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Shape Reconstruction of Unknown Targets Using Multifrequency

Linear Sampling Method

Mallikarjun Erramshetty*

Abstract—This paper aims to estimate the shape of microwave scattering objects using linear sampling
method (LSM) with multifrequency data. LSM is a simple, reliable linear inverse algorithm and uses
multiview multistatic single frequency scattered field data measured around target objects. Despite
its simplicity and computational effectiveness, the output LSM results depend on the frequency of
operation. To improve the LSM performance, the present work proposes a new formulation that
incorporates frequency information in the LSM equation. As a result, LSM finds the target’s shape
by a simple solution to a linear inverse problem via multifrequency data. The output results are tested
with various types of numerical examples of synthetic data as well as experimental data provided by
the Institute of Fresnel.

1. INTRODUCTION

Geometric features estimation of unknown objects has many applications in the field of military, civil,
industrial, and so on [1]. Linear sampling method (LSM) is a simple, reliable and effective tool to
estimate the shapes and locations of the dielectric and/or the metallic objects through multi-view-
multistatic measured scattered fields [2]. In addition, it has very low computational time [3]. Despite
having many advantages, the method is frequency dependent [4]. At low frequencies, it is unable to
estimate target’s shape accurately. At higher frequencies, LSM fails to detect the target points at
certain frequencies due to the occurrence of eigenvalues [5]. To overcome single frequency drawbacks,
multifrequency approaches are adopted [5–8]. Wherein, the LSM indicator is modified to exploit the
reconstructions computed at each considered frequency. However, this procedure requires regularized
LSM solution for each frequency and a suitable design of multifrequency indicator function. In this work,
we incorporate frequency information in the governing equation. As a result, the problem can be cast
as a single linear inversion so that it does not require a solution of LSM equation for each frequency. In
addition, one-time estimation of regularization parameter is required only. The results are tested for the
cases of dielectric objects, conducting objects, and mixed boundary objects using synthetic data as well
as experimental data. In addition, the computed results are compared with other LSM multifrequency
methods. The rest of the paper discusses the multifrequency linear sampling method, numerical results,
and conclusion.

2. MULTIFREQUENCY LINEAR SAMPLING METHOD

For simplicity, we consider a two-dimensional scalar problem. Target objects are illuminated by a plane
wave of radial frequency ω from a direction ϕi. Polarization currents are induced in the objects that
results in scattering. These scattered fields are measured at far-field distance r. According to LSM, the

Received 1 November 2018, Accepted 18 December 2018, Scheduled 13 January 2019
* Corresponding author: Mallikarjun Erramshetty (emallikarjuna@nitgoa.ac.in).
The author is with the ECE Department, National Institute of Technology, Goa, India.



78 Erramshetty

targets’ support is estimated through the solution of far-field equation given by [2],

A[ξ] =

2π∫
0

Escat (r, ϕi, ω)ξ(zt, ϕi, ω)dϕi = G(r, zt, ω) (1)

Escat is the measured scattered field; G is a point source; zt = (x, y) is a sampling point that spans
the considered investigation area (Ω); ξ is an unknown weighted complex function; and A is a compact
far-field operator [2]. In a standard LSM implementation, Eq. (1) is to be solved for a given single
frequency data. The solution in the energy form ‖ξ‖2 is bounded if zt belongs to the scatterer support
and unbounded elsewhere [2]. Here, ‖·‖2 is the standard L2-norm. Hence, the support of the scatterer
is found by plotting regularized ‖ξ‖2 at each sampling point over investigation domain. Let us consider
the case of multifrequency. The far-field Eq. (1) is to be discretized with respect to ω along with r and
ϕi. Let M be the number of measurements for each incident field. N is the number of incident fields,
and F is the number of considered frequencies. Then, the discretized version of Eq. (1) is represented
synthetically as

Aξ = b (2)

where A, ξ, and b are defined by

A =

⎡
⎢⎣

A1 0 0 . . . 0
0 A2 0 . . . 0

. . . . . . . . . . . . . . .
0 0 0 . . . AF

⎤
⎥⎦

(M×F )×(N×F )

, ξ =

⎡
⎢⎣

ξ1

ξ2

. . .
ξF

⎤
⎥⎦

(N×F )×1

, b =

⎡
⎢⎣

b1

b2

. . .
bF

⎤
⎥⎦

(M×F )×1

.

Here [A1]M×N , [A2]M×N , . . ., [AF ]M×N represent scattered field data measured for each frequency.
Vectors [b1]M×1, [b2]M×1, . . ., [bF ]M×1 represent the far-field pattern radiated by the point source
located at zt. [ξ1]N×1, [ξ2]N×1, . . ., [ξF ]N×1 are the vectors of unknown and independent. In order to
find target’s shape, Eq. (2) is to be solved. This is an ill-posed equation and requires regularization
for a stable solution. Tickhonov regularization is a suitable option to pursue this task. While referring
the reader to [2, 9] for mathematical details, the final form of regularized solution based on the singular
value decomposition (SVD) technique [1] can be written as

‖ξ(zt)‖2 =
T∑

n=1

(
λn

λ2
n + α

)2

|b · μn|2 (3)

where λn and μn are singular-values and left singular vector of A, respectively. T is the total number of
non-zero singular values, T = min(M × F,N × F ), and α is a regularization parameter. Therefore, the
support of the scatterer is found by plotting ‖ξ‖2 = ‖ξ1 + ξ2 + . . . + ξF ‖2 for each sampling point over
the investigating domain. In general, LSM requires regularization parameter for each sampling point
and it is cumbersome. In [10], it is shown that one regularization parameter is sufficient to get good
results. In this work, parameter α is estimated using physics-based criteria as reported in [11], which
does not require knowledge about noise level present in the measured data. It is worth to mention that
the proposed form of solution is not completely different from other multifrequency approaches [5–8].
The analogy between the present method to the earlier approaches is detailed in Appendix A.

3. NUMERICAL RESULTS AND DISCUSSION

In synthetic examples, the objects are illuminated from 0◦, 5◦, . . ., 355◦ with the span of 5◦. The
resulted scattered fields are measured at 0◦, 5◦, . . ., 355◦ with the span of 5◦. Hence, the total number
of measurements are 72×72. The investigation domain size of 20 cm × 20 cm is considered and discretized
uniformly into 201×201 cells. The measurement receiver locations are at 70 cm radial distance from the
center of the investigating domain. The data has been corrupted with a additive gaussian noise level
of 25 dB SNR. For multifrequency LSM, frequencies from 1GHz to 6GHz with the span of 0.5 GHz are
considered.
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3.1. Dielectrics

In this example, we consider three circular dielectric cylinders of radius 2 cm each and a circular dielectric
cylinder of radius 3 cm. The relative permittivity of these objects has εr = 3 and are located as shown in
Fig. 1(a). The computed LSM results at 1 GHz, 3 GHz, 6GHz, and multifrequency are shown in Fig. 1(b)
through Fig. 1(e). For better visibility, the output values (intensity) are plotted by −10 log(‖ξ‖2) dB.
It can be observed that only a small portion of each object is detected properly at 1 GHz. When the
frequency is increased, the images of dielectric objects improve as seen for 3 GHz. However, at 6 GHz,
the central portion of the larger cylinder is undetected. This anomaly behavior can be reasoned based
on the occurrence of eigenvalues. According to [5], the chance of occurrence of eigenvalues increases with
increase in frequency, as a result, LSM fails to detect target sampling points. Fig. 1(e) shows the obtained
results using multifrequency approach. Good estimates are observed with the proposed multifrequency
approach, and it can be seen that these results are superior to the case of single frequency. It can be
noted that the range of intensity values vary around −5 dB to −25 dB for a single frequency case whereas
for multifrequency, the range is around −20 dB to −40 dB. The reason is as follows. At multifrequency,
the output values, ‖ξ‖2, are much greater than a single frequency values (‖ξ1‖2, ‖ξ2‖2 , . . . , ‖ξF ‖2). As
a result −10 log(‖ξ‖2) < (−10 log(‖ξ1‖2), −10 log(‖ξ2‖2), . . . , −10 log(‖ξF ‖2)). It is worth to mention
that this multifrequency procedure cannot eliminate the drawbacks of each frequency completely but
certainly will produce a better estimation than individual frequencies.

(b)

(a)

(d)

(c)

(e)

Figure 1. (a) Reference profile. (b) 1GHz, α = 0.0027. (c) 3 GHz, α = 0.0118. (d) 6GHz, α = 0.0091.
(e) Multifrequency, α = 0.0016. The intensity values are in dB.

3.2. Conductors

In this example, a U-shaped metallic object having an arm length of 8 cm and a width of 0.5 cm is
considered as shown in Fig. 2(a). The computed results at 1 GHz, 3 GHz, 6GHz, and multifrequency are
shown in Fig. 2(b) to Fig. 2(e). Similar to the previous example, the shape of object is not detectable
at low frequency, whereas with the increase in frequency, the image gets improved but affected by
occurrence of eigenvalues. Here also, the obtained multifrequency result is superior to single frequency
cases.
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Figure 2. (a) Reference profile. (b) 1 GHz, α = 0.0375. (c) 3GHz, α = 0.0173. (d) 6GHz, α = 0.008.
(e) Multifrequency, α = 0.04. The intensity values are in dB.

3.3. Mixed Boundary Objects

This example consists of an L-shape dielectric object in presence of a circular PEC cylinder of radius
2 cm. Each arm of the L-shape has length and breadth of 12 and 2 cm, respectively, and εr = 2. The
results of LSM at 1 GHz, 3 GHz, 6 GHz, and multifrequency are shown in Fig. 3(b) to Fig. 3(e). The
dielectric object is not recognizable at lower frequencies whereas, with the increase in frequency, the
estimation of dielectric shape improves. At higher frequency, 6GHz, both dielectric and PEC objects
get affected by the occurrence of eigenvalues. In the case of multifrequency, the drawbacks of low and
high frequencies are overcome, and the estimated results are more accurate.

(b)

(a)

(d)

(c)

(e)

Figure 3. (a) Reference profile. (b) 1GHz, α = 0.0252. (c) 3 GHz, α = 0.0170. (d) 6GHz, α = 0.0028.
(e) Multifrequency, α = 0.0085. The intensity values are in dB.
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3.4. Results on Experimental Data

In this example, we consider experimental datasets provided by the Institute of Fresnel, France. While
addressing the reader to [12, 13] for detailed description, a few details about the measurement procedure
are as follows. In their measurement setup, only one transmitting horn antenna (TX) and receiving
horn antenna (RX) pair had been used. For each transmitted field, the receiver will move around the
investigation domain to measure the scattered fields from sample objects. The procedure is repeated for
several frequencies. In this work, three types of reference object profiles are selected for the study: first,
two dielectric objects of radius 1.5 cm having relative permittivity εr = 3; second, a U-shaped metallic
object having an arm length of 8 cm and a width of 0.5 cm; third, PEC cylinder of diameter 2.85 cm
along with a foam cylinder of diameter 8 cm and εr = 1.45. These objects are shown in Fig. 4. The
considered scattered fields from the available measurements are as follows. First and second objects were
sequentially illuminated at 0◦, 10◦, . . ., 350◦ with 10◦ incremental angular step. In each illumination, the
scattered fields from 60◦ to 300◦ with 5◦ angular step with reference to the transmitter are considered.
The fields at non-available positions are assumed to be zero. Third object was sequentially illuminated
at 0◦, 20◦, . . ., 340◦ with 20◦ incremental angular step. In each illumination, the scattered fields from 60◦
to 300◦ with 5◦ angular step with reference to the transmitter are chosen. The considered frequencies
from the available measurements are: for dielectrics, 1GHz to 18 GHz with the span of 1 GHz; for the
metallic object, 1GHz to 18 GHz with the span of 2GHz; for mixed boundary objects, 2 GHz to 12 GHz
with the span of 1 GHz. Similar to the synthetic examples, targets’ shape is not retrieved properly at
low-frequencies, and at high frequencies, the shapes get affected by the eigenvalues. It can be seen that
multifrequency results (as shown in Figs. 4a(ii), b(ii) and c(ii)) are in close match with reference profile,
and these are better than the cases of single frequency. Due to space constraints, the single frequency
images are not shown here.

(b)(i)(a)(i) (c)(i)

(b)(ii)(a)(ii) (c)(ii)

Figure 4. Experimental results. a(i) Reference two-dielectrics profile. a(ii) Multifrequncy result,
α = 0.0786. b(i) Reference U-shaped conductor profile. b(ii) Multifrequency result, α = 0.0370. c(i)
Reference mixed-boundary objects. c(ii) multifrequency result, α = 0.0013. The intensity values are in
dB.

3.5. Comparison of Results with Multifrequency Indicator Function

In this section, we compare the results of proposed method with the earlier multifrequency indicator
function reported in [8]. The indicator function therein had a summation in the linear scale and it is
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given by

G(zt) = −10 log

⎛
⎜⎝ 1

F

F∑
i=1

‖ξ(zt, i)‖2

max
r∈Ω

‖ξ(zt, i)‖2

⎞
⎟⎠ (4)

The above equation shows that the individual plots are normalized. The comparison results for
the considered synthetic examples are shown in Fig. 5. Here, frequencies from 1 GHz to 6 GHz with the
span of 0.5 GHz are considered. It can be observed that better reconstructions are obtained with the
proposed approach. In specific, the contrast between the object and the background is more with the
proposed approach. Notably, the new results are definitely better than a single-frequency case.

(b)(i)(a)(i) (c)(i)

(b)(ii)(a)(ii) (c)(ii)

Figure 5. Comparison of multifrequency LSM Results: (a) with the multifrequency indicator function
reported in [8]; (b) With our multifrequency LSM: (i) Example I, (ii) Example II, and (iii) Example
III. The intensity values are in dB.

4. CONCLUSION

In this paper, the shape reconstruction of dielectric and/or conducting objects is estimated using linear
sampling method (LSM) with multifrequency data. The LSM equation is made as a function of frequency
so that the target’s support estimation has been done through the solution to a regularized linear
inverse problem. As a result, the proposed approach requires one-time estimation of the regularization
parameter only. It has been observed that the estimated results are better than the case of single
frequency. This multifrequency approach cannot eliminate the drawbacks of each frequency completely
but certainly will produce a better estimation than individual frequencies. The numerical results have
been tested with the synthetic data as well as the experimental data for various types of objects.

APPENDIX A.

The general form of multifrequency indicator function is [8],

‖ξ‖2 = a1 ‖ξ1‖2 + a2 ‖ξ2‖2 + . . . + aF ‖ξF ‖2 (A1)
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Here, a1, a2, . . . , aF are the factors of normalization. The proposed form of solution can be
represented as follows.

‖ξ‖2 = ‖ξ1 + ξ2 + . . . + ξF ‖2 (A2)

= ‖ξ1‖2 + ‖ξ2‖2 + . . . + ‖ξF‖2 + ξ1ξ
∗
2 + ξ2ξ

∗
1 + . . . + ξ1ξ

∗
F + ξF ξ∗1 + . . . + ξF ξ∗F−1 + ξF−1ξ

∗
F (A3)

= ‖ξ1‖2 + ‖ξ2‖2 + . . . + ‖ξF‖2 ± real number (A4)

Here, ∗ indicates complex conjugate. From equations (A1) and (A4), it can be noted that each term
in the former equation is weighted with normalization factor while the later one is added/subtracted
with some real number. With this modification, the output results in the proposed case are found to
be better. However, it requires more mathematical analysis to support these findings, and these are
treated as future works.
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