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Abstract—A three-box model, composed of a triangular memory polynomial, a look-up table, and
a cross item among memory times, is proposed for power amplifiers. The model acquired good
accuracy and linear effect and reduced the calculation coefficient. Moreover, the paper proposes the
GRLS IVSSLMS adaptive predistortion algorithm. This algorithm is based on the structure of indirect
learning. This work uses 16QAM signal to drive a strongly nonlinear Doherty amplifier. Experimental
results show that the proposed method is suitable for the adaptive predistortion of power amplifiers.

1. INTRODUCTION

With the development of modern communication technology, power amplifier (PA) devices produce
strong nonlinearity and memory effects. Predistortion method is proposed for PA, and popular
predistortion models are mainly polynomial, neural network, and look-up table (LUT) [1–3]. Polynomial
predistortion models include Wiener-Hammerstein model, Volterra series model, and simplified memory
polynomial models. The predistortion models based on LUT [4] are two-dimensional, multidimensional,
and filter LUT models [5, 6]. Ref. [7] proposed a polynomial model, whereas [8] proposed the general
polynomial model. However, the above predistortion algorithms face the same problem in which the PA
model cannot be accurately estimated. The DPD (Digital Pre-Distortion) technology can compensate
the nonlinear distortion of PA and memory effect by adopting the adaptive algorithm for baseband
signal processing part, which requires the use of predistortion parameter identification algorithm for
real-time update. Refs. [9–11] included different improvements on existing adaptive algorithms but still
have the shortcomings of computational complexity, real-time and deficient factors of noise resistance,
low convergence, and large mean square error. A good algorithm is necessary to improve the effect of
predistortion linearization [12].

The remainder of this paper is organized as follows. In Section 2, from the perspective of
simplifying the PA model, we propose a new simplified three-box PLTC (parallel-LUT-triangular
memory polynomial (TMP)-CIMT) model for the behavioral model of nonlinear PA with memory effect
and introduce an identification process. In Section 3, an adopting adaptive algorithm GRLS IVSSLMS
is proposed. The PA behavior model uses PLTC model, and the predistortion algorithm utilizes
GRLS IVSSLMS algorithm for this paper to achieve a good balance between modeling accuracy and
predistortion algorithm complexity in Section 4. Finally, Section 5 concludes the paper.
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2. PROPOSED MODEL

2.1. PA Three-Box Behavior Model

The PLTC model consists of LUT, a TMP, and cross-term memory timing signals in a parallel form.
The model obtains a high accuracy by introducing the cross-term of current signals and lagged envelope.
The block diagram of the model is illustrated in Figure 1.

Figure 1. The block diagram of the PLTC model.

The first sub-model uses a high-order nonlinear function with memoryless. The PLTC model
increases LUT to represent a static strong nonlinearity and reduces the complexity of the entire model.
In this work, suppose that x/y is the input and output signals of the first sub-model, Ka a nonlinear
order, and ak the amplitude. The mathematical expression is written as:

yLUT(n) =
Ka∑
k=1

akx(n) |x(n)|k−1 (1)

The second sub-model is the TMP function that describes the nonlinear characteristic of an
amplifier system. This sub-model is defined by the following formula:

y(n) =
K∑

k=1
k-odd

Q∑
qk=0

hk (qk)x (n − q1)
(k−1)/2∏

m=1

x (n − q2m)x∗ (n − q2m) (2)

where k is the number of nonlinear order, qk the memory depth, hk(qk) the k-order Volterra kernel, and
k = 1, 3, · · · ,K · qk = 0, 1, · · · , Q. The MP is expressed as

y(n) =
K∑

k=1

Q∑
q=0

akqx (n − q) |x (n − q)|k−1 (3)

We can attempt to adjust the maximum nonlinear order of the input signal in the past while
maintaining the performance of the predistortion and reducing the number of its coefficients. Let
K = N , and N is defined:

N =
{

K − q; q < K

1; q ≥ K
(4)

From the formula, we can achieve:

yTMP(n) =
Q∑

q=1

N∑
k=1

akqx (n − q) |x (n − q)|k−1 (5)

In Formula (4), the maximum nonlinear order is intermittent and changes with the memory depth
variations. The TMP model overcomes the characteristics that model coefficients exponentially grow
with nonlinear order and memory depth, and increase the historic moment for the current input signal
envelope impact items.
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The third sub-model is represented by the memory time signal cross-term CIMT function. The
mathematical expression of this sub-model is:

yCIMT(n) =
M∑

p=1

M∑
q=1
q �=p

N∑
r=1

cpqrx (n − p) |x (n − q)|r−1 (6)

The increased CIMT model cross-term order will lead to the rapid growth of model coefficients.
Considering that the high-order nonlinearity of memory time signals slightly impacts the system, we
only consider the impact on the system of three-order intermodulation of the memory timing between
signals. Formula (6) is simplified as:

y∗CIMT(n) =
M∑

p=1

M∑
q=1
q �=p

cpqx (n − p) |x (n − q)|2 (7)

Based on the above analysis, the PLTC model is given as follows:

yPLTC(n) =
Ka∑
k=1
k-odd

akx(n) |x(n)|k−1 +
Q∑

q=1

N∑
k=1
k-odd

akqx (n − q) |x (n − q)|k−1

+
M∑

p=1

M∑
q=1
q �=p

cpqx (n − p) |x (n − q)|2 (8)

The LUT represents the high-order static nonlinear behavior of the PA. The TMP sub-model uses
low-order nonlinearity and controls the size of each model separately to form a reasonable number of
total coefficients. This model avoids defects in selecting the same nonlinear order in each sub-model,
which will increase calculation complexity and size of the model. Therefore, the PLTC model can reduce
the size of the model by adding parallel nonlinear sub-models.

2.2. Identification PLTC Model

The PLTC model identification is divided into three steps. First, the high-order memoryless nonlinear
static sub-model parameter is identified by the input and output data of the PA. Second, the TMP
sub-model parameters are identified. Third, the CIMT sub-model parameters are identified. The TMP
sub-model synchronization with the CIMT sub-model is identified as follows:

Y = X · A (9)

where Y is the output vector of two dynamic nonlinear polynomial sub-models, X the matrix of two
polynomial basis functions of the input signal, and A the vector that contains the coefficients of the
TMP and CIMT sub-model. Matrix X is defined as: X = [XTMP, XCIMT]. The matrix size XTMP is
K × ((MTMP + 1) × NTMP) and:

XTMP = [XTMP1,l(x (n0 + 1)) · · · XTMPk,l (x (n0 + k))]T (10)

k is the length of the vector and k = 1000. XTMP,l is defined as:

XTMPk,i+(j×NTMP) (x (n0 + k)) = x ((n0 + k) − j) × |x ((n0 + k) − j)|i−1 (11)

j is scanned from 0 to MTMP, and i is scanned from 0 to NTMP. Similarly, XCIMT is defined as:

XCIMTk,i+(j×NCIMT) (x (n0 + k)) = x (n0 + k) × |x ((n0 + k) − j)|i−1 (12)

Finally, the least squares fitting method is used to calculate A. [ ]H is the conjugate transposition.

A =
(
XH · X)−1 · XH · Y (13)
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The accuracy of each model is measured with normalized mean square error (NMSE). A low NMSE
is obtained by selecting low coefficient model dimensions. The sub-model is determined by the size of
the general scanning method.

NMSEdB = 10 log10

(
K∑

n=1

|ymeans(n) − yest(n)|2
/ K∑

n=1

|ymeans(n)|2
)

(14)

3. PROPOSED ALGORITHM

The DPD technology can compensate the nonlinear distortion of PA and memory effect by adopting
adaptive algorithms [13–15], which use predistortion parameter identification algorithms for real-time
update. This paper introduces an improved adaptive algorithm for DPD, which adopts the structure of
indirect learning.

3.1. I VSSLMS Algorithm

The VSSLMS (variable step size least mean square) algorithm is a class of LMS algorithms with variable
step sizes, which overcomes the contradiction between convergence speed and the steady-state error of
fixed step size LMS. In this paper, we propose a new VSS LMS, in which X(n) and d(n) stand for the
input and output signals; W (n) represents the tap coefficient of the filter; and e(n) is the error signal.
The VSS LMS algorithm is expressed as follows.

e(n) = d(n) − XT (n)W (n) (15)
W (n + 1) = W (n) + μ(n)e(n)X(n) (16)

where μ(n) is the variable step size, and the relationship of the updating steps is expressed by
Formula (17).

μ(n + 1) =

⎧⎨
⎩

μmin μ(n) < μmin

αμ(n) + βe2(n) other
μmax μ(n) > μmax

(17)

In Formula (17), α determines the convergence step, and it is approximately 1; β determines
the degree of influence in error transient energy of the steps and controls the steady-state error and
convergence time, and 0 < β < 1. μmax is the maximum possible convergence rate step size, and
the approximate value of μmax is minimal, approximately 1

λmax
. λmax is the largest eigenvalue of the

correlation matrix of the input signal. μmin is the minimum step, which has the ability to track. e(n) is
approximately zero, and βe2(n) is also close to zero. Hence, the VSS LMS algorithm ensures that the
steady-state error is minimal and that it has a rapid convergence rate and time-varying tracking ability,
but is susceptible to noise interference.

The VFSS LMS algorithm is an improved VSS LMS algorithm. p(n) is the estimation error of e(n)
and e(n−1). When the iteration step changes with the average time domain autocorrelation estimate of
e(n) and e(n− 1), this step is unaffected by uncorrelated noise impact. The VFSS LMS step algorithm
for updating is as follows:

μ(n + 1) =

⎧⎨
⎩

μmin μ(n) < μmin

αμ(n) + βp2(n) other
μmax μ(n) > μmax

(18)

p(n) = γp (n − 1) + (1 − γ) e(n)e (n − 1) (19)

where 0 < γ < 1 controls the convergence time, μ(0) = μmax, and p(0) = μ(0). We can ensure that
a faster convergence rate is observed in the initial stage of the adaptive. β is used for controlling the
steady-state error of the algorithm and convergence time. However, the noise affects β and makes the
step length relatively large. Adding to the time-varying β, which changes with the error signal, this
paper proposes the idea of an improved I VSSLMS algorithm. The expression is as follows.

β(n) = [e(n)e (n − 1)]2 (20)
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μ(n + 1) =

⎧⎨
⎩

μmin μ(n) < μmin

αμ(n) + β(n)e2(n) other
μmax μ(n) > μmax

(21)

First, β is large and can obtain a high step value influenced by the error signal. When the algorithm
gradually turns into a steady state, β decreases with the declining error signal, and β obtains a low
step value to ensure a steady state. When the system impulse response changes, the error signal rapidly
changes, and the influence of β enlarges, which makes the step length change quickly in order to sustain
the change of the system with the change of the system. We illustrate the algorithm performance by
experiment.

The steps of the performance verification of the adaptive filter algorithm are as follows: (1) adaptive
filter order L = 2; (2) signal X(n) is a white Gaussian noise of zero mean with a variance of 1; (3)
v(n) and X(n) are associated with the white noise sequence with zero mean, and variance is 0.04; (4)
algorithm sampling for 1000 times; the coefficient of the unknown system changes w1 = [0.8, 0.5]T

into w2 = [0.4, 0.2]T for 500 times; the VSS LMS algorithm parameters take α = 0.98, β = 0.08, γ =
0.98, μmax = 0.2, μmin = 0. To obtain a learning curve, 200 independent simulations are required with
sampling for 2000 times, and then the mean square error is calculated.

In Figure 2, the VSS LMS algorithm convergence speed is fast, but the steady-state error is also
large. The VFSS LMS algorithm steady-state error is minimal but is slow in time-varying tracking.
The I VSSLMS algorithm convergence speed is fast, and its steady-state error is minimal.
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Figure 2. VSS LMS algorithms learning curve comparison chart.

3.2. Improved RLS Algorithm

The RLS algorithm has the advantages of rapid convergence and minimal steady-state offset error, but
its computing cost is relatively large and unstable when the error signal is less. Thus, improving the
traditional RLS algorithm is necessary. The cost function of RLS is as follows.

F (e(n)) =
n∑

i=0

λn−ie2(n) =
n∑

i=0

λn−i
[
d(n) − XT (n)W (n)

]2
(22)

where λ is known as the forgetting factor, and 0 < λ < 1. The RLS algorithm weight vector iteration
formula is:

W (n) = W (n − 1) + K(n)e(n) (23)

K(n) =
R−1(n − 1)X(n)

λ + XT (n)R−1(n − 1)X(n)
(24)
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where K(n) is the Kalman gain vector. The B RLS algorithm is based on basic variable forgetting
factor, which solves the contradiction between convergence speed and steady-state error. The B RLS
algorithm is expressed as:

λ(n) = λmin + (1 − λmin) · 2L(n) (25)
L(n) = −round[ρe2(n)] (26)

where round(·) is the nearest integer, and ρ controls the sensitivity of the estimation error. First, e(n)
is large, and λ(n) is λmin to ensure rapid tracking. When the system is stabilized, e(n) is smaller, and
λ(n) is 1 to ensure a minimal steady-state error. When the system is unknown, K(n) trends become 0,
and then the system is not updated.

A self-perturbation term becomes the Z RLS algorithm through the inverse covariance matrix P (n),
avoiding K(n) becoming 0. The formula to updata P (n) is as follows.

P (n) =
1
λ

{
P (n − 1) − K(n)XT (n)P (n − 1) + round[γe(n)]

}
(27)

where γ is the sensitive factor by taking γ = 1, and round [γe(n)] is the nearest integer to γe(n).
Adopting e(n) as a self-disturbance, this phenomenon makes the algorithm concise. Given that the
expectations e(n) and noise signal unrelated, this condition enhances the anti-noise interference ability
of the Z RLS algorithm. This paper proposes an improved RLS algorithm (G RLS), which combines
genetic factor and disturbance.

The G RLS algorithm adjusts λ through function log sig(·). λ increases with the number of trainings
while strengthening the tracking ability and reducing the estimation error. In this work, the change of
λ related to the number of iterations ignores the error signal, and the algorithm is slightly susceptible
to the effects of interference noise. The forgetting factor is expressed as Formula (28).

λ(n) = λmin + (1 − λmin) × log sig(n/M) (28)
where n is the number of iterations; M is an integer; λmin, n, and M can be obtained by the experiment.
The function y = log sig(x) is expressed by Formula (29) and illustrated by Figure 6.

y = 1/1 + e−x (29)
In Figure 3, the iteration is few, and λ is minimal, making the convergence of the algorithm fast.

When the algorithm converges into a steady state with the increase of the number of iterations, λ is
large, and the steady-state error is minimal.
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The improved G RLS algorithm is combined with the Z RLS algorithm, and the improved forgetting
factor method can obtain good convergence speed and steady-state error performances. The G RLS
algorithm is expressed as follows.

λ(n) = λmin + (1 − λmin) × log sig(n/M) (30)

P (n) =
1

λ(n)
{
P (n − 1) − K(n)XT (n)P (n − 1) + round[γe(n)]

}
(31)

The learning curve comparison chart of the RLS algorithm is illustrated in Figure 4. The parameter
settings are described above, and the G RLS algorithm λmin = 0.95,M = 60. The figure shows that
the G RLS algorithm is the best, since its convergence speed is the fastest, and the steady-state error
is the smallest.
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3.3. GRLS IVSSLMS Algorithm

The RLS LMS takes the advantages of both LMS and RLS algorithms; therefore, it has a rapid
convergence rate and minimal steady-state error. This paper proposes the GRLS IVSSLMS algorithm,
which further improves the performance of the RLS LMS algorithm and PD effect. The GRLS IVSSLMS
algorithm learning curve comparison chart is depicted in Figure 5. The RLS algorithm μ = 0.01,ET =
0.5, and the LMS algorithm μmax = 0.65. In the remaining parameters described above, the
GRLS IVSSLMS algorithm has a good convergence speed and steady-state misadjustment.

4. RESULT AND DISCUSSION

The design of the proposed adaptive algorithm is based on the initial stage of convergence or an unknown
system parameter change. The step size should be relatively large to obtain rapid convergence speed
and tracking speed time-varying systems. The algorithm converges should be kept minimal to achieve
the small step size of the steady-state offset noise regardless of the primary input interfering signal v(n).

The adaptive predistortion system block diagram of the GRLS IVSSLMS algorithm is illustrated
by Figure 6. The PA using the PLTC model and the PD algorithm using the GRLS IVSSLMS select
the G RLS algorithm in the initial phase. After the steady-state of the G RLS algorithm, the switch
automatically receives the second side and converts to the I VSSLMS algorithm. When the error is
more than the threshold, the algorithm switches to receive the first side, and then repeats the above
process. The error signal threshold is important. Let ET = |e(n)|, the threshold ET is unaffected by
other factors. The algorithm is only related to the error signal and can ensure stability.

In Figure 7, the spectrum inhibition of the GRLS IVSSLMS PD algorithm has an obvious advantage
over the RLS LMS PD algorithm with an improved ACPR value of 3 dB. The ACPR value of the
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GRLS IVSSLMS PD algorithm is improved by approximately 29 dB compared with the predistortion
PA output.

In Figure 8, the AM/AM and AM/PM of the power amplifier before non-predistortion are very
poor, and the points are very scattered. However, after the predistortion of GRLS IVSSLMS algorithm,
the AM/AM and AM/PM are basically in a straight line. Compared with LMS and RLS, the linear
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Table 1. GRLS IVSSLMS algorithm performance comparison.

PD algorithm
PLTC PA (M = 2, N = 5)
EVM (%) NMSE (dB)

LMS 4.6672 −26.0712
RLS 3.6652 −27.1336

RLS LMS 1.5440 −35.1256
GRLS IVSSLMS 1.4032 −37.0742

effect is greatly improved and can meet the system requirements.
In Table 1, compared with the LMS, RLS, and RLS LMS algorithms, the EVM of the proposed

method is improved by 3.26%, 2.26%, and 0.14%, respectively, whereas the NMSE of the proposed
method is improved by 11, 9.9, and 1.95 dB, respectively.

5. CONCLUSION

The increasing demand of testing large-scale real-world programs necessitates the automation of the
testing process. As a basic problem in software testing, path-wise test data generation is particularly
important. We proposed a look-ahead search method in our previous research, and in this paper we
make improvements on interval arithmetic, which enforces arc consistency. We analyze, in detail, the
working process of interval arithmetic, and based on the analytical result, the iterative operator is
introduced and adopted in the constraint solving process, for the purpose of detecting infeasible paths
as well as shortening the time consumption. Experimental results prove the effectiveness of the iterative
operator and its applicability in engineering.

Our future research will involve how to make interval arithmetic more efficient in arc consistency
checking. We will also introduce more arc consistency checking techniques and more ways of representing
the values of variables such as affine arithmetic. The MC/DC coverage criterion will be given more
emphasis. We will continue to improve the effectiveness of the generation approach and provide better
support for more data types.
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