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Effective Modeling of Magnetized Graphene by the Wave Concept
Iterative Process Method Using Boundary Conditions

Aymen Hlali*, Zied Houaneb, and Hassen Zairi

Abstract—Due to static magnetic field, the conductivity of graphene becomes an anisotropic tensor,
which complicates most modeling methodologies. A practical approach to the Wave Concept Iterative
Process method (WCIP) modeling of magnetized graphene sheets as an anisotropic conductive surface
from the microwave to terahertz frequencies is proposed. We first introduce a brief description of
modeling magnetized graphene as an infinitesimally thin conductive sheet. Then, we present a novel
manner for the implementation of the anisotropic boundary conditions using the wave concept in the
WCIP method. This proposed method is benchmarked with numerical examples to demonstrate its
applicability and accuracy. The proposed approach is used to compare the anisotropic model, isotropic
model, and the metal for a strip waveguide. We show that the anisotropic model gives more efficient
results.

1. INTRODUCTION

Magnetized graphene is an infinitesimally thin sheet biased by a magnetostatic field and behaves as
an anisotropic conducting sheet characterized by a conductivity tensor [1, 2]. For the modeling of
magnetized graphene, a number of numerical methods have already been developed to quantify the
anisotropic properties of graphene such the method of moments (MOM) [3], finite difference time domain
(FDTD) [4–6] method, and partial element equivalent circuit (PEEC) method [7].

However, each method has its advantages and drawbacks [8]. FDTD modeling of magnetized
graphene has been addressed in earlier works [4–6]. In [6], an FDTD approach is developed by
transforming the surface conductivity of graphene to a volumetric conductivity by dividing the
thickness of graphene and implementing it by using the auxiliary differential equation (ADE) and
matrix exponential method. However, this method uses volumetric discretizations, which slows the
computation [4, 7, 8]. For the MOM method, it can directly implement the surface conductivity into
the numerical process, but the physical process of how the magnetostatic field affects the properties of
graphene is not clear since this is a purely mathematical process [7, 8].

Among these numerical methods, WCIP [9–15] has its natural advantage over any other methods.
It applies the surface conductivity graphene directly without involving volumetric discretization, which
significantly reduces the time consumption and memory size. In this paper, a novel model of magnetized
graphene based on the wave concept is developed for the first time to analyze the anisotropy of
magnetostatically biased graphene, and a comparative investigation of anisotropic and isotropic models
for strip waveguide has been designed to demonstrate the effectiveness of the anisotropic model. The
remainder of this paper is organized as follows. In Section 2, some theoretical aspects about the
anisotropic nature of graphene are discussed, and its complex conductivity is described. Furthermore,
a brief introduction to the Wave Concept Iterative Process method and formulation of the proposed
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algorithm are detailed, including the development of the new diffraction operator of the magnetized
graphene. In Section 3, numerical results are presented to demonstrate the effectiveness and accuracy
of the proposed algorithm. Conclusions are made at the end of this paper.

2. THEORY AND FORMULATION

2.1. Conductivity Model of Magnetized Graphene

This section provides a brief description of graphene conductivity under a magnetic bias field for a
good understanding of the following sections. Consider a graphene sheet biased with a static magnetic
field perpendicular to its plane. Due to this field, graphene exhibits anisotropy [1]. Therefore, a useful
technique to incorporate the magnetically biased graphene in the electromagnetic problem is to replace
the graphene with an infinitesimally thin layer, defined by its anisotropic surface conductivity, expressed
as [1, 2]

¯̄σ =
(

σd −σo

σo σd

)
(1)

where σd and σo are derived from the Drude model

σd = σxx = σyy (2)
σo = σxy = −σyx (3)

In this context, the conductivity model consists of two terms, where the former is due to the
intraband conductivity and the latter to the interband conductivity [1]. However, in the low-frequency
range, the interband term is negligible, and hence, the conductivity of graphene can be expressed by
using the only intraband term [16, 17], whose elements are calculated through

σd,intra = −j
e2KBT

π�2(ω − j2Γ)

[
μc

KBT
+ 2 ln

(
e
− µc

KBT + 1
)]

(4)

and

σo,intra = − e2V 2
F eB

π�2(ω − j2Γ)2

[
1 − 2

(
e
− µc

KBT + 1
)−1

]
(5)

where KB is the Boltzmann constant, � the reduced Planck’s constant, e the electron charge, ω the
angular frequency, Γ the scattering rate, T the temperature, VF the Fermi velocity, B the amplitude of
the static magnetic field bias, and μc the chemical potential.

2.2. Formulation of WCIP Method

Analysis of planar structures with our electromagnetic method called wave concept iterative method
WCIP has been explained in detail in different published articles [9–15]. Therefore, in this subsection,
a brief overview of the WCIP method is presented. This method is based on the Wave Concept, which
is introduced by writing the tangential electric field �Ei and a surface tangential current density �Ji in
terms of incident and reflected waves (see Fig. 1). It leads to the following set of equations [9–15]

�Ai =
1

2
√

Z0i
(�Ei + Z0i

�Ji) (6)

�Bi =
1

2
√

Z0i
(�Ei − Z0i

�Ji) (7)

where �Bi and �Ai are the incident and reflected waves associated with the discontinuity interface. Z0i is
the characteristic impedance of the middle i (i = 1, 2) given by Z0i =

√
μ0

ε0εri
where εri is the relative

permittivity of the region i. �Ji is the surface tangential current density which defines �Ji = �Hi ×�ni with
�ni as the unit vector normal to the surface, and �Ei and �Hi are the tangential electric and magnetic
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fields, respectively. After process convergence, the scattering matrix Sij can be obtained by the following
equation

[S] =
1 − [Y ]
1 + [Y ]

(8)

where [Y ] is the matrix admittance. A schematic description of the WCIP algorithm is illustrated in
Fig. 2.

Figure 1. Incident and re ected waves on both sides of the interface.

Figure 2. Schematic description of the WCIP algorithm.

2.3. Implementation of the Anisotropic Boundary Conditions of Graphene in the WCIP
Method

Graphene is introduced in the WCIP method as boundary condition via the surface current and electric
field using surface conductivity ¯̄σ. The electromagnetic boundary condition at the magnetized graphene
sheet can be written as [1]

�n × ( �H1 − �H2) = �Js (9a)

= ¯̄σ �E (9b)
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where �n denotes the unit vector normal to the graphene sheet; �H1 and �H2 are the magnetic fields at
two sides of the sheet; �Js is the surface current density; and �E is the electric field.

To incorporate the graphene sheet into the WCIP method, we consider a graphene sheet positioned
parallel to the xy plane and biased by a magnetostatic field, directed in the z direction. An equivalent
model of magnetized graphene sheet in the WCIP method is illustrated in Fig. 3.

Figure 3. Equivalent model of magnetized graphene sheet in the WCIP method.

Substituting Eq. (1) in Eq. (9) and decomposing the equation, the surface current density becomes

�Jx = σd
�Ex − σo

�Ey (10)
�Jy = σo

�Ex + σd
�Ey (11)

Now, the primary issue is to define the connection between the surface currents �Jx, �Jy and the electric
fields �Ex, �Ey for the two sides of the sheet �J1,x, �J2,x; �J1,y, �J2,y and �E1,x, �E2,x; �E1,y, �E2,y, respectively.
Since the source is bilateral, the component of the surface current and electric field can be written as

�Jx = �J1,x + �J2,x (12)
�Jy = �J1,y + �J2,y (13)

and
�Ex = �E1,x = �E2,x (14)
�Ey = �E1,y = �E2,y (15)

By replacing Equations (12), (13), (14) and (15) in Equations (10) and (11), we obtain the following
equations

�J1,x + �J2,x = σd
�Ei,x − σo

�Ei,y (16)
�J1,y + �J2,y = σo

�Ei,x + σd
�Ei,y (17)

where �Ei,x and �Ei,y are the components of �E1,x, �E2,x, �E1,y and �E2,y, respectively.
However, the incorporation of boundary conditions in the WCIP method is enforced by redefining

the surface current and electric field in terms of waves. Therefore, Equations (16) and (17) can be
rewritten as

1√
Z01

( �A1,x − �B1,x) +
1√
Z02

( �A2,x − �B2,x) = σd

√
Z01( �A1,x + �B1,x) − σo

√
Z01( �A1,y + �B1,y) (18)

1√
Z01

( �A1,x − �B1,x) +
1√
Z02

( �A2,x − �B2,x) = σd

√
Z02( �A2,x + �B2,x) − σo

√
Z02( �A2,y + �B2,y) (19)

1√
Z01

( �A1,y − �B1,y) +
1√
Z02

( �A2,y − �B2,y) = σd

√
Z01( �A1,y + �B1,y) + σo

√
Z01( �A1,x + �B1,x) (20)

1√
Z01

( �A1,y − �B1,y) +
1√
Z02

( �A2,y − �B2,y) = σd

√
Z02( �A2,y + �B2,y) + σo

√
Z02( �A2,x + �B2,x) (21)



Progress In Electromagnetics Research C, Vol. 89, 2019 125

The resolution of these equations requires the introduction of other hypotheses. According to the
relations given by Equations (14) and (15), it is possible to obtain

�B1,x =
√

Z2√
Z1

( �A2,x + �B2,x) − �A1,x (22)

�B1,y =
√

Z2√
Z1

( �A2,y + �B2,y) − �A1,y (23)

�B2,x =
√

Z1√
Z2

( �A1,x + �B1,x) − �A2,x (24)

�B2,y =
√

Z1√
Z2

( �A1,y + �B1,y) − �A2,y (25)

After a mathematical resolution among Equations (18), (19), (20), (21), (22), (23), (24) and (25)
by calculating the relationship between normalized incident and reflected waves, we can derive the
scattering matrix of graphene as

⎛
⎜⎜⎝

�B1,x
�B1,y
�B2,x
�B2,y

⎞
⎟⎟⎠ =

⎛
⎜⎝

S11 S12 S13 S14

S21 S22 S23 S24

S31 S32 S33 S34

S41 S42 S43 S44

⎞
⎟⎠

⎛
⎜⎜⎝

�A1,x
�A1,y
�A2,x
�A2,y

⎞
⎟⎟⎠ (26)

where Sij are defined by

S11 =
X4X1 − X2

2

X2
1 + X2

2
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X4X2

X2
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2
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2X1(Z02

√
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2
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2σo

√
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√
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2

S21 =
−2σo(Z02

√
Z01)2

X2
1 + X2

2
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and
X1 = Z02 + Z01 + σdZ01Z02 (27)
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√
Z01)(Z02

√
Z01) (28)

X3 = (σo

√
Z02)(Z01

√
Z02) (29)

X4 = Z02 − Z01 − σdZ01Z02 (30)

X5 = Z01 − Z02 − σdZ01Z02 (31)
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2.4. Determination of the New Diffraction Operator for Anisotropic Media

In order to establish the total diffraction operator, it is necessary to determine the relationship between
incident and reflected waves with the anisotropic form while retaining the isotropy of the source and
dielectric domains. In the isotropic formulation, the relations between the reflected and incident waves
in the source and dielectric domains are written as follows [9–15]

�B1 = S11
�A1 + S12

�A2 (32)
�B2 = S21

�A1 + S22
�A2 (33)

In the anisotropic formulation, these relationships take the following matrix form⎛
⎜⎜⎜⎜⎝

�B1,x

�B1,y

�B2,x

�B2,y

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎝

S11,x 0 S12,x 0
0 S11,y 0 S12,y

S21,x 0 S22,x 0
0 S21,y 0 S22,y

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

�A1,x

�A1,y

�A2,x

�A2,y

⎞
⎟⎟⎟⎟⎠ (34)

where

S11 = S11,x = S11,y (35)
S12 = S12,x = S12,y (36)
S21 = S21,x = S21,y (37)
S22 = S22,x = S22,y (38)

Modeling with the WCIP method requires the meshing of the interface surface into small sub-
domains. The graphene, metal, dielectric and source domains are characterized by the corresponding
matrix Hg, Hm, Hd and Hs. The domain-matrix elements take value 1 in the corresponding cells and
zero elsewhere. However, we can express boundary conditions in terms of waves in each region. The
diffraction operator of the source, dielectric and metal domains are described in [9–15]. Finally, it is
possible to determine the overall diffraction operator. From that, the overall diffraction operator can
be obtained by the following equation

Γ = ΓG + Γm + Γd + Γs =

⎛
⎜⎜⎝

Γ11 Γ12 Γ13 Γ14

Γ21 Γ22 Γ23 Γ24

Γ31 Γ32 Γ33 Γ34

Γ41 Γ42 Γ43 Γ44

⎞
⎟⎟⎠ (39)

where ΓG,Γm,Γd and Γs are respectively the graphene, metal, dielectric and source domain diffraction
operators.

3. NUMERICAL RESULTS AND DISCUSSION

3.1. Algorithm Verification

To validate and demonstrate the accuracy of this proposed algorithm, the total transmission coefficient,
the Faraday rotation angle, and the cross-polarized transmission coefficient of an infinite graphene sheet
are studied by comparing the analytical solution to the extracted results from the proposed method.

The first simulation focuses on the surface conductivity σd and σo of a graphene sheet. Graphene
parameters are selected as τ = 0.1 ps, T = 300 K, while magnetic field intensity B and chemical
potentials μc vary from 5 to 50 T and 0.1 to 0.4 eV, respectively. The real and imaginary parts are
shown in Fig. 4.

At low frequencies, we can see from these figures the effect of changing μc and B on the conductivity;
the conductivity increases with their increasing [18].

A second example is considered to compare the analytical estimations to the numerically extracted
results from the proposed method. Graphene parameters are selected as μc = 0.117 eV and τ = 0.117 ps
(extracted from the typical graphene values of mobility μ = 10000 cm2/(Vs) and carrier density
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(a) (b)

Figure 4. Real and imaginary parts of the surface conductivity: (a) σd for different chemical potentials
μc, and (b) σo for different biasing magnetostatic fields B.

(a)

(c)

(b)

Figure 5. (a) The total transmission coefficients, (b) Faraday rotation angle, and (c) the cross-polarized
transmission coefficients of the graphene sheet versus frequency for different magnetic field values.

ns = 1012 cm−2) at room’s temperature T = 300 K, while magnetic field intensity B varies from 0.5 to
50 T. In Fig. 5, the total transmission coefficient [6, 16, 19]

Ttot,ana =
2
√|2 + σdηo|2 + |σoηo|2
|2 + σdηo|2 + |σoηo|2 (40)

the Faraday rotation angle

θF,ana = tan−1

(
ηoσo

2 + ηoσd

)
(41)
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and the cross-polarized transmission coefficient

Tcross,ana =
2 |ηoσo|

|(2 + ηoσd)2 + (ηoσo)2| (42)

are also provided with different biasing magnetostatic fields, where ηo is the EM wave impedance in free
space.

Outstanding agreements between the numerical results and analytical ones are observed at an
extensive frequency range; this numerically validates our proposed method. The results show that
the magnetostatic biasing has significant impacts on the electromagnetic waves propagating through a
graphene sheet.

3.2. Comparative Investigation of Anisotropic and Isotropic Models for Strip Waveguide

A third example is considered to compare the anisotropic model and isotropic model for response of the
strip waveguide. The formulation developed in the previous section was implemented in FORTRAN
code. The proposed strip waveguide is shown in Fig. 6. The simulation setup consists of the graphene
waveguide printed on a Teflon substrate with dielectric constant of εr = 2.8 which is normally illuminated
by an x-polarized plane wave. The graphene waveguide is located in the xy-plane and biased by a static
magnetic field, B, along the z-direction. The length and width of the substrate are kept fixed at
105 µm and 105 µm, respectively, whereas the height of the substrate is fixed at 3µm. The width of the
graphene strip is assumed to be 11.484 µm. A grid of 128 by 128 pixels is used to define the interface with
extreme fidelity to the geometric parameters. Other graphene parameters are given by μc = 0.117 eV
and τ = 0.117 ps, at room temperature T = 300 K, while magnetic field intensity B is 0.5 T.

Figure 6. Schematic of the proposed strip
waveguide.

Figure 7. Convergence of the s-parameters
versus the number of iterations.

In order to compare the performance of an anisotropic and isotropic model of graphene in the
terahertz region, we started with the convergence study and boundary conditions. Fig. 7 shows the
variation of s-parameters as a function of the number of iterations at resonant frequencies.

We find that the convergence with the anisotropic model is obtained from 1400 iterations, 900
iterations with the isotropic model and 800 iterations for the metal. Figs. 8 and 9 illustrate the
distribution of currents and fields for the structure.

According to these figures, we notice that the electric field and current density satisfy the boundary
conditions, since the density of the current is defined only on the graphene and metal, and zero on the
dielectric. The electric field is zero on graphene and metal, and different from zero on the dielectric.

Fig. 10 illustrates the variation of the reflection coefficient and transmission coefficient for the three
configurations, namely, the anisotropic model, isotropic model, and metal.
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(a) (b)

(c)

Figure 8. Distribution of the current density of the interface for the three configurations: (a) anisotropic
model, (b) isotropic model, and (c) metal.

(a) (b)

(c)

Figure 9. Distribution of the electric field of the interface for the three configurations: (a) anisotropic
model, (b) isotropic model, and (c) metal.
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(a) (b)

Figure 10. Comparison of simulated results: (a) Reflection coefficient, and (b) transmission coefficient.

(a) (b)

Figure 11. Simulated results of the anisotropic model for different magnetic fields: (a) Reflection
coefficient, and (b) Transmission coefficient.

It is shown that the reflection coefficient of the metal-based waveguide is wrongly adapted, and it
is evident, since the metal is not usable in the THz regime. Besides that, with the isotropic model of
graphene, the waveguide performance is enhanced drastically compared to the metal-based waveguide
in terms of the reflection coefficient. In this case, the return loss is reduced from −8 to −13 dB. But the
anisotropic model showed better adaptation. So, the anisotropic model gives better and more efficient
results than the isotropic model for waveguide applications [20].

The simulation results obtained for S-parameters characteristics over the considered 0.5–15 T range
of magnetic field intensity are shown in Fig. 11. The tunability of resonance frequency fr with changing
of the magnetic field can be seen. It is recognized that as magnetic field increases from 0.05 to 15 T, the
value of fr is increased from 2.001 to 2.2109 THz. It is exciting to note that the return loss is increased
by increasing the magnetic field intensity.

4. CONCLUSION

In this paper, a novel WCIP based algorithm is developed to model a magnetized graphene sheet
using an anisotropic surface boundary condition. The effectiveness of the proposed algorithm is verified
by studying the total transmission coefficient, Faraday rotation angle, and cross-polarized transmission
coefficient of an infinite graphene sheet, and by comparing the analytical solution to the extracted results
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from the proposed method. The main advantage over the earlier approaches which consider graphene
sheet as a volumetric layer is that the proposed plan directly implements the surface conductivity into
the numerical process without involving volumetric discretization, which significantly reduces the time
consumption and memory size. A second example was supported to compare the anisotropic model
and isotropic model for the waveguide to demonstrate the effectiveness of the anisotropic model for
waveguide applications.
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