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Physical Limits of Electromagnetic Responses of Layered Stacked
Structures

Binbin Zhu1, *, Huquan Li1, Ruopeng Liu1, 2, Chunlin Ji1, 3, and Dong Wei1

Abstract—In this paper, we theoretically investigate the electromagnetic response of the widely used
layered stacked structure. For a causality and lossy system, relationships between maximum values
of reflection and transmission coefficients are demonstrated, which are related with many parameters,
such as absolute bandwidth, layers thicknesses and real parts of the static permittivity and static
permeability. Different polarizations and incident conditions are discussed. The results can provide a
criterion to judge different designs operating at different spectrum ranges with different thicknesses and
materials by comparing them with achievable physical limits.

1. INTRODUCTION

Multilayered stacked structure (MSS) is the most widely used composition for devices such as field
absorber, thin-film antireflection coatings, optical interference filter, dielectric mirrors, or broadband
transparent diodes due to its simple fabrication and moderate performance [1, 2]. If the system only
consists of linear, causal, and passive materials, with given thicknesses, the total electromagnetic
response of the system can be derived based on transfer matrix method [3]. However, the criterion
judging the physical limits of MSS with different thicknesses and different materials under different
spectra was not studied carefully.

2. CAUSALITY AND ANALYTICITY

According to Nussenzveig [4], the response function R̃(λ) for a linear, lossy and casual system subject
to a time-independent (∼ ejωt) excitation has a regular analytic continuation in the upper half-plane of
complex wavelengths λ = λ′ + jλ′′. As a consequence, R̃(λ) has no poles in the upper half-plane but
may have nulls there. If the nulls are λ1, λ2, . . . , λn, . . ., then an ancillary function R̃′(λ) can be defined
as

R̃′ (λ) = R̃ (λ)
(λ − λ∗

1) (λ − λ∗
2) . . . (λ − λ∗

n) . . .

(λ − λ1) (λ − λ2) . . . (λ − λn) . . .
, (1)

where ∗ represents the complex conjugation. Obviously, R̃′(λ) has neither poles nor nulls at the upper
half-plane. (Im(λ) = λ′′ > 0) Hence the logarithm of R̃′(λ) is analytic function in the upper half-plane,
and the Cauchy theorem can be applied, i.e., the integration of ln R̃′(λ) along the real axis and the
infinite semi-circle C∞ in the upper half-plane is zero. Notice that |R̃′(λ)| = |R̃(λ)| at real wavelengths
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and that the real part of ln R̃(λ) is an even function of real λ. The real part of the Cauchy integral over
the contour transforms to

Re
∫
C

ln R̃′dλ = 2

∞∫
0

ln
∣∣∣R̃∣∣∣ dλ+Re

∫
C∞

ln R̃dλ+Re
∫

C∞

ln
(

(λ − λ∗
1) (λ − λ∗

2) . . . (λ − λ∗
n) . . .

(λ − λ1) (λ − λ2) . . . (λ − λn) . . .

)
dλ = 0, (2)

where the third term on the left hand side (LHS) can be calculated as,

Re
∫

C∞

ln
(

(λ − λ∗
1) (λ − λ∗

2) . . . (λ − λ∗
n) . . .

(λ − λ1) (λ − λ2) . . . (λ − λn) . . .

)
dλ = −4π

∑
n

Imλn. (3)

For an electromagnetic field and matter interaction system, both the reflection and transmission
coefficients are the response functions of the system, which satisfy Eq. (2).

3. REFLECTION BOUND OF METAL-BACKED SLABS

First, we consider a slab of thickness h, permittivity ε, and permeability μ, overlying a perfectly reflecting
metal and illuminated at oblique incidence with angle θa by a monochromatic plane wave. Then the
reflection coefficient r(ω) for TE polarized incident field can be obtained based on transfer matrix
method:

rTE =
−ηT,a cos (kzh) + jηT,1 sin (kzh)
ηT,a cos (kzh) + jηT,1 sin (kzh)

=
−1 + jβTE

1 + jβTE
, (4)

where

βTE =
μr cos θa√

μrεr − sin2 θa

tan
(

k0

√
(μrεr) − sin2 θah

)
(5)

kz = k0

√
(μrεr) − sin2 θais the z component of wave number in the slab, ηT,i = ηi/cos θi =

√
μi/εi/cos θi

is the transverse characteristic impedance in slab i. εr and μr are the relative permittivity and
permeability, respectively. Similarly, for TM polarized incident field, the reflection coefficient can be
obtained as:

rTM =
−jη−1

T,0ηT,1 sin (kzh) + cos (kzh)

jη−1
T,0ηT,1 sin (kzh) + cos (kzh)

=
1 − jβTM

1 + jβTM
, (6)

where

βTM =
1
εr

√
μrεr − sin2 θa

cos θa
tan

(
k0

√
(μrεr) − sin2 θah

)
, (7)

and the transverse characteristic impedance for TM field is ηT,i = ηi cos θi =
√

μi/εi cos θi. Substituting
Eq. (4) and Eq. (6) into the second term on the LHS of Eq. (2) yields

Re
∫

C∞

ln rTEdλ = 4π2 cos θaμ
′
srh, (8)

for TE polarized field

Re
∫

C∞

ln rTMdλ =
4π2

cos θa

(
μ′

sr −
sin2 θa

ε′sr

)
h, (9)

and for TM polarized field, where μ′
sr = lim

R→∞
Re(μr) = lim

R→∞
μ′

r and ε′sr = lim
R→∞

Re(εr) = lim
R→∞

ε′r stands

for the real part of the static relative permeability and permittivity, respectively. Therefore, Eq. (2)
turns out to be ∞∫

0

ln |rTE | dλ = −2π2 cos θaμ
′
srh + 2π

∑
n

Imλn, (10)
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for TE polarized field and
∞∫
0

ln |rTM | dλ = − 2π2

cos θa

(
μ′

sr −
sin2 θa

ε′sr

)
h + 2π

∑
n

Imλn, (11)

for TM polarized field. The module of the reflection coefficient is smaller than unity, hence, the LHS
of Eqs. (10) and (11) are negative. Besides, all of the nulls localized in the upper half plane, Imλn > 0
for any n, indicate that the two terms on the right hand side (RHS) of Eqs. (10) and (11) are opposite
in signs. Therefore, ∣∣∣∣∣∣

∞∫
0

ln |rTE| dλ

∣∣∣∣∣∣ ≤ 2π2 cos θaμ
′
srh, (12)

and ∣∣∣∣∣∣
∞∫
0

ln |rTM | dλ

∣∣∣∣∣∣ ≤
2π2

cos θa

(
μ′

sr −
sin2 θa

ε′sr

)
h. (13)

The results in Eq. (12) and Eq. (13) can be readily extended to the multilayer slabs case. μ′
sr and

ε′sr are the real parts of the relative permeability and permittivity when wavelength tends to infinity. In
such an approach, any finite thickness of material is very small compared to wavelength. Therefore, a
multilayer stacked structure can be treated as an effective one layer structure with effective parameters
defined as in Equations (14) and (15).

Considering both TE mode and TM mode for μ′
sr, the relationship is as shown in Eq. (14),

μ′
sr =

1
h

n∑
i=1

μ′
sr,ihi, (14)

Considering TM mode for ε′sr, the relationship is as shown in Eq. (15),

1
ε′sr

=
1
h

n∑
i=1

1
ε′sr,i

hi, (15)

parameters with subscript i corresponding to that of layer i.

4. TRANSMISSION BOUND OF MULTI-LAYER STACKED SLABS

We consider a slab of thickness h, permittivity ε, and permeability μ, overlying a perfectly reflecting
metal and illuminated at oblique incidence with angle θa by a monochromatic plane wave. Then the
transmission coefficient t(w) for TE polarized incident field can be obtained based on transfer matrix
method

Re
∫

C∞

ln tTEdλ = π2h1

(
εsr1 sec θa − 1

μsr1
sin θa tan θa + μsr1 cos θa

)

εsr1 = lim
R→∞

Re (εr1) , μsr1 = lim
R→∞

Re (μr1) ,

. (16)

Similarly for TM polarized incident field,

Re
∫

C∞

ln tTMdλ = π2h1

(
μsr1 sec θa − 1

εsr1
sin θa tan θa + εsr1 cos θa

)

εsr1 = lim
R→∞

Re (εr1) , μsr1 = lim
R→∞

Re (μr1)
(17)
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For single absorbing slab,
∞∫
0

ln |t| dλ = −1
2
Re

∫
C∞

ln tdλ − 1
2
Re

∫
C

ln
(

(λ − λ∗
1) (λ − λ∗

2) . . . (λ − λ∗
n) . . .

(λ − λ1) (λ − λ2) . . . (λ − λn) . . .

)
dλ

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−1
2
π2h1

(
εsr1 sec θa − 1

μsr1
sin θa tan θa + μsr1 cos θa

)
+ 2π

∑
n

Imλn, TE

−1
2
π2h1

(
μsr1 sec θa − 1

εsr1
sin θa tan θa + εsr1 cos θa

)
+ 2π

∑
n

Imλn, TM
(18)

If we extend the results to multiple layers,

∞∫
0

ln |t| dλ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−1
2
π2

n∑
i=1

(
εsrihi sec θa − 1

μsri
hi sin θa tan θa + μsrihi cos θa

)
+ 2π

∑
n

Imλn, TE

−1
2
π2

n∑
i=1

(
μsrihi sec θa − 1

εsri
hi sin θa tan θa + εsrihi cos θa

)
+ 2π

∑
n

Imλn, TM

(19)
Since |t| ≤ 1, the LHS is negative, and the second term on the RHS is negative. If the first term on the
LHS is negative, we can achieve

∣∣∣∣∣∣
∞∫
0

ln |t| dλ

∣∣∣∣∣∣=
∞∫
0

|ln |t|| dλ ≤

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
2
π2

n∑
i=1

(
εsrihi sec θa − 1

μsri
hi sin θa tan θa + μsrihi cos θa

)
, TE

1
2
π2

n∑
i=1

(
μsrihi sec θa − 1

εsri
hi sin θa tan θa + εsrihi cos θa

)
, TM

(20)
Further, if we restrict the finite frequency to range [λmin, λmax] and assume that the transmission
coefficient has the following relationship, we have

|ln |t0|| (λmax − λmin)

= |ln |t0||Ba≤
∣∣∣∣∣∣
∞∫
0

ln |t| dλ

∣∣∣∣∣∣≤
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
2
π2

n∑
i=1

(
εsrihi sec θa− 1

μsri
hi sin θa tan θa+μsrihi cos θa

)
, TE

1
2
π2

n∑
i=1

(
μsrihi sec θa− 1

εsri
hi sin θa tan θa+εsrihi cos θa

)
, TM

(21)

If the in and out materials are the same, we can simplify Eq. (21) and get the following relationship,

|TdB | = 20 log10 |t| ≤

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

10π2
/
ln 10

Ba

n∑
i=1

(
εsrihi sec θa − 1

μsri
hi sin θa tan θa + μsrihi cos θa

)
, TE

10π2
/
ln 10

Ba

n∑
i=1

(
μsrihi sec θa − 1

εsri
hi sin θa tan θa + εsrihi cos θa

)
, TM

(22)

5. CONCLUSION

The response function R(λ) for a linear, lossy, and casual system has a continuation in the upper half-
plane. Both the reflection and transmission coefficients can be achieved from the casualty and analytic
system, and the judgment criterion can be achieved from the results
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