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An Exact Expression for the Mutual Impedance between Coaxial
Circular Loops on a Homogeneous Ground

Marco Muzi1, 2, *

Abstract—This paper presents an exact expression for the mutual impedance of two coaxial loops
located on the surface of a conductive ground. The semi-infinite complete integral representation for
the impedance is first converted into a finite integral. Then the spherical Hankel function contained
in the integrand is expanded according to Gegenbauer addition theorem. This makes it possible to
perform analytical integration and express the mutual impedance as a sum of products of spherical
Bessel functions. Since no assumptions are made in the mathematical derivation, the obtained formula
is valid in quasi-static as well as non-quasi-static frequency ranges. Numerical examples show how,
accuracy being equal, the proposed expression is less computationally expensive than standard Gauss-
Kronrod numerical integration technique.

1. INTRODUCTION

It is well known that transmitter-receiver coil systems may be used to detect the presence of objects
buried below the top surface of a terrestrial area [1–27]. At first, the voltage induced by the emitter
in the receiver is measured at a discrete set of frequencies. Next, the presence of inhomogeneities is
revealed by the mismatch between the recorded experimental data and the theoretical response curves
associated with standard homogeneous earth models [4,17,21]. Despite the need to accurately calculate
such theoretical response curves, at present only for special cases can we derive explicit expressions
for the mutual impedance between two loops lying on a homogeneous soil. In fact, most published
analytical formulations describing the mutual impedance either are subject to the assumption that the
loops are electrically as well as physically small [2,6,7,18], or treat the fields radiated by the emitter only,
without dealing with the effect induced on the secondary loop [15,16,19,24,26]. Moreover, the validity
of many contributions is limited to the quasi-static frequency range [6, 11, 12, 14], where the effects of
the displacement currents in both the air and the ground are negligible. Thus, when the computation
of the mutual impedance is required in a wide frequency range, the only possible solution is to resort
to numerical integration of the field integrals, but this approach has the disadvantage of being time
demanding, especially when both the source and the receiver lie on the conductive medium [6,26].

The aim of the present paper is to derive an exact explicit expression for the mutual impedance
of two coaxial loops placed on the surface of a conductive soil. The proposed formula is not subject to
restrictions on frequency and the sizes of the loops, and, as fully analytical, is less computationally
expensive than standard numerical integration techniques. The solution is obtained through an
analytical procedure, which leads to convert the semi-infinite complete integral representation for the
impedance into a finite integral. Next, application of the Gegenbauer addition theorem makes it possible
to move the spherical Bessel functions contained in the integrand outside the integral sign, and, as a
consequence, to express the impedance as a sum of simpler integrals whose analytical evaluation is
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Figure 1. A couple of concentric loops on an earth structure.

straightforward. As a result, the mutual impedance is expressed as a linear combination of products of
two spherical Bessel functions, with algebraic coefficients. Numerical simulations are performed to show
that the proposed approach offers advantages in terms of time costs with respect to Gauss-Kronrod
quadrature formula, while maintaining the same level of accuracy.

2. THEORY

The geometric configuration of the problem is shown in Fig. 1. Two concentric circular loop antennas,
with radii a and b (a>b), are placed on the top surface of a homogeneous medium. Our scope is
to determine the mutual impedance between the two loops, by evaluating its well-known integral
representation, namely [6]
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and rewrite Equation (1) as
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where [An]n=1
n=0 indicates the quantity A1−A0. Next, use of the Bessel differential equation [28]
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makes it possible to obtain the expression
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k2
1−k2

0

[
knLn

∫ ∞

0

1
un

J1(λa)J1(λb)λdλ

]n=1

n=0

, (6)

where Ln is the differential operator
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The integral in Equation (6) may now be turned into a double integral by applying the identity [28,
11.41.17]

J1(λa)J1(λb) =
1
π

∫ π
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J0 (λc) cos φdφ, (8)
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with

c =
√
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It yields
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where the inner semi-infinite integral is the well-known tabulated Sommerfeld Integral [29,30]∫ ∞
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0 (ξ) being the zeroth-order spherical Hankel function of the second kind. After substituting Equation

(11) into Equation (10), so as to obtain
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we apply the addition formula [28, 11.41.4]
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where jm (ξ) is the mth-order spherical Bessel function, and C
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whose integral on the right-hand side is, for odd values of m, equal to∫ π
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while it is null when m is even. Thus, upon setting m = 2l − 1 and performing the differentiations,
expression (14) provides the exact series representation for Z, namely
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It should be recalled that the integral in Equation (1) and its explicit counterpart in Equation (16) are
valid only for homogeneous media. On the other hand, for material media made up of N layers, the
complete integral expression of Z reads [6]

Z = −2πjωμ0ab

∫ ∞

0
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where it is assumed that the Nth layer is the semi-infinite bottom-most layer of the medium, and with

ûn = un
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, n = N − 1, . . . , 1, (18)

d1, d2, . . . , dN−1 being the thicknesses of the N−1 finite layers, and ûN = uN . The general integral
representation in Equation (17) can be still evaluated, but at the price of introducing simplifying
approximations in the integrand that make it possible analytical integration. For instance, use of the
rational approximation
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obtained through a least squares-based fitting procedure [25], allows to apply the identity [27, No. 14,
p. 6] and obtain the explicit expression

Z ∼= − 2πωμ0ab
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)
, (20)

where I1(·) and K1(·) are first-order modified Bessel functions of the first and second kind, respectively.

3. NUMERICAL RESULTS

To test the developed method, the proposed analytical formula (16) is applied to the computation of the
amplitude- and phase-frequency spectra of the impedance Z between two concentric coils, with radii
a = 50 cm and b =20 cm, located on the top surface of a clay soil. The electrical conductivity and
dielectric permittivity of the ground are taken to be equal to σ1 = 10−2 S/m and ε1 = 10ε0 [14, 17],
and the obtained results, illustrated in Figs. 2 and 3, are compared with those arising from numerically
integrating Equation (1) through G7-K15 Gauss-Kronrod quadrature formula [22]. Figure 2 shows the
amplitude-frequency spectrum of Z, and different curves originating from Equation (16) are depicted,
each one corresponding to a particular value of the index L at which the infinite sum is truncated. As
can be seen, for L = 8 the data generated by the proposed formula coincide with those provided by the
Gauss-Kronrod scheme over the whole considered frequency range, and this confirms that Equation (16)
converges to the exact solution. Furthermore, in the low-frequency range the outcomes from the two
approaches are overlapping starting from L = 2, and this suggests that the quasi-static solution to the
problem may be obtained from Equation (16) by retaining only the lower-order terms.
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Figure 2. Amplitude of the impedance between
two concentric loops.
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Figure 3. Phase of the impedance between two
concentric loops.
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Figure 4. Relative error of the outcomes from (16), as compared to numerical integration data.
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Convergence of the proposed solution is also confirmed by the curves plotted in Fig. 3, which shows
the sequence of phase-frequency spectra originating from the partial sums in Equation (16), as L is
increased. As is evident, it suffices to terminate Equation (16) at L = 3 to approximately reproduce
the trend provided by Gauss-Kronrod numerical integration. The improvement in accuracy that follows
from increasing L may be better understood by taking a glance at Fig. 3, which depicts the relative
error resulting from using the proposed expression rather than the Gauss-Kronrod scheme. As can
be observed, for small values of the truncation index L the relative error is large, especially at higher
frequencies. However, as L is increased it rapidly decreases, down to less than 10−6 for L = 9, regardless
of the operating frequency. Moreover, the error reduction is not achieved at the price of significantly
increasing the computational cost of the derived expression. This aspect is illustrated by Table 1, which
depicts the average CPU times taken by Equation (16) and G7-K15 Gauss-Kronrod quadrature formula
to calculate the impedance. The values of Table 1 show that the developed approach offers excellent
speed-up with respect to numerical integration.

Table 1. CPU time comparisons for the impedance calculation.

Approach average CPU time [s] Speed-Up
Gauss-Kronrod 2.142 · 102 -
(16) with L = 2 1.873 · 10−3 1.144 · 105

(16) with L = 4 5.428 · 10−3 3.946 · 104

(16) with L = 6 1.292 · 10−2 1.658 · 104

(16) with L = 9 5.327 · 10−2 4.021 · 103

4. CONCLUSIONS

The aim of this work has been to derive an exact explicit expression for the mutual impedance of
two concentric loops lying on a conductive soil. The solution has been obtained through a two-step
procedure. First, the semi-infinite Sommerfeld integral representation for the impedance is cast into a
simpler finite integral. Next, analytical integration is performed after expanding the spherical Hankel
function contained in the integrand according to the Gegenbauer addition theorem. As a result, the
mutual impedance is expressed as a series of products of two spherical Bessel functions. Numerical
simulations have been performed to show that the proposed formula offers a good level of accuracy, and
that it is significantly less time consuming than standard numerical integration procedures.
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