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A Novel Ultra-Wideband Design of Ridged SIW Magic-T
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Abstract—In order to obtain a wideband sum-and-difference network, a novel ridged substrate
integrated waveguide (RSIW) magic-T is designed. The proposed magic-T is composed of a five-layer
RSIW structure. The signal input from the coaxial H-plane port is transmitted to RSIW through a
stripline and split into two in-phase and equal signals at the output ports on the top and bottom layers
because of the vertically symmetric structure. An E-plane SIW power divider is utilized to realize the
E-plane input/output port of the magic-T. A remarkable bandwidth improvement is achieved due to
the ridged structure and the wide bandwidth of a ladder-shape stripline optimized by genetic algorithm
(GA). Measured results indicate that the magic-T has a fractional bandwidth (FBW) of 78.7% (6.4–
14.7 GHz) with return loss better than 18.1 dB and great isolation characteristics.

1. INTRODUCTION

With the continuous development of wireless communication technology, the structure of system has
become increasingly complex, and the requirements for the performance and integration of various
components are constantly increasing. Magic-T as an important device for microwave and millimeter-
wave circuits is widely used in microwave integrated circuits, ultra-wideband reception, and other
fields. It is urgent to meet the requirements of ultra-wideband, miniaturization, and high-performance
systems [1, 2].

As the wideband matching circuits are difficult to design [3], the FBW of a conventional magic-T
is usually limited to 5% to 10% [4, 5]. Using an optimized metal cone profile in the magic-T improved
the operating bandwidth to 20% [6]. A narrow band operation is obtained with all general matching
configurations [7]. The magic-T consists of microstrip and slotline T-junctions, achieving 40%–50%
FBW with good isolation between the sum and difference ports better than 40 dB [8]. The magic-T in [9]
using a combination of microstrip-slot transitions and three-line parallel coupled microstrip structure
achieved 67% FBW assuming 10 dB of return loss. But the large amount of radiation from the slotline
structure causes high insertion losses. The substrate integrated waveguide (SIW) is a new type of
transmission line that combines the advantages of rectangular waveguide high-performance and planar
transmission lines for easy integration, creating a whole new field for the design of RF microwave circuits.
A great number of SIW-based magic-T circuits have been proposed [10–16]. The conventional SIW T/Y
junction power dividers used inductive post and large volume to realize equal power distribution [17].
The magic-T based on SIW-slotline transition and SIW T-junction power divider realizes 11.2% (8.4–
9.4 GHz) FBW in [18]. By introducing a one-third mode substrate integrated resonator (OTMSIR) and
slotline transition, a planar magic-T can be realized, and the bandwidth is 19% (7.4–8.9 GHz) in [4].
These mentioned SIW magic-Ts have a limited bandwidth, which not only use narrow slotline-to-SIW
transitions but also add redundant posts to optimize the transition. The conventional SIW T/Y junction
H-plane power dividers in [11] require the inductive post and larger volume are to realize equal power
distribution.
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An SIW magic-T using an E-plane power divider and a slotline transition is proposed in [19],
which has a bandwidth of 18% without any redundant posts. In [20], a novel magic-T using a stripline
embedded hybrid SIW is designed, which has an FBW of 49.1%. In face of system performance
requirements, all these mentioned magic-Ts still do not meet the demands on ultra-wideband and
high-performance features. In order to improve the bandwidth of SIW structure, a metal ridged SIW
is proposed in [21] and has about 37% enhancement of bandwidth. The RSIW adds ridge capacitance,
while reducing the cutoff frequency of TE10 allowing the single mode operating bandwidth to be
broadened. In [22], by adjusting the width and height of ridge, the single-mode cutoff frequency can be
changed, and the relative bandwidth can be expanded. In this paper, a novel broadband RSIW magic-T
is designed, to achieve ultra-wideband and meet high-performance system requirement. Due to the wide
bandwidth of RSIW structure and a ladder-shape stripline optimized by GA, a definite bandwidth and
low-loss improvement of magic-T are realized. All the structures are simulated with HFSS and designed
on a dielectric substrate with εr = 2.94.

2. DESIGN OF THE RSIW MAGIC-T

2.1. The Design of Ridged Substrate Integrated Waveguide

RSIW is a great substitute for SIW structure to deal with broadband requirements. Inserting a ridge
in SIW can widen the mono-modal bandwidth. In order to construct RSIW, SIW is built first based on
the equivalent formulas between RW and SIW. The geometry of SIW is shown in Figure 1, where d is
the diameter of the post, and p is the distance of two adjacent vias. To prevent the loss between two
adjacent vias, the relationship between d and p is [22]:

d < 0.2W, d < 0.2λg, p < 2d (1)

The equivalent width Weff and actual w of SIW should satisfy the following formula:
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Figure 2 shows the structure of RSIW. After inserting the ridge, the current in RSIW is mainly
concentrated on the edge of the ridge, which could be called current-field edge effect. The effect could
be equivalent to edge capacitance Cd, which satisfies the following formula [23]:
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where ε is the dielectric permittivity. The whole capacitance of RSIW consists of double Cd and
capacitance of plate capacitor which is proportional to its width and length. The whole capacitance
determines the cutoff frequency of TE10 mode. In summary, ridge width and gap influence the bandwidth
of RSIW structure. In [22], if W1/(W-d) is between 0.15 and 0.35, the wide bandwidth can be obtained.

Figure 1. The structure of SIW. Figure 2. The structure of RSIW.
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Considering that RSIW needs to transit to microstrip, the ridge width could be optimized appropriately.
Within a certain range, the bandwidth decreases with an increase in the value of h/t. In consideration
of the measurement procedure of 50 Ω microstrip in Port 1, the total height h cannot be higher than
1.2 mm on the substrate. In the end, the structure dimensions are W = 14.4 mm, W1 = 5.1 mm,
t = 2.2 mm, h = 1mm.

2.2. The Ladder-Shape Stripline

The stripline-to-SIW transition has a wider bandwidth than microstrip-to-SIW and slotline-to-SIW
transition in [20]. RSIW has the same wave mode as SIW; therefore the transition in SIW can be
applied in RSIW structure. Since the characteristic impedance of RSIW has dispersion effects and that
of stripline does not change with frequency, the key of transition is to achieve an ideal characteristic
impedance matching, in order to transfer signal from the coaxial port (TEM mode) to the RSIW
structure (TE10 mode).

Four quarter-wavelength impedance transformers are applied to match the RSIW terminal
structure. The simulated impedance of RSIW port is 6.5–9.5 Ω. Using the Chebyshev ladder as the
initial value, the widths of four ladder steps are optimized by GA. The initial number of individuals,
the maximum number of generations, the crossover probability and the mutation probability are set as
30, 500, 0.9, and 0.05, respectively. After selecting frequency point, 7.0, 7.5, 8.0, 8.5, . . ., 14 GHz, the
correspondence between the fitness value and S44 at each frequency point is as follows:

fitness =

⎧⎪⎨
⎪⎩

1.0, S44 < −20
0.8, −20 ≤ S44 < −18
0.5, −18 ≤ S44 < −15
0, S44 ≤ −15

(4)

The fitness of the transition structure is as in the following function:

F = fitness(f1) + fitness(f2) + fitness(f3) + . . . + fitness(f15) (5)

After the optimization by GA, the final selected parameters are 5.7 mm, 3.9 mm, 2 mm, and 0.9 mm.
Within the band of the interest, the simulated return loss of Port 4 is greater than 20 dB.

2.3. Wideband RSIW Magic-T

The structural basis of RSIW Magic-T is the ridge substrate integrated waveguide, which achieves a
good amplitude and phase consistency by dividing the signal through vertical symmetry of the structure.
Figure 3 presents the configuration of the RSIW magic-T. It consists of an E-plane SIW power divider
and a coaxial H-plane port. It shows that microstrip Port 1 and coaxial Port 4 are the difference port
and sum port, respectively. At the same time, Port 2 and Port 3 are signal dividing arms on the top
and bottom layers.

Figure 4 shows the gradation of the E-field distributions, where the principle of RSIW magic-T
can be analyzed. For the difference port, when the signal is input from MS Port 1, two equal and
out-of-phase signals can be realized by the common ground in the middle and vertical symmetry of the
structure at Port 2 and Port 3. When Port 4 is excited, the TEM mode propagates from the coaxial
line to the stripline, and a ladder-shape stripline is inserted to transform the TEM mode into the TE10

modes in the vertically stacked RSIWs. Because of the vertical and symmetric structure, the signal can
be easily divided into two equal and in-phase signals between Port 2 and Port 3.

The ultra-wideband characteristic of the magic-T is determined by two key structures. Firstly,
RSIW structure broadens the mono-modal bandwidth by inserting a ridge in SIW, which decreases
the cutoff frequency of the dominant mode in magic-T. Secondly, the ladder-shape stripline-to-RSIW
transition optimized by GA breaks the limits of the bandwidth of conventional stripline-to-SIW and
narrow slotline-to-SIW, helping to widen the bandwidth of magic-T.

Figure 5 presents a planar configuration of the RSIW magic-T, while the dimensions are shown
in Table 1. The design of the RSIW magic-T can be divided into following four steps. Firstly, the
structural parameters of RSIW determine the operating frequency. The initial value of W is the same
as that of the SIW structure in [24], while W1 can be optimized considering the microstrip-to-RSIW
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Figure 3. The configuration of the RSIW magic-T. (a) The 3D view; (b) The sectional view; (c) the
general view.
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Figure 4. The gradation of the E-field distributions.

transition. Secondly, the parameters of ladder-shape stripline are optimized by GA. The characteristic
impedance of stripline at the end is 50 Ω. Thirdly, quasi-coaxial vertical interconnect structure realizes
the transition from the stripline to the microstrip line, which consists of 9 posts enclosed in a circle.
Distinguished from the stripline-to-mircostrip transition utilized in [20], the proposed stripline-to-coaxial
line can reduce the loss of the sum port. In the design, the difference and sum ports are not on the same
layer. Hence, the long physical distance can reduce the mutual coupling effect, which highly enhances
the isolation. Fourthly, the width of the transition structure between the microstrip and the RSIW is
the same as the width of the ridge. Since the electric field near the ridge is quite concentrated and
varies greatly with the surrounding structure, the design of the same width of two kinds of transmission
lines can reduce loss.



Progress In Electromagnetics Research Letters, Vol. 82, 2019 117

Figure 5. The planar configuration of the RSIW magic-T.

Table 1. Parameters of the structure.

W 14.4 mm Lt1 6.4 mm Wts 5.7 mm
W1 5.1 mm Wm1 2.6 mm Wts1 3.9 mm
d 0.4 mm Lt2 16.6 mm Wts2 2 mm
p 0.7 mm Wm2 1.3 mm Wts3 0.9 mm

L1 29 mm Sw 2.9 mm Lts 4.2 mm
L2 4 mm crc 0.5 mm Ws 0.6 mm
c 1.15 mm b 2.5 mm Ws1 1.3 mm

3. EXPERIMENT AND MEASUREMENT RESULTS

The prototype of RSIW magic-T is fabricated and measured. The magic-T consists of four substrate
layers and five copper layers. After completing the circuits of the five copper layers, the two substrate
layers are pressed at a high temperature, and the central post of quasi-coaxial structure is drilled. Then
all substrate layers and copper layers are pressed in sequence at high temperature. Finally, the through
posts from top to bottom of RSIW structure and around posts of the coaxial structure are drilled, then
all the holes should be metallized by copper. The entire process is relatively simple, and the use of
prepregs to connect the substrate and copper layers can reduce costs. Figure 6 shows the prototype of
the fabricated RSIW magic-T. The size of core structure containing the stripline-to-microstrip transition
and coaxial port is about 27.4 × 33 mm2.

Figure 7 illustrates the results of the simulation and measurement. In the band of 6.4–15 GHz
(FBW > 80.4%), the simulated return loss of Port 1 is greater than 20 dB as shown in Figure 7(a),

(b)(a)

Figure 6. Photographs of the fabricated magic-T: (a) Top of magic-T; (b) bottom of magic-T.
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while the simulated return loss of Port 4 is better than 20 dB from 6.9 to 14.9 GHz (FBW > 73.4%)
shown in Figure 7(b). The simulated return loss of Port 4 is better than 20 dB from 6.9 to 14.9 GHz
(FBW > 73.4%). Measured results indicate that the return losses of Port 1 and Port 4 are greater
than 18.1 dB and 18.5 dB, respectively. The performance varies greatly because of the machining
errors, especially some sensitive dimensions, including the length of the ladder-shape stripline and
the gap between multiple layers. Besides, owing to neglect of the SMA connectors in the simulations,
errors of measurement results should be also caused by the mismatch between the SMA connectors

(b)(a)

(d)(c)

(e)

Figure 7. Simulated and measured results of the RSIW magic-T: (a) out-of-phase; (b) in-phase; (c)
amplitude imbalance; (d) phase imbalance; (e) isolation.
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and microstrip lines. The simulated data and measured results demonstrate that the RSIW magic-T
has ultra-wideband and low-loss characteristics. Within the entire bandwidth, the measured phase
imbalance and amplitude imbalance for in-phase and out-of-phase are less than ±0.3◦ and ±0.2 dB. The
differences between amplitude and phase of in-phase and out-of-phase are very small because of the
symmetry of the structure. The insertion losses (ILs) of in-phase and out-of-phase are less than 3.65 dB
and 3.75 dB due to IL of microstrip and other transition. Figure 7(d) shows that the measured isolation
is greater than 20 dB between Port 2 and Port 3, and better than 44 dB between Port 1 and Port 4.
The performances of the proposed RSIW magic-T and previous magic-Ts in [19, 20] are compared in
Table 2, which indicates that this structure achieves lower return loss, wider bandwidth, and more
compact structure.

Table 2. Comparisons of performance for different SIW magic-T.

Ref. FBW S11 (dB) S44 (dB) S41 (dB) S23 (dB) Size (mm2)
[19] 17.9% (13.2–15.8 GHz) 12 14.5 < −28 < −12.5 59 × 38
[20] 49.1% (8.3–13.7 GHz) 15 15 < −40 < −24 18 × 45

The design 78.7% (6.4–14.7 GHz) 18.1 18.5 < −44 < −20 27.4 × 33

4. CONCLUSIONS

In this paper, a broadband RSIW magic-T is realized and analyzed. Because of the wideband
characteristic of the RSIW structure and a ladder-shape stripline optimized by GA, an improved magic-T
with 78.7% bandwidth is realized. The loss is reduced because of the quasi-coaxial vertical interconnect
structure and H-plane coaxial port. Besides, the structure is easy to design, and the working frequency
band can be adjusted by changing the main mode of RSIW. Because of the broadband and low-loss
performance, the magic-T can be used to form UWB sum-and-difference network for beam-forming,
signal monitoring, and signal receiving in radar and communication systems. This structure is easy to
integrate microwave and millimeter-wave systems, and is conducive to system integration design.
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