target tracking in the course
of missile [2]. In this case, it is possible that the mismatch may occur between the weights and data,
and the interference signals may move out of the narrow nulls formed by conventional antijamming
algorithm easily [3]. Thus, the performance of the antijamming algorithm may degrade dramatically
under aforementioned scenarios. In order to solve such problems, space-time null widening technique
is presented to suppress the interference signals when the receiver moves with high velocity. By adding
virtual interference around the direction of the interference signal and constructing covariance matrix,
a null widening algorithm is proposed by Mailloux [4]. Zatman also gives a null widening algorithm by
expanding the bandwidth of the interference signal [5]. Through generalizing the algorithm proposed
by Mailloux and Zatman, a concept of “Covariance Matrix Taper (CMT)” is given by Guerci [6]. By
using the convex programming technique, the width of null can be broadened, and the sidelobe level can
be controlled effectively. Unfortunately, the computational complexity of this algorithm is high [7]. A
new null widening adaptive beamforming algorithm combined with projection transform and diagonal
loading is given in [8]. The diagonal loading technique and received data transform technique based on
the subspace projection are used to gain a new sample covariance matrix. This method can effectively
broaden the width of jammer nulls and strengthen the null depth. A robust beamforming algorithm
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based on nulls optimization is proposed in [9]. The width of the formed null is widened by the rotation
of the steering vector, and the received data are projected into the interference subspace. Thus the
algorithm can broaden the nulls of interference signals as well as guarantee the gain of the desired signal.
Using covariance matrix augmentation method and dispersion synthesis, a new null widening algorithm
is proposed based on random array. The feasibility in engineering of the algorithm is verified [10].
Unfortunately, all of the algorithms given above may have a high computational complexity in the
process of gaining optimal weights.

In order to avoid the process of inverting the covariance matrix, more and more experts and scholars
begin to study dimensionality reduction and iterative algorithms, which can avoid the process of finding
the inverse of covariance matrix and greatly reduce the computational complexity of the algorithm. The
householder multistage wiener filter is improved to suppress the influence of impulsive noise spikes from
desired signal direction of arrival. This algorithm adopts samples section method to avoid the influence
of weights calculation and can gain good performance in both of narrow band and wideband interference
signals [11]. Diagonal loading technique is added to the multistage wiener filter to improve the robustness
of beamformers, and two forms of diagonal loading are given [12]. To reduce the complexity of the
algorithm, a multi-stage wiener filter based adaptive process for antijamming is designed in [13]. By
using this algorithm, the signal is projected to orthogonal space and filtered step by step. Simulations
show that this algorithm can satisfy the real time processing requirement of navigation signal. An
iterative realization method of minimum variance distortionless response beamforming algorithm is
presented in [14]. An antenna structure based on four circular patches is proposed in [15], and the main
lobe is steered towards a desired direction to obtain an optimal management of wireless resources. In [16],
some advantages and potentialities of the integration of smart antennas in a Wireless Sensor Network
(WSN) architecture is envisaged by means of a set of experiments dealing with test configurations.
In [17], a method for the synthesis of a microstrip switched-beam antenna array with a compact and
efficient feeding network is proposed, which is a better candidate for modern wireless sensors that require
cheap, efficient and compact radiating systems. The computational complexity is reduced by avoiding
matrix inversion operation of the iterative realization method. By choosing the data length properly,
interference signals can be suppressed effectively.

However, the dimensionality reduction and iterative algorithms given above are not combined with
null widening technique. In order to reduce the computational complexity of null widening algorithm,
in this paper, an MWF-NW algorithm is proposed. By using multistage Wiener filter theory, the
computational complexity can be reduced significantly. The rest of the paper is organized as follows.
The data model is described in Section 2. Section 3 introduces the proposed method. Section 4 gives
some simulation results. Finally, the conclusion is summarized in Section 5.

2. DATA MODEL

The structure of a uniform circular array (UCA) with M elements is shown in Figure 1. Each element
in the UCA is equally spaced with K taps, and the space-time filter structure is given in Figure 2.

The space-time observation signal x(t) = [x11, x12, . . . , x1K , . . . , xMK ]T can be expressed as

x(t) = us(t) +
Q∑

q=1

gqjq(t) + n(t) (1)

where s(t) denotes the desired satellite signal, and jq(t) denotes the qth interference signal. n(t)
represents the white Gaussian noise of antenna array. u and gq stand for the space-time steering
vector of the desired satellite signal and the qth interference signal, which have the following forms

u = a(θ0, φ0) ⊗ at(T )
gq = a(θq(t), φq(t)) ⊗ at(T )

(2)

where θ0 and φ0 are the azimuth angle and pitch angle of the desired satellite signal. θq and φq are the
azimuth angle and pitch angle of the qth interference signal. a(θ, φ) and at(T ) in Eq. (2) can be written
as

a(θ, φ) = [e−jvT(θ,φ)p1 , e−jvT(θ,φ)p2 , . . . , e−jvT(θ,φ)pM ]T

at(T ) = [1, e−j2πf0T , . . . , e−j2πf0(K−1)T ]T
(3)



Progress In Electromagnetics Research M, Vol. 78, 2019 167

Figure 1. Uniform circular array model. Figure 2. Space-time filter structure.

where a(θ, φ) is the space steering vector of the array, and at(T ) is the time steering vector. T denotes
the time delay in Figure 2. The superscript (·)T represents the transpose operation. The vector v and
position vector of the mth element pm have the following forms

v(θ, φ) =
2π
λ

[
sin θ cos φ
sin θ sin φ

]
pm = r[cos rm, sin rm]

(4)

where r is the radius of the UCA and rm = 2π(m − 1)/M .
Thus, the beamformer output of the space-time filter can be expressed as

y(t) = wHx(t) (5)

where w = [w11, w12, . . . , w1K , . . . , wM1, . . . wMK ]T is the MK × 1 weight vector. The superscript (·)H
denotes the conjugate transpose.

3. ALGORITHM FORMULATION

3.1. Null Widening Method

When the receiver is shaking, incident direction of the interference signal changes continuously with
time, and it is not guaranteed to be incident at a fixed angle. In this case, under the uniform circular
array, the azimuth and pitch angles can be expressed as follows.{

θ̄q = θq + Δθq

φ̄q = φq + Δφq
(6)

where θq and φq are the azimuth angle and pitch angle of the qth interference signal. Δθq and Δφq

are the changes of azimuth angle and pitch angle. Because the change of direction of arrival (DOA) is
very small with high probability, suppose that Δθq obeys normal distribution with a mean of 0, and
a variance of ξ2

q1 (Δθq ∼ N(0, ξ2
q1)) and Δφq obey normal distribution with a mean of 0, a variance of
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ξ2
q2(Δφq ∼ N(0, ξ2

q2)). The above model is used in [18] and [19] to describe the distributed targets and
transmit characteristics of mobile communication. Thus, the mean covariance matrix can be given by

R̄L(m,n) =
Q∑

q=1

σ2
q

∫∫
f(Δθq,Δφq)e−j[pm−pn]Tv(θ̄q ,φ̄q)d(Δθq)d(Δφq) + σ2

eδmn (7)

where σ2
q and σ2

e denote the power of the qth interference signal and noise signal, respectively.
f(Δθq,Δφq) stands for the joint probability density function of (Δθq,Δϕq). The vector v and position
vector pm are given in Eq. (4). The vector v(θ̄q, φ̄q) can be expressed in Eq. (8). δmn can be expressed
in Eq. (9).

v(θ̄q, φ̄q) = v(θq + Δθq, φq + Δφq). (8)

δmn =
{

1 m = n
0 m �= n

(9)

Owing to the extension angle Δθq and Δφq are statically independent of each other. Thus, the
vector v(θq + Δθq, φq + Δφq) in (8) can be simplified by Taylor series, and R̄L(m,n) can be written as

R̄L(m,n) ≈
Q∑

q=1

σ2
qe

−j 2π
λ

[pm−pn]Tv(θq,φq)AmnBmn + σ2
eδmn (10)

where Amn and Bmn in Eq. (10) can be expressed as

Amn =
∫

f(Δθq)e
−j 2π

λ
[pm−pn]T

[
cos θq cos φq

cos θq sin θq

]
Δθq

d(Δθq) = exp(
ξ2
q1D

2
mn

2
)

Bmn =
∫

f(Δφq)e
−j 2π

λ
[pm−pn]T

[ − sin θq sin φq

sin θq cos θq

]
Δφq

d(Δφq) = exp(
ξ2
q2F

2
mn

2
).

(11)

Introduce an extension matrix TL, and each element in TL can be expressed as

TL(m,n) = exp(
ξ2
q1D

2
mn

2
)exp(

ξ2
q2F

2
mn

2
). (12)

In order to gain the biggest extension angle, when ξq1 = ξq2 = ξq, Eq. (12) can be simplified as

T̄L (m,n) = exp

{
−ξ2

q

2

√
G2

mn + H2
mn

}
(13)

where Gmn = 2π
λ r(cos rm − cos rn), Hmn = 2π

λ r(sin rm − sin rn).
Utilizing the extension matrix T̄L in Eq. (13), the mean covariance matrix in Eq. (10) can be

written as
R̄L = Rx ◦ T̄L. (14)

where “◦” represents the Hadamard product of the covariance matrix Rx and the expansion matrix T̄L

for solving the received signal.

3.2. Space-Time Data Taper

Utilizing the Khatri-Rao product, received data of the array can be refactored as
RL = Rx ◦TL

=
[
x0(t)xH

0 (t)
] ◦ [

ΩΩH
]

= [x0(t) � Ω] [x0(t) � Ω]H
(15)

where “�” represents the Khtri-Rao product of x0(t) and Ω. Let α1, α2, . . . , αMK be the row vector
of the received signal x0(t), and β1, β2, . . . , βMK is the row vector of the matrix Ω. According to the
definition of the Khtri-Rao product, the Khtri-Rao product of x0(t) and Ω can be expressed as

x′
0(t) = x0(t) � Ω = [α1 ⊗ β1| α2 ⊗ β2| . . . αMK ⊗ βMK |] (16)

where “⊗” denotes the Kronecker product of the vectors αi and βi.
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3.3. Calculation and Solution of Weight

In traditional antijamming algorithm, the optimal weight is usually obtained through the process of
inversing covariance matrix. Therefore, in order to reduce the computational complexity, multi-stage
Wiener filter is used to reduce the dimension of the data. The multi-stage Wiener filter is proposed by
Goldstein [14], and the structure of the multi-stage Wiener filter is given in Figure 3.

Figure 3. Multi-stage Wiener filter structure.

In the figure, the multi-stage Wiener filter can be decomposed into two parts: an analysis filter
and a synthesis filter. hi+1 is a normalized cross-correlation vector. By calculating the cross-correlation
vector rxidi

of xi(t) and di(t), then normalizing it, a vector hi+1 can be obtained, which has the following
form:

hi+1 =
rxidi

‖rxidi
‖ (17)

By utilizing the vector hi+1, data information associated with di(t) can be extracted from data
xi(t). In the figure, Bi is a (MK − i) × MK dimensional blocking matrix, which can be expressed as

Bi = null(hi) (18)

The blocking matrix Bi is the zero space of the vector hi, which is Bihi = 0. In the final level of
decomposition, let xN−1(t) = dN (t) = εN (t), then be synthesized by a set of recursive scalar Wiener
filters. An output error signal ε0(t) of the Wiener filter is obtained. Therefore, in the synthesis filter,
wi in each stage can be expressed as

wi = R−1
εi

rεidi−1
(19)

where Rεi = E[|εi(t)|2], rεi+1di
can be expressed as

rεi+1di
= E [εi+1(t)d∗i (t)] = hH

i+1rXidi
=

√
rH
Xidi

rXidi
(20)

where rXidi
= E[xi(t)d∗i (t)] and the result of the above formula is recorded as δi+1. Therefore, Eq. (19)

can be expressed as

wi = R−1
εi

rεidi−1
= η−1

i δi (21)

ηi = E
[
|εi(t)|2

]
= E

[∣∣di(t) − w∗
i+1εi+1(t)

∣∣2] = σ2
di
− η−1

i+1|δi+1|2 (22)

where σ2
di

= E[|di(t)|2] = hH
i RXi−1hi, the value of i is 1 ≤ i ≤ N − 1.
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According to the above derivation process and the multi-stage Wiener filter structure shown in
Figure 3, the output error signal ε0(t) can be expressed as

ε0(t) = d0(t) − w∗
1ε1(t) = d0(t) − w∗

1 (d1(t) − w∗
2ε2(t)) = d0(t) − wH

n d(t) (23)

where wn represents an equivalent weight vector after dimension reduction, and the weight vector wn

and vector d(t) can be expressed as

wn =

[
w1,−w1w2, w1w2w3, . . . (−1)N+1

N∏
i=1

wi

]T

d(t) =

⎡
⎣hH

1 ,hH
1 B1, . . . ,hH

N−1

1∏
j=N−2

Bj ,
1∏

j=N−1

Bj

⎤
⎦

H

x0(t) = TH
N x0(t)

(24)

By bringing Eq. (24) into Eq. (23), ε0(t) can be expressed as

ε0(t) = d0(t) − (TNwn)Hx(t) (25)

Therefore, the weight vector of the multi-stage Wiener filter with the decomposition level of N can
be obtained, which is recorded as wMWF .

wMWF = TNwn (26)

3.4. Computational Complexity Analysis

3.4.1. MWF-NW Algorithm Computational Complexity Analysis

Suppose that a space-time uniform circular array contains M array elements, and each array element
is equally spaced with K taps. The snapshot is recorded as N . The dimension of the space-time
array receiving data x0(t) is in MK × N dimension. In the MWF-NW algorithm, assuming that the
multi-stage Wiener filter needs to be decomposed d times, and the computational complexity of the
MWF-NW algorithm can be analyzed as follows:

In the decomposition filter, the computational complexity of each decomposition is O(MKN),
and assuming that the number of decompositions is d, the computational complexity of the process is
O(MKNd). In the synthesis filter, assuming that the number of decompositions is d, the number of
iterations of the synthesis filter is d, where the computational complexity of each iteration is O(N),
and the computational complexity of the second iteration is O(Nd). In summary, the computational
complexity of the MWF-NW algorithm is O(MKNd) + O(Nd).

3.4.2. Mailloux Algorithm Computational Complexity Analysis

In the space-time receiving array where the number of elements is M , and the number of taps is K, the
complexity of the Mailloux algorithm is analyzed as follows:

The received signal covariance matrix R̂x is calculated by MK × N dimensional space-time
receiving data x0(t). The dimension of the received signal covariance matrix R̂x is MK × MK.

From R̂x= 1
K

K∑
k=1

x(t)xH(t), the computational complexity of the calculation R̂x is O((MK)2N). In

the process of covariance matrix taper, according to Eq. (14), the computational complexity of the
covariance matrix taper is O((MK)2). In the solution of the weight vector, it is necessary to inverse the
modified covariance matrix R̄M . The computational complexity of the inversion process is O((MK)3).
In summary, the total complexity of the Mailloux algorithm is O((MK)2N)+O((MK)2)+O((MK)3).

3.4.3. DC-NW Algorithm Computational Complexity Analysis

The process of computation complexity analysis for DC-NW algorithm [20] is similar to the Mailloux
algorithm. Thus, the total computational complexity of the DC-NW algorithm is O((MK)2N) +
O((MK)3).
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In order to analyze the computation complexity clearly, the computation complexity of these three
algorithms is given in Table 1.

Table 1. Analysis of computation complexity.

Algorithm Computation complexity
MWF-NW O(MKNd) + O(Nd)
Mailloux O((MK)2N) + O((MK)2) + O((MK)3)
DC-NW O((MK)2N) + O((MK)3)

Compared with the other two algorithms, the MWF-NW algorithm requires fewer sample snapshots,
and d < MK. Therefore, the computational complexity of the proposed MWF-NW algorithm is
significantly lower than that of the other two algorithms. The main reason is that the algorithm avoids
the operation of inverting the covariance matrix in the process of obtaining the weight vector, thus
greatly reducing the computational complexity.

Summary of the Proposed Method
Step 1. The space-time data are tapped by Eq. (16) receiving data x(t) from the array antenna,

and the received data x′
0(t) after taper are obtained.

Step 2. According to Eqs. (17)∼(19), the received data reconstructed in Step 1 are decomposed
using an analysis filter of the multi-stage Wiener filter. Find the scalar weight of each level of the
Wiener filter.

Step 3. According to Eq. (23), the output error signal of each stage Wiener filter can be calculated.
Step 4. The reduced dimension matrix can be computed by Eq. (24).
Step 5. The weights of each level in Step 2 are iteratively processed, and the dimensionality

reduction matrix obtained in Step 4 is utilized. The final weight vector is obtained according to Eq. (26).

4. SIMULATION RESULTS

This section gives simulations of the proposed algorithm. In the simulation experiment, the uniform
circular array consists of 7(M = 7) array elements, and 5(k = 5) taps are used. The signal to noise
ratio (SNR) is −17 dB. The jam to signal radio is 54 dB. The azimuth and pitch angles of the satellite
signal are (280◦, 30◦). Assume that only one interfering signal is incident, and the azimuth and pitch
angles of the interference signal are (80◦, 45◦). Due to the motion of the receiver, the azimuth and pitch
angles change from (80◦, 45◦) to (80◦, 50◦). The weight is obtained when the interference signal incident
azimuth and pitch angles are (80◦, 45◦).

Figure 4. Space frequency response of MWF-
NW.

Figure 5. Space frequency response of MWF.
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Figure 4 and Figure 5 give the space-time response diagram of the MWF-NW algorithm and the
Multistage Wiener Filter (MWF) algorithm. It can be clearly seen from Figure 4 and Figure 5 that
the azimuth angle of the incident signal is 80◦, and the number of incident interference signals is one.
Both algorithms are capable of forming a deeper null in the direction in which the interfering signal
is incident. It is expected that the satellite signal will have an azimuth of 200◦. Both algorithms can
form the main lobe in the direction in which the satellite signal is expected to be incident, and the
interference signal can be suppressed to the maximum while ensuring the distortion-free output of the
desired signal.

Figure 6 and Figure 7 show the array beam patterns of the proposed MWF-NW algorithm and MWF
algorithm, respectively. It can be seen from the figure that the number of incident interference signals is
one. Compared with the MWF algorithm, the data of the MWF-NW algorithm are reconstructed, thus
the formed null of MWF-NW algorithm has a certain degree of broadening in the azimuthal direction
and pitch angle direction of the incident signal. The anti-jamming performance of the algorithm is
improved.

Figure 8 is a top view of Figure 6, and Figure 9 is a top view of Figure 7. The MWF algorithm forms
a null in the direction of interference incidence, but the width of the null is narrow. The MWF-NW
algorithm not only forms a wide null in the azimuthal direction of the incident signal, but also forms a
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Figure 6. Beam pattern of MWF-NW algorithm.
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Figure 7. Beam pattern of MWF algorithm.
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Figure 8. Contour of MWF-NW algorithm.
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Figure 10. The output SINR versus input SNR.

null in the direction of the pitch of the incident signal.
Figure 10 gives the output signal to interference plus noise ratios (SINRs) of the proposed MWF-

NW algorithm, Mailloux algorithm, DC-NW algorithm, and MWF algorithm. The input SNR changes
from −26 dB to 17 dB. From the figure, obviously, with the growth of the input SNR, all the output
SINRs of these four algorithms increase linearly. In the same simulation environment, the output SNR
of the MWF-NW algorithm is higher than the MWF algorithm. Compared with the Mailloux algorithm
and DC-NW algorithm, when the receiver is shaking, the SINR of the MWF-NW algorithm is about
10 dB and 14 dB higher than that of the Mailloux algorithm and DC-NW algorithm. According to
the above analysis, the multi-stage Wiener filter is used to obtain the weight vector, and the process
of inversing covariance matrix is avoided. Therefore, compared with the other three algorithms, the
MWF-NW algorithm has lower computational complexity and better performance.

5. CONCLUSIONS

This paper presents a novel null-widen algorithm based on a multistage Wiener filter which can reduce
the computational complexity and can be applied to engineering problems easily. The algorithm first
uses the relationship between the Hadamard product and Khtri-Rao product to reconstruct the received
data, then uses a multi-stage Wiener filter to perform step-by-step dimensionality reduction on the
reconstructed received data. Finally, the process of inverting the covariance matrix is transformed into
a process of retrieving multiple scalars. This reduces the complexity of the algorithm. The results in
simulation demonstrate that the proposed algorithm can form a wide null in the azimuth and elevation
angles of the incident signal, and the proposed algorithm has better performance under small snapshot,
which can effectively suppress the interference signal.
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