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Impedance Synthesis of 2D Antenna Arrays of Slotted Spherical
Radiators
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Abstract—An impedance synthesis problem of 2D antenna arrays consisting of slotted spherical
radiators, whose geometric centers are located at nodes of a flat rectangular grid with double periodicity,
has been solved. The problem is formulated as follows: to determine complex impedances distributed
over surfaces of the spherical radiators which allows us to steer the radiation pattern (RP) of the antenna
array to given directions. Analytical solution of the impedance synthesis problem (as an alternative to
numerical solution) was obtained under the assumption that spherical radiators are excited by axially
symmetric magnetic currents with equal amplitudes. The approach was verified by simulation of the
five-element linear antenna array. The possibility of RP scanning in a wide range was confirmed by
using the synthesized distributions of complex impedances.

1. INTRODUCTION

A distinctive functional characteristic of antenna arrays is electric spatial scanning of their RPs (see,
e.g., [1]). The scanning is usually controlled by varying amplitude-phase distributions of currents in array
elements. For impedance vibrator arrays, there exists a possibility to control the phase distribution by
varying surface impedances of vibrator elements [2, 3]. In this case, effective electric lengths of individual
vibrators and, hence, the amplitude-phase distribution of currents over the entire array are varied by
adjusting vibrator impedances.

Using this approach, we have earlier investigated one-dimensional and two-dimensional vibrator
arrays and justified this approach [4, 5]. For symmetric excitation of equidistant vibrator arrays by
voltage generators, the problem was solved in an analytical form. This article is aimed at the analytic
solution of the impedance synthesis problem for the 2D plane antenna array consisting of slotted
spherical radiators with small diffraction radii. We could not find the problem solution in the literature.

It should be noted that the electrodynamic characteristics of a slotted spherical antenna consisting
of spherical scatterer with a narrow equatorial slot can be analyzed using the theory of coplanar
antennas [6]. However, such an analysis by direct numerical methods is difficult to accomplish even for
an isolated ideally conducting sphere and especially for an array of spherical radiators with impedance
coatings.

Arrays of small impedance spherical resonators can also be considered as elements of tunable
metamaterials for monitoring terahertz (THz) radiation [7]. For example, such materials based on
dielectric resonators which do not use conductive materials and, hence, eliminate some loss); they can
be important for THz applications [8, 9]. Such structures with innovative impedance coatings can be
used for the detection of THz waves, and they can be used in integrated elements of photodetectors [10].
In any case, such applications confirm the practical significance of the results presented in this paper.
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2. FORMULATION OF THE IMPEDANCE SYNTHESIS PROBLEM

Let a circular slot be cut in a sphere parallel to its equatorial section as shown in Fig. 1. The sphere
radius is R, and the slot width measured along the slot ark is d. The coordinate of the slot center
is θ0. In the spherical coordinate system (r′, θ′, ϕ′), the slot occupies the area defined by coordinates
ϕ′ ∈ [0; 2π] and θ′ ∈ [θ0 − d/(2R); θ0 + d/(2R)]. The sphere surface is characterized by distributed
isotropic impedance Z̄S normalized to free space resistance Z0 = 120π [Ohm].

Figure 1. The slotted spherical antenna.

Let us consider the most interesting for practical application axially symmetric excitation of narrow
(d � R) circular slot. We may assume that the slot electric field has only a meridional component with
a constant distribution along the slot axis. Then, within the framework of the above approximations,
the density of equivalent magnetic �Jm and electric �Je currents on the slot aperture can be represented
as [11]

�Jm = −V0
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where �ϕ0 and �θ0 are the unit vectors of the spherical coordinate system; δ(r′ − R) is the Dirac delta
function; V0 is the complex voltage amplitude, and ZS = Z̄SZ0.

The electromagnetic fields excited by impedance spherical antennas in free space can be obtained
based on components of the Green’s functions by using pair representations for currents in Eq. (1) on
the spherical scatterer surface [12]. In the case of monochromatic excitation, when time dependence is
eiωt (ω is the circular frequency), electric field components in the spherical coordinate system (r, θ, ϕ)
can be written as
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the first kind; and coefficients Aj are defined as follows

Aj =
(2j + 1)
j (j + 1)

× Pj (cos (θ0 + d/(2R))) − Pj (cos (θ0 − d/(2R)))

Qj

(
h
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) , (3)

where Qj(h
(2)
j (kR)) =

(j+1) [jZ̄S−ikR (1+Z̄2
S) ]−2Z̄Sk2R2

ikR (1+Z̄2
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h
(2)
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(2)
j+1 (kR). The formulas (2) will be

used for further analysis.
Consider the 2D antenna array consisting of the slot spherical antennas (Fig. 1) located in free

space at the plane (x0y) of the Cartesian coordinate system (x, y, z) as shown in Fig. 2. We will also
define a spherical coordinate system, which polar axis coincides with the axis {0z}, and the angle ϕ
is measured from the axis {0x}. Let dy be the distance between adjacent rows of the array, dx be the
distance between the centers of spherical elements in a row, Ny be the number of rows, and Nx be the
number of elements in a row. Without loss of generality, we will assume that the parameters of the
spherical radiators: sphere radii R, d, and θ0 are equal for all N = Nz × Nx. The sphere impedances,
Z̄S,nm (n ∈ [1, Nz ] and m ∈ [1, Nx]), are different.

Figure 2. Geometry of the 2D antenna array.

Taking into account the formulas (2) and the asymptotics of the spherical functions h
(2)
j (kr) ≈

1
kr i

j+1e−ikr under conditions |kr| � j, (kr) → ∞, we can write the main component of the radiated
electric field in the wave zone by the spherical antenna with indices (n,m) in the following form

Eθ
nm = −VnmkR sin θ0
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where Aj,nm = Aj|Z̄s→Z̄s,nm
.

If terms proportional to (1/r)2 and(1/r)3 are eliminated from formulas (2), the components of the
electric fields Eϕ and Er of a single spherical radiator in the wave zone are equal to zero. Let all spherical
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radiators in the array be resonantly tuned by selecting their internal resistances and parameters dx/λ,
R/dx, dy/λ, R/dy. In this case, the mutual influence of elements can be compensated, and the total
radiation field of the array Eθ(r, θ, ϕ) can be presented as the sum of the radiation fields of all radiators.
If the phases of these fields arriving at the observation point C(r, θ, ϕ) are taken into account, the
resulting field can be written as

Eθ (r, θ, ϕ) = −kR sin θ0

2d

Nz∑
n=1

Nx∑
m=1

e−ikrnm

rnm
Vnm

∞∑
j=1

Aj,nmP 1
j (cos θ) ij

[
1 − Z̄S,nm

]
. (5)

Thus, the problem of impedance synthesis is reduced to defining the impedances of each radiator,
Z̄s,nm, which, for a given direction of the maximum radiation in the wave zone (θmax, ϕmax), is
determined based on formula (5).

3. SOLUTION OF THE PROBLEM OF IMPEDANCE SYNTHESIS

First of all, let us convert expression (4) for the radiation field of the single spherical radiator in another
form. For perfectly conducting spherical radiators (Z̄S = 0), the coefficients in Eq. (3) can be presented
as
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Then, formula (4) takes the following form
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Formula (8) can be presented as the sum of two terms. The first term defines the radiation pattern
(RP) of the annular slot cut in a perfectly conducting sphere [13],

Fs(θ) = −kR sin θ0
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while the second defines variation of the radiation field of the spherical antenna, due to influence of the
sphere impedance coating. Thus, we obtain
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where the term ΔFs(θ) = sin θ0
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Taking into account the geometric path difference for the wave propagating from neighboring array
elements to the observation point C(r, θ, ϕ), we can rewrite the expression (11) for the field Eθ(r, θ, ϕ)
in wave zone as
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where u = kdz cos θ and ν = kdx sin θ cos ϕ. If the spherical radiators are perfectly conducting,
Z̄S,nm = 0, and amplitudes of excitation voltages are equal, Vnm = V0, expression (12) can be reduced
to
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In this case, the maximum of the RP of the array is reached under conditions u = v = 0, and it is
directed along the axis {0y} (θ = π/2, ϕ = π/2). As can be seen, expression (13) is the product of
two multipliers consisting of independent series. These multipliers present the RP of the linear array of
spherical antennas which axes are directed along the axes {0z} and {0x}.

As known from the antenna array theory (see, e.g., [14]), scanning of the array RP in space can
be achieved by linear phase shifts between currents of the adjacent array radiators. If the phase shifts
between adjacent rows and adjacent radiators in a row are equal to Δv and Δu, the direction of the
maximum array radiation can be determined by the angles (θmax;ϕmax) defined by the formulas

cos θmax = Δu/(kdz) and sin θmax cos ϕmax = Δv/(kdx). (14)

Then expression (13) can be represented as
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As can be seen, formulas (12) and (15) become identical if the relations
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If the impedances of the array radiators are complex quantities Z̄S,nm = R̄nm+iX̄nm, Equation (16)

can be represented as follows
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Relations (16) are equations for array beam scanning, whose solution uniquely defines the matrix of
unknown impedances {Z̄S,nm} for the predefined angles (θmax;ϕmax). It is easy to verify that if dz = 0
or dx = 0, Equation (16) can be reduced to equations for one-dimensional arrays.

Taking into account Eqs. (9) and (11), we obtain, based on Eq. (17), the final formulas for the real
and imaginary parts of the surface impedances
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C2
1 + C2

2

, n = 1, 2, . . . , Nz; m = 1, 2, . . . , Nx; (18)
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2

,
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where C1 = Re{1 + ΔFs(θmax)
Fs(θmax) } and C2 = Im{1 + ΔFs(θmax)

Fs(θmax) }.
It should be noted that formulas (18) are valid for any number of radiators and for arbitrary distance

between them. However, in the general case, the values of the impedances Z̄S,nm = R̄nm + iX̄nm thus
obtained as effective physical quantities cannot guarantee that the conditions R̄nm ≥ 0 hold true. These
conditions, put forward by energy considerations, determine the possibility of practical realization in
the form of the internal impedance Z̄S,nm = R̄nm + iX̄nm of the spherical radiator. In such cases, the
conditions R̄nm ≥ 0 can be fulfilled after substitutions Vnm → −Vnm and Z̄S,nm → −Z̄S,nm.

4. NUMERICAL RESULTS

In order to verify the approach, we present simulation results for a one-dimensional equidistant array
consisting of five identical spherical radiators located along the axis {0z} at the distance dz = λ/2
from each other (Fig. 2). The array parameters are as follows: Nz = 5, dx = 0, dz = λ/2, θ0 = π/2,
R = λ/20, and d = πλ/500. Such an array geometry simplifies the analysis and demonstration of beam
scanning, since, in this case, the RP does not depend on the angular coordinate ϕ. In other words, the
array radiation fields should be calculated only in the E-plane, considering the geometric difference of
the wave paths from the adjacent radiators to the observation point, dz cos θ, in the wave zone.

Simulation results, the value of required complex impedances Z̄S,n = R̄n +iX̄n, are listed in Table 1
for the angles θmax = 90◦; 70◦; 50◦; 30◦. The results are obtained based on Eq. (18), taking into account
only ten terms in series of the formulas (9) and (10), which is sufficient for the spherical antennas of
small radii.

As expected, all spherical radiators should be perfectly conducting, i.e., Z̄S,n = 0 when θmax = 90◦.
The normalized RP for this case is shown in Fig. 3 as solid curve 1. As can be seen, the basis array

Table 1. Estimated values of the complex impedances Z̄S,n = R̄n + iX̄n.

n\θmax θmax = 30◦ θmax = 50◦ θmax = 70◦

1 0 + i0 0 + i0 0 + i0
2 0.117 − i0.28 0.177 − i0.192 0.148 − i0.054
3 −0.104 − i0.072 −0.072 − i0.268 0.171 − i0.211
4 0.183 − i0.171 −0.033 − i0.01 0.044 − i0.305
5 −0.119 − i0.198 0.183 − i0.157 −0.099 − i0.239

Figure 3. The E-plane RP of linear antenna array: 1 — θmax = 90◦; 2 — θmax = 70◦; 3 — θmax = 50◦;
4 — θmax = 30◦; dotted line presents the RP of the single radiator.
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element, the radiator with index n = 1, should be perfectly conducting for any other θmax. A similar
effect was also observed for vibrator arrays [4].

As can be seen from Fig. 3, the shape of the angular dependence of the electric field intensity |F̄ |
varies slightly when the RP maximum is varied: the greater is the deviation of the θmax angle from the
vertical, the more noticeable are these variations. The simulation results have shown that impedances
of the array elements calculated for the sector θmax ∈ [90◦ ± 45◦] allow to accurately steer the array RP
in any predefined direction in this sector. In other angular sectors, the direction defined by the angle
θmax and the direction of the RP maximum may differ because the radiation of a single spherical slot
antenna is ineffective in these angular sectors (dashed curve 1 in Fig. 3).

5. CONCLUSION

The new method of impedance synthesis of the RP for vibrator structures [4, 5] is generalized for the
case of 2D flat antenna arrays of slotted spherical radiators. The problem of impedance synthesis for
antenna array with double periodicity is solved analytically. Formulas for direct calculation of the
impedances of each array radiator which allow to steer the maximum of the antenna RP in a predefine
direction are presented. The formulas can be used as basis for development of algorithms intended to
control the array radiation, for example, for spatial scanning of the RP. In addition, we may state that
this problem cannot be solved by using commercial program packages. The approach was verified by
simulation of the five-element linear array. The possibility of RP scanning in a wide range was shown by
using the synthesized distributions of complex impedances. The results obtained by using this approach
can also be applied to the simulation of adaptive antenna arrays, in which the dynamic parameters and
characteristics are adjusted depending on influence of various external factors.
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