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Abstract—Jamming and anti-jamming techniques for global position systems (GPS) play important
roles in electronic countermeasure. Least mean square (LMS)-based anti-jamming algorithm is widely
used in GPS receivers, since it can avoid matrix inversion and has low complexity. For convenience, we
call them LMS-GPS receivers. To improve the anti-jamming performance of the LMS-GPS receivers,
it is very meaningful to study the jamming technique. Considering that existing jamming signals are
easily suppressed by LMS-GPS receivers, a new jamming method named as optimal power difference
jamming is proposed in this paper to improve the jamming effect further. Specifically, the analytical
relationship between jamming-to-signal ratio (JSR) and the power difference of two interference signals
is firstly given. Then, the conclusion that there is always an optimal power difference where the JSR
can take the extreme value is drawn. Finally, the optimal power difference is derived as about 22 dB
for single-tone interference and 29 dB for band-limited Gaussian noise interference. Simulation results
show that the proposed method with optimal power difference is able to improve the JSR remarkably.

1. INTRODUCTION

Recently, the global position system (GPS) has become an indispensable part of daily life, which provides
the position, velocity and timing information to enable many applications used in our daily life. Since
the satellites are over 20,000 km away and are powered by solar cells, GPS signals have very low power
to reach earth, thus, it is particularly vulnerable to intentional or unintentional interference [1]. Least
mean square (LMS) algorithm is one of the most widely used anti-jamming algorithm because of its low
complexity and better convergence performance. For convenience, we refer to a GPS receiver that uses
the LMS algorithm for anti-jamming as an LMS-GPS receiver. In order to improve the anti-jamming
performance of the LMS-GPS receiver, it is necessary to study the impact of interference.

Several anti-jamming algorithms have been proposed for GPS [2–9]. The affine combination of two
LMS filters has a better performance compared to a single LMS filter, however, its computation cost is
not attractive [2]. The performance of LMS algorithm without jamming is analyzed for different SNR
environment in [3]. Variable step method is used to reach the fast convergence and a low steady state
error in [4], which does not consider the interference problem. An approximate expression is presented
in [5], which shows that the smaller LMS step size can decrease the mis-adjustment. Unfortunately, it
may also cause a longer convergence time. A numerical analysis of the effect of carrier frequency on the
signal-tone interference performance is given in [6]. A new variable step-size LMS algorithm is introduced
in [7], which can provide fast convergence by adjusting the step size, however, the performance of this
algorithm is highly depend on the criterion used to adjust the step size. The proportionate normalized
LMS (PNLMS) adaptation algorithm is proposed in [8], which can improve the initial convergence by
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adjusting the step size of each filter coefficient. The anti-jamming LMS algorithms mentioned above
ignore the influences of the interference signal power on the performance of these algorithms.

Meanwhile, most previous interference methods do not attach enough importance to the LMS-GPS
receivers. They concentrate on producing code-tracking error, influencing acquisition performance, etc.
For example, the influence of continuous wave (CW) interference on the acquisition performance of GPS
receivers is analysed in [9]. Wideband interference has the best jamming effect on signal acquisition
and tracking of the GPS receiver, which can cover the received signals and influence the performance of
the GPS receiver [10]. In [11], the influence of CW jamming for the GPS receiver is analyzed, and the
influence of Doppler frequency and integral duration is considered. The effect of band-limited Gaussian
noise interference with different bandwidths, the influence of integration time and early-late spacing is
assessed in [12].

In this paper, we propose a novel jamming method for LMS-GPS receivers. Firstly, the
characteristics of the LMS anti-jamming algorithm are analyzed. And then, in view of the characteristics
that the LMS algorithm will suppress higher power signal preferentially, the power difference between
the two suppressed interference signals is adjusted to maximize output jamming-to-signal ratio (JSR)
of the LMS-GPS receivers, which can ensure that the two interference signals have higher power in the
received data of the LMS-GPS receivers. The proposed jamming method can obtain larger output JSR
than one interference signal or two interference signals with the same power.

The rest of the paper is organized as follows. In Section 2, the system model of an LMS-GPS
receiver is presented. The proposed jamming method is developed in detail and followed by the problem
formulation in Section 3. Simulations have been performed to analyze the impact of different parameters
on the power difference between the two suppressed interference signals in Section 4. Section 5 provides
a concluding remark to summarize the paper.

2. SYSTEM MODEL

Consider a GPS receiver using the LMS anti-jamming algorithm as shown in Fig. 1, in which
x = [x1(t), x2(t), . . . , xM (t)]T denotes the received signal of array antenna; w = [w1, w2, . . . , wM ]T
represents the array weight vector; y(t) is the output signal of the received signal processed by the LMS
algorithm, which is multiplied by the local carrier and the local C/A code to demodulate and dispread,
and the data code of the GPS signal can be recovered by the integrate and dump.

The LMS algorithm is an adaptive beam forming algorithm, which has been widely used in the
GPS receivers [13]. The optimal weights are obtained by iterative operations according to the minimum
mean square error (MMSE). In general, the progress of the adaptive algorithm can be summarized as

Figure 1. The model of an LMS-GPS receiver.
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follows: 1) Calculating the output of the array based on the received signal and the current weight
vector. 2) Obtain the error between the output signal and the desired signal. 3) Adjusting the weight
vector based on a certain rule. The above process is a continuous iterative process until meeting the
requirements and reaching the steady state. The LMS algorithm can be described by the following
equations

ε(n) = d(n) − wH(n)x(n) (1)
w(n + 1) = w(n) + 2μx(n)ε(n) (2)

where d(n) is the desired signal; x(n) denotes the input signal vector at sampling time n; ε(n) stands
for the deviation error; w(n) represents the filter coefficients vector; and μ is equal to variable step [14].
μ plays an important role in the performance of the proposed algorithm, which can influence the steady
state error and convergence rate of LMS.

3. ALGORITHM FORMULATION

The received signal vector of array x(t) consists of one GPS signal, two interference signals and one
noise signal, and it can be represented as

x(t) = a0(θ0)s0(t) + a1(θ1)j1(t) + a2(θ2)j2(t) + v(t) (3)

where a0(θ0), a1(θ1) and a2(θ2) denote the steering vectors of the GPS signal s0(t), two interference
signals j1(t) and j2(t), respectively. v(t) stands for the array noise vector. j1(t) and j2(t) have the
following forms

j1(t) =
√

P1s1(t) (4)

j2(t) =
√

P2s2(t) (5)

where P1 and P2 denote the power of j1(t) and j2(t), respectively; s1(t) and s2(t) are power normalized
interference signal; j1(t) is uncorrelated with j2(t). Introducing the notation ΔP = P1 − P2, j2(t) can
be rewritten as j2(t) =

√
P1 − ΔPs2(t).

Considering the relationship between the received signal and ΔP , x(t) can be given by

x(t) = a2

√
(P1 − ΔP )s2(t) + c (6)

where c = a0s0(t) + a1

√
P1s1(t) + v(t).

Above all, we give the following Theorem.
Theorem 1: For an LMS-GPS receiver, assume that the received signal includes a desired signal

with a steering vector a0 and two interference signals with a power difference ΔP . If the receiver’s
weight vector w satisfies |wHa0| > 0, then, there must be an interference signal power difference ΔPopt

such that the following equation holds

∂OJSR

∂ΔP

∣∣∣
ΔP=ΔPopt

= 0 (7)

where OJSR stands for the JSR of the received signal.
Proof : The desired signal’s output power P0out can be expressed as

P0out = lim
T→∞

1
T

∫ T

0
|sdout(t)|2 dt

= lim
T→∞

1
T

∫ T

0

∣∣wH(n)a0s0(t)
∣∣2 dt

=
∣∣wH(n)a0

∣∣2 lim
T→∞

1
T

∫ T

0
|s0(t)|2 dt

=
∣∣wH(n)a0

∣∣2 P0 (8)
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where sdout(t) = wH(n)a0s0(t), w(n) denotes the weight vector given by the nth iteration of the LMS
algorithm; a0 represents the desired signal steering vector; P0 stands for the input power of the GPS
signal.

Similarly, the output powers of two interference signals are

P1out =
∣∣wH(n)a1

∣∣2 P1

P2out =
∣∣wH(n)a2

∣∣2 P2. (9)

Combining Eqs. (8) and (9), the output JSR of signal is

OJSR =
P1out + P2out

P0out
=

∣∣wH(n)a1

∣∣2 P1 +
∣∣wH(n)a2

∣∣2 P2

|wH(n)a0|2 P0

=

∣∣wH(n)a1

∣∣2 P1 +
∣∣wH(n)a2

∣∣2 (P1 − ΔP )

|wH(n)a0|2 P0

. (10)

Assuming that P0, P1,a0,a1,a2 are invariant, the relationship between signal output JSR and ΔP
can be expressed as

OJSR =
−aH

2 w(n)wH(n)a2ΔP +
[∣∣wH(n)a1

∣∣2 +
∣∣wH(n)a2

∣∣2]P1

|wH(n)a0|2 P0

. (11)

Considering the iterative solution process of the LMS algorithm, w(n)wH(n) can be written as

w(n)wH(n) = w(n − 1)wH(n − 1) + 2με(n − 1)x(n − 1)wH(n − 1)

+2με∗(n − 1)w(n − 1)xH(n − 1)

+4μ2ε(n − 1)ε∗(n − 1)x(n − 1)xH (n − 1)

= w(0)wH(0) +
n∑

j=1

f(j) (12)

where

f(j) = A0(j)(P1 − ΔP ) + B0(j)
√

P1 − ΔP + C0(j)

A0(j) =
j∑

i=1

4μ2ε(j − 1)ε∗(j − i)a2aH
2 s2(j − 1)s∗2(j − i)

+
j∑

i=2

4μ2ε∗(j − 1)ε(j − i)a2aH
2 s2(j − i)s∗2(j − 1)

B0(j) = 2με(j − 1)a2s2(j − 1)wH(0) + 2με∗(j − 1)w(0)aH
2 s∗2(j − 1)

+
j∑

i=1

4μ2ε(j − 1)ε∗(j − i)
(
a2cHs2(j − 1) + caH

2 s∗2(j − i)
)

+
j∑

i=2

4μ2ε∗(j − 1)ε(j − i)
(
a2cHs2(j − i) + caH

2 s∗2(j − 1)
)

C0(j) = 2με(j − 1)cwH (0) + 2με∗(j − 1)w(0)cH

+
j∑

i=1

4μ2ε(j − 1)ε∗(j − i)ccH +
j∑

i=2

4μ2ε∗(j − 1)ε(j − i)ccH

(13)
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Substituting Eq. (12) into Eq. (11), we have

OJSR =
A1(n)(P1−ΔP )2+B1(n)(P1−ΔP )

3
2 +C1(n)(P1−ΔP )+D1(n)(P1−ΔP )

1
2 + E1(n)

F1(n)(P1 − ΔP ) + H1(n)(P1 − ΔP )
1
2 + M1(n)

(14)

where

A1(n) = aH
2

n∑
m=1

A0(m)a2

B1(n) = aH
2

n∑
m=1

B0(m)a2

C1(n) = aH
2 w(0)wH(0)a2 + aH

1

n∑
m=1

A0(m)a1P1 + aH
2

n∑
m=1

C0(m)a2

D1(n) = aH
1

n∑
m=1

B0(m)a1P1

E1(n) = aH
1 w(0)wH(0)a1P1 + aH

1

n∑
m=1

C0(m)a1P1

F1(n) = aH
0

n∑
m=1

A0(m)a0P0

H1(n) = aH
0

n∑
m=1

B0(m)a0P0

M1(n) = aH
0 w(0)wH(0)a0P0aH

0

n∑
m=1

C0(m)a0P0.

(15)

For convenience, we define P1 − ΔP = x2, and OJSR can be rewritten as

OJSR =
A1(n)x4 + B1(n)x3 + C1(n)x2 + D1(n)x + E1(n)

F1(n)x2 + H1(n)x + M1(n)
. (16)

The derivative of OJSR can be given by

∂OJSR

∂x
=

ax5 + bx4 + cx3 + dx2 + ex + f

(F1(n)x2 + H1(n)x + M1(n))2
(17)

where
a = 2A1(n)F1(n), b = B1(n)F1(n) + 3A1(n)H1(n), c = 2B1(n)H1(n),
d = 2B1(n)H1(n) + 4A1(n)M1(n), e = 2C1(n)M1(n) − 2E1(n)F1(n),
f = D1(n)M1(n) − E1(n)H1(n).

(18)

Since the denominator in Eq. (17) is always greater than zero, and the highest power of the
numerator polynomial is 5, i.e., it must have 5 roots, it is easy to know that the numerator polynomial
has at least one real root because the complex roots appear in pairs. Therefore, there is at least one
real number in Eq. (17) such that the first-order derivative of OJSR is zero. Thus we have

∂OJSR

∂x

∣∣∣
x=x0

= 0 (19)

Owing to ΔP = P1 − x2, there must be a ΔP satisfying the following expression

∂OJSR

∂ΔP

∣∣∣
ΔP=ΔPopt

= 0 (20)
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This concludes the proof.
Theorem 3.1 shows that in Eq. (16), there must be a ΔPopt satisfying Eq. (20), and the ΔPopt is

called Stationary Point. Therefore, we can reasonably speculate that the stationary point may be a
maximum or minimum point.

Next, we will use the simulation to further study the relationship between output JSR and
ΔP . Assume that the uniform linear array (ULA) consists of five sensors (M = 5) spaced by half-
wavelength, and the number of snapshots is L = 400. Assuming that there are one GPS signal and two
single-tone interference signals, their center frequencies and directions are f0 = 1.575 GHz, θ0 = 20◦,
f1 = 1.574 GHz, θ1 = −40◦, f2 = 1.5755 GHz, θ2 = 60◦, respectively. In this simulation, the signal-
to-noise-ratio (SNR) is set to −20 dB and 60 dB for the GPS signal and the first interference signal,
respectively, and the SNR of the second interference signal changes from 0dB to 60 dB.

Figure 2 plots the the output JSR versus ΔP . It can be seen that there is a maximum when ΔP
changes from 0 dB to 60 dB, and this result matches Theorem 1. On the other hand, Fig. 2 shows that
the optimal power difference of single-tone interference is about 22 dB.
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Figure 2. The output JSR versus ΔP .

Through the above theoretical analysis and simulation result of Fig. 3, the following conclusion can
be drawn: we can maximize the signal output JSR by finding an optimal power difference ΔPopt. That
is, when two interference signals with different powers are used to interfere with the LMS-GPS receiver,
there must be an optimal interference power difference so that the received signal has the largest output
JSR after being processed by the LMS algorithm. From the conclusion, we give an interference method
named as jamming method based on optimal power difference (OPD-LMS), in which two interference
signals are utilized, and the power difference between the two interference signals is set to ΔPopt.

4. SIMULATION RESULTS

In this section, we construct several simulations to demonstrate the effectiveness of the proposed
algorithm. Consider a ULA with M antenna elements, in which M = 5, d/λ = 1/2, d is element
spacing, and λ is wave length. Assuming that there are three signals impinging on the antenna array,
the frequency of the desired signal is f1 = 1.575 GHz, and the center frequencies of the two interferer
signals are f2 = 1.574 GHz and f3 = 1.5755 GHz, respectively. Their DOAs are θ1 = 20◦, θ2 = −40◦,
and θ3 = 60◦, respectively.

Figure 3 shows the output JSR versus single-tone interference’s input power. Since GPS is a direct
sequence spread spectrum system, it has an anti-interference ability of about 36 dB for single-tone
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Figure 3. The output JSR versus single-tone interference’s input power.

interference. We set the first interference power as P1 = 30 dB, 40 dB, 60 dB and 80 dB, respectively,
and the ΔP changes from 0dB to P1. It is easy to know that for different values of P1, there is always
a maximum in output JSR. Therefore, we can conclude that though P1 affects the output JSR of the
signal processed by the LMS algorithm, the optimal interference power difference ΔPopt is almost not
changed, that is to say, P1 has no effect on ΔPopt.

Figure 4 plots the output JSR versus snapshots. In brief, the snapshots impact the output JSR
of signal significantly. On the one hand, when the snapshots are 400, 600, 1000, respectively, as the
ΔP increases, there is a maximum point in their output JSR, but their value is different. On the
other hand, the maximum output JSR depends on the number of snapshots, that is, as the snapshots
increase, the maximum JSR decreases. The reason may be that the anti-interference performance of
the LMS algorithm significantly increases as the snapshots increase, which causes the output JSR to
decrease. Therefore, we can conclude that, as the snapshots increase, the output JSR decreases, and
ΔPopt increases, but it can also get an ideal output JSR when ΔP = 22 dB.

Figure 5 gives the output JSR versus band-limited Gaussian noise interference’s input power.
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Figure 4. The output JSR versus snapshot.
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Figure 5. The output JSR versus band-limited Gaussian noise interference’s input power.
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Figure 6. The output JSR versus the input INR in different interference methods.

Similar to Fig. 3, we also consider P1 = 40 dB, 45 dB, 50 dB, 60 dB and 80 dB, respectively, and the ΔP
changes from 0dB to P1. When the interference signal is band-limited Gaussian noise interference, we
can see that they all have the maximum, but unlike Fig. 3, the optimal power difference is about 29 dB.
Therefore, we have the following conclusion: the optimal power difference of band-limited Gaussian
noise interference is about 29 dB.

Figure 6 shows the output JSR versus the input interference-to-noise ratio (INR) in different
interference methods. It is observed that the proposed method always outperforms the other methods
and offers a continuously rising gain over the whole range of the input INR, while the two single-tone
interference method experiences relatively smooth gain. Especially when INR = 80 dB, the proposed
method can consistently offer about 40 dB and 65 dB gain compared with one single-tone interference
method and two single-tone interferences method with the same INR, respectively. Based on the above
discussion, we verify the superiority of the proposed scheme under various system settings.
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5. CONCLUSION

In this paper, a new interference method for the LMS-GPS receiver is presented. The proposed jamming
method includes two interference signals, and they have a optimal power difference ΔPopt. Through
theoretical and simulation analysis, the optimal power difference ΔPopt is derived as about 22 dB for
single-tone interference and 29 dB for band-limited Gaussian noise interference. Compared to one
interference signal and two identical power interference signals, the presented method gets a higher
JSR and has better jamming performance.
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