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A Joint Detection and Tracking Algorithm for Unresolved Target
and Radar Decoy

Zhiyong Song*, Fei Cai, and Qiang Fu

Abstract—Miniature Air Launched Decoy (MALD) is an electronic warfare technique for inducing an
angular deception in a monopulse radar by recreating glint angular error. MALD flies cooperatively
with the true target, forms unresolved group targets within the radar beam, and destroys the detection,
tracking and parameter estimation of monopulse radar for the true target. In this paper, a typical
scenario for one target and one decoy was discussed, and the measurement model of target and decoy
based on the actual non-ideal sampling conditions was established. The joint multi-targets probability
density was adopted to dynamically describe the number and state of the targets within the radar beam.
Based on the original observation without threshold decision, a joint detection and tracking algorithm
for unresolved target and decoy was proposed under the Bayesian framework, and the judgment of
existence of jamming and the target state estimation were deduced. Simulation results showed that the
proposed method enabled quick detection of the appearance of MALD and estimated the state of target
with minimal delay and high precision. Stable tracking of the true target was achieved under severe
jamming conditions.

1. INTRODUCTION

The miniature air launched radar decoy is a new kind of angle deception jamming [1]. The decoy
flies cooperatively with true target and realistically simulates the flight envelope and echo feature of
target. The characteristic difference between the target and decoy is reduced greatly, and the unresolved
multiple targets are formed [2–4]. Traditional processing of monopulse radar is suitable for the case
where only one target falls within the resolution unit, and when two or more targets fall into the same
unit of radar beam, the echoes of them will overlap with each other, and it will cause the uncertainty
of radar observation and result in a great deviation of angle measurement [5]. The towed radar decoy,
air launched radar decoy, cross-eye jamming and ground-rebound jamming, which are developed from
this feature, all have good angle deception effects and bring challenges to target detection, measuring
and tracking. Therefore, the detection and tracking of unresolved targets are of great significance for
improving the capability of anti-jamming for monopulse radar.

For the detection and tracking problem of unresolved targets in radar beam, various methods
have been proposed in the literature. Some involve special antenna configuration [6], array signal
processing (beamforming, space-time adaptive processing (STAP), subspace rejection, high resolution
spectrum analysis) [7–12], multiple-input multiple-output (MIMO) radar [13, 14], and dual-polarization
radar [15, 16]. Nevertheless, these methods require additional configuration and processing for
traditional monopulse radar, and their promotion and application are limited. Other methods involve
the complete utilization of standard monopulse radar system, through modifying signal and data
processing algorithms and software without increasing the hardware cost. Through analyzing and
extracting the characteristic variety under two situations when single target and multiple unresolved

Received 31 October 2018, Accepted 11 January 2019, Scheduled 21 January 2019
* Corresponding author: Zhiyong Song (zhiyongsong@163.com).
The authors are with the ATR Key Laboratory, National University of Defense Technology, Changsha 410073, China.



44 Song, Cai, and Fu

targets are in radar beam, the detection and tracking of multiple targets are implemented separately.
The characteristics to detect the unresolved targets include complex monopulse ratio [17, 18], range
glint [19] and sample phase error [20], and the angle estimation methods include moment estimation [21–
23] and maximum likelihood estimation [24–27]. The target detection in these methods refers to detect
target multiplicity rather than the detection of presence. On the other hand, multiple target tracking
methods such as joint probabilistic data association (JPDA) filter [28, 29] and multiple hypothesis tracker
(MHT) [30, 31] are introduced to resolve the continuous tracking of unresolved or merged targets when
the tracking interleaving occurs. However, in these multi-targets tracking methods, the unresolved
targets are manly in the observation data, not in the signal, and these methods do not control signal
processing. All of the above methods considered the detection and tracking of unresolved targets as
two separate processes. The estimation and tracking are based on the measurement after the threshold
decision, and the information loss caused by threshold detection under low signal-to-noise ratio (SNR)
will seriously affect the effectiveness of the methods.

Corresponding to the separated processing of detection and tracking, the joint detection and
tracking method that integrates detection processing and tracking processing has great potential to
deal with unresolved targets. The rapid development of the finite set statistics (FISST) theory [32, 33]
has afforded a new theoretical framework for the joint detection and tracking of a target under complex
conditions using a random finite set (RFS) [34]. Some methods adopting probability hypothesis density
(PHD) filter [35], labeled PHD filter [36, 37], cardinalized probability hypothesis (CPHD) filter [38], and
cardinality balanced multi-target multi-Bernoulli (CBMeMBer) filters [39] were addressed to resolve
the detection and tracking of unresolved targets. Unfortunately, the assumption condition of the RFS
method for the detection and tracking of unresolved targets is that the targets among the unresolved
group do not overlap with each other. This assumption is obviously different from the unresolved
situation caused by air launched decoy; therefore, this method is not applicable. Meanwhile, the
track before detect (TBD) method based on the original signal without threshold decision can obtain
detection and tracking results simultaneously utilizing the motion model of target and realizing the signal
accumulating according to the motion law. This kind of method can effectively avoid the information loss
caused by threshold decision and improve the detection and tracking performance under low SNR. The
common TBD method includes Dynamic Programming (DP) [40, 41], Hough Transform (HT) [42], and
particle filter (PF) [43]. Particle filtering techniques that have the advantage of providing computational
tractability are applicable under most general circumstances since there is no assumption made on the
form of the density. Some methods utilizing particle filter were introduced to detect and track two
closely spaced targets [44, 45], and they focused on constructing hypothesis testing for detection based
on Akaike information criterion (AIC) and using particles to achieve state estimation [46, 47].

In the present study, a typical scenario of one target launching one radar decoy was used to model
the unresolved target and jamming within the radar beam by analyzing the jamming process of the
MALD. The joint multi-targets probability density model was used to describe the number of targets
in the radar beam and their states under the Bayesian framework. The joint detecting and tracking
algorithm for the target and decoy based on particle filter was designed to realize the accurate detection
of jamming and stable tracking of target. The effectiveness of this algorithm was experimentally
validated. The rest of this paper is organized as follows. Section 2 presents the analysis and signal model
of the miniature air launched radar decoy. Section 3 presents the joint detection and tracking algorithm
of unresolved targets and deduces its particle realization form, especially the existence detection of
jamming and state estimation of targets. Section 4 presents the results of simulation experiments
performed using the algorithm. The conclusions of the study are finally presented in Section 5.

2. SIGNAL AND JAMMING MODEL

The essence of MALD jamming is to construct a non-coherent two-point source in the radar beam to
deceive and mislead the monopulse radar to point to the decoy and deviate from the true target. The
signal simulating and cooperative flying of the decoy make the target and decoy unresolved which will
cause angular measurement error. Usually, the signal power ratio of the decoy jamming and the true
target in radar echoes is defined as the interference suppression ratio (ISR). According to the jamming
principle, the deviation angle between the monopulse radar antenna and the geometric center of target
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and decoy is [48]

θ =
Δθ

2
ISR2 − 1
ISR2 + 1

(1)

where Δθ is the angle interval between the target and decoy relative to radar. Eq. (1) shows that the
greater the MALD power is, the closer the monopulse radar is to the decoy. When the radar cannot
distinguish the target and decoy, their energy centers will be used as the attack point for parameter
measurement and tracking and will result in loss of target. The jamming process of a typical MALD is
shown in Figure 1. The target gradually deceives the beam point of monopulse radar by releasing the
decoy and eventually left only the decoy in the radar beam, and the target successfully escapes from
the radar beam.

(a) (b)

(c) (d)

Figure 1. The jamming process of MALD ((a) not releasing MALD, (b) just releasing MALD, (c)
cooperative flying, (d) target escape form radar beam).

It can be seen form Figure 1 that there are 4 cases of target number existing during the jamming
course for one target with one decoy: the target does not exist; the target exists; the target exists, but
the jamming does not exist; the target and decoy both exist. Therefore, the number of targets in the
radar beam at time k can be modeled as a discrete variable mk ∈ {0, 1, 2}, where the jamming is another
“target” and therefore counts in the number of targets. During the jamming process, the changes of
the target number mk can be modeled as a Markov process, and the state transformation matrix is

Π =

[
π00 π01 π02

π10 π11 π12

π20 π21 π22

]
(2)

where πij � p(mk = i|mk−1 = j).
The state vector of target and decoy is expressed as xj

k(j = T,D), where T represents target, and D
represents decoy. In order to simplify the analysis, only two-dimensional plane is considered. Therefore,
the state of single target or decoy is [xj

k, ẋ
j
k, y

j
k, ẏ

j
k]

T (j = T,D), where x, y represents the distance in
the two dimension, and ẋ, ẏ represents the velocity in two dimension, respectively. The motion of the
target and decoy is modeled as an approximate uniform model [49]:

xj
k = Fxj

k−1 + wk (j = T,D) (3)
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where F is the state transformation matrix; wk ∼ N(0,Q) is processing noise, and assume that it is
Gaussian white noise with variance σ2

w.
When the decoy is not released, there is only on target existing in the radar beam, and when the

target releases the decoy, there are unresolved target and decoy in the beam. Therefore, the composition
of radar echo varies according to above different conditions. The non-ideal sampling mode in [50] is
utilized to model the echo observation in following two cases.

2.1. Case 1: Observation Model with Only One Target in Radar Beam

When the target dose not release the decoy, there is only one target in the radar beam and mk = 1.
Setting the radar waveform to a rectangular pulse with a width of τ , the output of match filter is a
triangular envelop with a width of 2τ . Assuming that the sampling rate of match filter is 1/τ , there are
2 sampling points (l1 and l2) affected by the target, where l1, l2 ∈ {1, . . . , L} and L are the sampling
points for interest. The sampling model is shown in Figure 2, and hl1(r) = 1 − mod(r,ΔR)/ΔR,
hl2(r) = mod(r,ΔR)/ΔR represent the contribution of target to the two sampling points respectively,
where ΔR is the distance unit.

Figure 2. Sampling model with only one target in the radar beam.

The outputs of match filter of sum channel and azimuth channel in sampling points l1 and l2 are
sI(l1) = α1 cos φ + nsI(l1)
sI(l2) = α2 cos φ + nsI(l2)
sQ(l1) = α1 sin φ + nsQ(l1)
sQ(l2) = α2 sin φ + nsQ(l2)
dI(l1) = γα1 cos φ + ndI(l1)
dI(l2) = γα2 cos φ + ndI(l2)
dQ(l1) = γα1 sin φ + ndQ(l1)
dQ(l2) = γα2 sin φ + ndQ(l2)

(4)

where αi (i = 1, 2) is the amplitude of sampling point i, and γ is the monopulse ratio. They are
correlated with radar pattern and target state through the following formula [51]:

αi =
κ
√

σhli(r)S
2(θ)

r2
, γ =

D(θ)
S(θ)

, r =
√

x2 + y2, θ = arctan(y/x) − θp (5)

where κ is a constant determined by the radar equation; σ is the RCS of target; θ is the angle aviation of
target; S(θ) and D(θ) are the antenna patterns of sum channel and difference channel, respectively; θp

is the radar pointing. nsI(l), nsQ(l), ndI(l), ndQ(l) (l = 1, . . . , L) are the zero mean Gaussian noise with
independent uniform distribution, and their variances are E[nsI(l)2] = E[nsQ(l)2] = σ2

s , E[ndI(l)2] =
E[ndQ(l)2] = σ2

d.
At this point, a single pulse signal vector g composed of sum and difference channel signals is

g = [sI(l1), sI(l2), dI(l1), dI(l2), sQ(l1), sQ(l2), dQ(l1), dQ(l2) (6)
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The conditional distribution function of g is

p(g|Xk,mk = 1) = N(g; 0,P) (7)

where Xk is the target state, and its model is Xk = [x, ẋ, y, ẏ]

P =
[

P1 0
0 P1

]
(8)

and

P1 =

⎡⎢⎣ α2
01 α01α02 α2

01γ α01α02γ
α2

02 α01α02γ α2
02γ

α2
01γ α01α02γ

2

α2
02γ

⎤⎥⎦ + diag(σ2
s , σ

2
s , σ

2
d, σ

2
d) (9)

where α0i is the Rayleigh parameter related to αi.

2.2. Case 2: Observation Model with Unresolved Target and Decoy

When the target releases the decoy, the number of targets increases to 2, and unresolved target and
decoy are both within the same resolution cell. There are also two sampling points affected by the target
and decoy, and the signals of these two sampling points are superimposed by the target and jamming
signals. Their sampling model is shown in Figure 3.

Figure 3. Sampling model with target and decoy being in same resolution cell.

Similarly, the outputs of match filter of sum channel and azimuth channel in sampling points l1
and l2 are [50]

sI(l1) = α1,T cos φT + α1,D cos φD + nsI(l1)
sI(l2) = α2,T cos φT + α2,D cos φD + nsI(l2)
sQ(l1) = α1,T sin φT + α1,D sin φD + nsQ(l1)
sQ(l2) = α2,T sin φT + α2,D sin φD + nsQ(l2)
dI(l1) = γT α1,T cos φT + γDα1,D cos φD + ndI(l1)
dI(l2) = γT α2,T cos φT + γDα2,D cos φD + ndI(l2)
dQ(l1) = γT α1,T sin φT + γDα1,D sin φD + ndQ(l1)
dQ(l2) = γT α2,T sin φT + γDα2,D sin φD + ndQ(l2)

(10)

where αi,T (i = 1, 2) is the amplitude of sampling point i affected by target, and αi,D (i = 1, 2) is the
amplitude of sampling point i affected by decoy.

The form of signal vector g is

g = [sI(l1), sI(l2), dI(l1), dI(l2), sQ(l1), sQ(l2), dQ(l1), dQ(l2)]T (11)

When mk = 2, the conditional distribution function of g is

p(g|Xk,mk = 2) = N(g; 0,P) (12)
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In the same way

P =
[

P1 0
0 P1

]
(13)

where

P1 =

⎡⎢⎢⎣
α2

01,a α01,aα02,a α2
01,aγa α01,aα02,aγa

α2
02,a α01,aα02,aγa α2

02,aγa

α2
01,aγa α01,aα02,aγ

2
a

α2
02,aγa

⎤⎥⎥⎦

+

⎡⎢⎢⎣
α2

01,b α01,bα02,b α2
01,bγb α01,bα02,bγb

α2
02,b α01,bα02,bγb α2

02,bγb

α2
01,bγb α01,bα02,bγ

2
b

α2
02,bγb

⎤⎥⎥⎦ + diag(σ2
s , σ

2
s , σ

2
d, σ

2
d) (14)

3. JOINT DETECT AND TRACK WITH UNKNOWN NUMBER OF TARGETS

3.1. Joint Multi-Targets Probability Density Bayesian Filtering

The detection and tracking of unresolved target and decoy is essentially a joint detect and track for
an unknown number of targets within the radar beam. Since the number of targets (include the
target and decoy) within the radar beam is unknown and varying, a probability density model can
describe the number of targets and targets state [52]. The joint multi-targets probability density
p(x1,k,x2,k, . . . ,xm,k,mk|Zk) is adopted to describe the conditional probability density of mk targets
with their states x1,k,x2,k, . . . ,xm,k and the observation set Zk(Zk = {z1, z2, . . . , zk}), which can be
abbreviated as p(Xk,mk|Zk). p(∅,m = 0|Z) represents the posterior probability density when there is
no target in the radar beam; p(xT , m = 1|Z) represents the posterior probability density when only
one target is in the radar beam; and p(xT ,xD,m = 2|Z) represents the posterior probability density
when both the target and decoy are in the radar beam.

The dimension of state vector Xk is determined by the number of targets in the beam at time k;
therefore, this problem can be transformed into a mixed estimation problem of the number and state
of targets. The probability that there are m targets in radar beam is obtained by the integration of the
joint multi-targets probability density.⎧⎪⎨⎪⎩

p (m|Z) =
∫

p (x1, . . . ,xm,m|Z)dx1 . . . dxm
∞∑

m=0

p (m|Z) = 1
(15)

According to the Chapman-Kolmogorov equation, the state prediction equation is

p (Xk,mk|Zk−1) =
∞∑

mk−1=0

∫
p (Xk,mk|Xk−1,mk−1) p (Xk−1,mk−1|Zk−1) dXk−1 (16)

where p(Xk,mk|Xk−1,mk−1) is the Markov state transfer function.
Using the Bayesian criterion, the updated equation for the state is

p (Xk,mk|Zk) =
p (zk|Xk,mk) p (Xk,mk|Zk−1)

p (zk|Zk−1)
(17)

It is easy to estimate the number of targets m̂k and their state X̂k according to p(Xk,mk|Zk), and
thus the detection of target or decoy and the tracking of unresolved targets within the radar beam are
able to be realized simultaneously.

In above Bayesian filtering process, an important step is to obtain the observation likelihood
function p(zk|Xk,mk) under different conditions at time k. According to the signal model, assuming
that the number of pulses of monopulse radar in single dwell time is M , the conditional probability
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distribution of the signal vector composed by M pulses G = {gm}M
m=1 (where gm is the signal vector

of mth pulse) is

p(G|Xk,mk) =
M∏

m=1

p(gm|Xk,mk) (18)

Define the observation vector of the mth pulse as zm = [zmI , zmQ]T , where I means in-phase
component, and Q means quadrature component.

zmI = [sI(1), . . . , sI(L), dI (1), . . . , dI(L)]T

zmQ = [sQ(1), . . . , sQ(L), dQ(1), . . . , dQ(L)]T
(19)

The observation vectors of M pulses constitute a complete measurement of radar at time k:

zk = {zm}M
m=1 (20)

If there is no target in the radar beam, the signals of sampling point are background noise, then
the likelihood function of single sampling point l is

p(zm(l)|mk = 0) = N(zm(l); 0,P′) (21)

where P′ = diag(σ2
s , σ

2
d, σ

2
s , σ

2
d).

Therefore, the observation likelihood function under the condition of the target number mk and
target states Xk can be obtained as

p(zk|Xk,mk) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M∏
m=1

L∏
l=1

N(zm(l); 0,P′) if mk = 0

M∏
m=1

L∏
l=1

N(zm(l); 0,P′)

M∏
m=1

p(gm|Xk,mk)

M∏
m=1

L∏
l∈S

N(zm(l); 0,P′)

if mk = 1, 2

(22)

where S is the sample point set related to target state Xk.

3.2. Joint Detection and Tracking Based on Particle Filter

The joint multi-targets probability density Bayesian filtering involves integral operations, and direct
calculation has high implementation complexity. The sequential importance-resampling particle filtering
method can achieve approximate calculation. Utilize N particles {X(n)

k ,m
(n)
k , w

(n)
k }N

n=1 to approximate
the joint multi-targets conditional probability density function p(Xk,mk|Zk), and realize the estimation
for the target number mk and corresponding target state vector Xk, where m

(n)
k is the number of targets

for nth particle, and corresponding to different m
(n)
k , there are [53]:

When m
(n)
k = 0, X

(n)
k = ∅, there is no target in the radar beam;

When m
(n)
k =1, X

(n)
k = {x(n)

k,T }, there is only target in the radar beam;

When m
(n)
k =2, X

(n)
k = {x(n)

k,T ,x(n)
k,D}, there are target and decoy in the radar beam. T denotes

target, and D denotes decoy.
The joint detection and tracking algorithm for unknown number of targets based on particle filter

is implemented as follows.

3.2.1. Step 1: Initialization

Assume that the target, decoy and target number of initial density p(x0,T ), p(x0,D) and
p(m0)

∑2
i=0 μiδ(m0 − i) are all known. For every particle n = 1, . . . , N , initialize the m

(n)
0 , x(n)

0,T and
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x(n)
0,D (if exist) in order. The initialization method of m

(n)
0 is: obtain un ∼ U [0, 1] through sampling,

then m
(n)
0 set as m ∈ M according

m−1∑
i=0

< un ≤
m∑

i=0
μi. The initializations of states x(n)

0,T and x(n)
0,D

are the uniform distribution within the radar observation area. If m
(n)
0 > 0 for the nth particle, the

state vector of the target and the decoy for this particle are expressed as x(n)
0,T = [x(n)

0,T , ẋ
(n)
0,T , y

(n)
0,T , ẏ

(n)
0,T ]

and x(n)
0,D = [x(n)

0,D, ẋ
(n)
0,D, y

(n)
0,D, ẏ

(n)
0,D], and they correspond to the distance and velocity in the X and

Y directions, respectively. The above components in the vectors are initialized by the radial range,
velocity and angle of the monopulse radar. Assume that the initial antenna pointing of monopulse
radar is p0 = [r0

p, θ
0
p]

T , where r0
p is the center of range gate of radar, θ0

p the pointing of radar beam, and

BW the half power beamwidth of radar. Therefore, the position component of x(n)
0,T and x(n)

0,D can be
obtained through the projection transformation in Cartesian coordinate system.[

x
(n)
0,T , y

(n)
0,T

]T
= r

(n)
0,T

[
cos

(
θ
(n)
0,T

)
, sin

(
θ
(n)
0,T

)]T

[
x

(n)
0,D, y

(n)
0,D

]T
= r

(n)
0,D

[
cos

(
θ
(n)
0,D

)
, sin

(
θ
(n)
0,D

)]T
(23)

where r
(n)
0,T and r

(n)
0,D are the initial radial ranges of target and decoy, and they follow the uniform

distribution in the range gate. θ
(n)
0,T and θ

(n)
0,D are the initial angle errors of target and decoy, and they

also follow the uniform distribution in the beamwidth. The four components mentioned above can be
obtained as

r
(n)
0,T , r

(n)
0,D ∼ U

[
r0
p − ΔR · L/2, r0

p + ΔR · L/2
]

θ
(n)
0,T , θ

(n)
0,D ∼ U

[
θ0
p − BW /2, θ0

p + BW /2
] (24)

Set the speed range [vmin, vmax] according to the target type and motion characteristics, and the
velocity component of x(n)

0,T and x(n)
0,D can be obtained through the velocity projection as follows.[

ẋ
(n)
0,T , ẏ

(n)
0,T

]T
= v

(n)
0,T

[
cos

(
θ
(n)
v,0,T

)
, sin

(
θ
(n)
v,0,T

)]T

[
ẋ

(n)
0,D, ẏ

(n)
0,D

]T
= v

(n)
0,D

[
cos

(
θ
(n)
v,0,D

)
, sin

(
θ
(n)
v,0,D

)]T
(25)

where v
(n)
0,T and v

(n)
0,D are the initial radial velocity of target and decoy, and they follow the uniform

distribution in the speed range.
v

(n)
0,T v

(n)
0,D ∼ U [vmin, vmax] (26)

θ
(n)
v,0,T and θ

(n)
v,0,D are the initial deviation angle of velocity, and they follow the uniform distribution

in [0, 2π].
θ
(n)
v,0,T , θ

(n)
v,0,D ∼ U [0, 2π] (27)

3.2.2. Step 2: Prediction

This step is to predict the number of targets {m(n)
k|k−1}N

n=1 and their state x(n)
k|k−1,T and/or x(n)

k|k−1,D

based on the value at the time k − 1. With the number of targets {m(n)
k−1}N

n=1 at time k − 1 and their

transformation matrix
∏

in Eq. (2), {m(n)
k|k−1}N

n=1, x(n)
k|k−1,T and/or x(n)

k|k−1,D can be predicted by the
following method:

(i) Generate the random value of target number ci(j) from the transformation matrix
∏

: for i = 0 : 2,
set ci(0) = 0, at the same time, for j = 0 : 2, set ci(j) = ci(j − 1) + πij, loop until i = 2;
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(ii) By comparison, predict the target number for every particle: for particle n = 1 : N , generate the
random number uN ∼ U [0, 1], simultaneously set i = m

(n)
k−1. Initial setting m = 1, if ci(m) < un,

then m = m + 1. Loop for every particle until n = N . Output the predicted target number
{m(n)

k|k−1}N
n=1 for every particle;

(iii) For particle n = 1 : N , if the predicted target number m
(n)
k|k−1 > m

(n)
k−1, declare the newborn of the

target or jamming, and newborn of target state is consistent with the initialization stage in Step 1;

(iv) If m
(n)
k|k−1 < m

(n)
k−1, declare the death of target, and the corresponding target state will be abandoned;

(v) For survival target, the state x(n)
k|k−1,T and/or x(n)

k|k−1,D are predicted by the state transformation
density fk|k−1(x|x′) in (3).

3.2.3. Step 3: Update

The sampling importance resampling (SIR) is used to resample the particles. The likelihood ratio is
used as the normalized weight.

w̃
(n)
k = l

(n)
k

p
(
zk|X(n)

k|k−1,m
(n)
k|k−1

)
p

(
zk|X(n)

k|k−1 = ∅,m(n)
k|k−1 = 0

) (28)

Bring the observation likelihood of Eq. (22) into Eq. (28) will reduce the calculation quantity of
likelihood function.

w̃
(n)
k =

p(zk|X(n)
k|k−1,m

(n)
k|k−1)

p(zk|Xk|k−1,mk|k−1 = 0)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if m
(n)
k|k−1 = 0

M∏
m=1

p(gm|X(n)
k|k−1,m

(n)
k|k−1)

M∏
m=1

L∏
l∈S

N(zm(l); 0,P′)

if m
(n)
k|k−1 = 1, 2

(29)

After obtaining the weight of all particles, normalize the weight w
(n)
k|k−1 = w̃

(n)
k|k−1/

∑N
n=1 w̃

(n)
k|k−1 and

get weight {w(n)
k|k−1}N

n=1.

3.2.4. Step 4: Resampling

In resampling step, the predicted term X
(n)
k|k−1

and m
(n)
k|k−1

, and the likelihood ratios l
(n)
k were all retained

in the process. By this way, the relationship among these three vectors can be preserved without
recomputation and thus save computation.

3.2.5. Step 5: MCMC Move

In order to reduce the degradation of particles, the MCMC move is introduced on the basis of
resampling to increase the diversity of particles without changing their original distribution [54].
The Metropolis-Hasting resampling-moving method is used to reduce the degradation in the target
error angle estimation: for the particles satisfying m

(n)
k > 0, select an appropriate recommended

distribution qm(θ′k|θk) = N(θ′k; θk, σ
2
m), and then obtain the new state θ′k,T and θ′k,D through sampling

this distribution. Replace the position component of the target and decoy in particle Xn
k through

Eq. (30) to get a new particle X
′(n)
k .[

x
′(n)
k,T , y

′(n)
k,T

]
=

[
cos

(
θ′k,T

)
x

(n)
k,T , sin

(
θ′k,T

)
y

(n)
k,T

]T

[
x

′(n)
k,D, y

′(n)
k,D

]
=

[
cos

(
θ′k,D

)
x

(n)
k,D, sin

(
θ′k,D

)
y

(n)
k,D

]T
(30)
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Calculate the likelihood ratio corresponding to following formula and determine whether to accept
the new particle or not.

Tmove =
p

(
zk|X

′(n)
k

)
p

(
zk|X(n)

k

) =
l
′(n)
k

l
(n)
k

(31)

If Tmove > 1, the new particle X
′(n)
k will be reserved and replace old particles X

(n)
k ; otherwise only

when U < Tmove, the new particles will be reserved, where U is one sampling of distribution U(0, 1).

3.2.6. Step 6: Detection and State Estimation

The particles before resampling are used to estimate the state of target and decoy. The estimation of
target number mk is

m̂k =
N∑

n=1

w
(n)
k|k−1m

(n)
k|k−1 (32)

After m̂k is obtained, the detection of target and decoy is decided as⎧⎨⎩
m̂k < T1 ⇒ no target
T1 < m̂k ≤ T2 ⇒ only target
m̂k > T2 ⇒ target and decoy

(33)

where T1 ∈ 0,1 and T2 ∈ 1, 2 are two detection thresholds of this hypothesis testing problem.
The state estimation of target is obtained as

x̂k,T =

∑
n∈N1

w
(n)
k|k−1x

(n)
k|k−1,T∑

n∈N1

w
(n)
k|k−1

(34)

The state estimation of decoy is obtained as

x̂k,D =

∑
n∈N2

w
(n)
k|k−1x

(n)
k|k−1,D∑

n∈N2

w
(n)
k|k−1

(35)

where N1, N2 are the particle set that satisfies m
(n)
k|k−1 > 0.

After above recursive filtering, the detection of target and decoy can be realized timely and
accurately, and the state of target and decoy can be estimated correctly after the jamming is detected.

4. SIMULATION AND EXPERIMENT

4.1. Simulation Setting

The simulation scene is: the radar is stationary at the origin, and radar pointing and range gate center
are fixed. Form time step 0 to time step 10, there is no target in the radar beam, and the target appears
at the 11th time step and moves toward southwest at a constant speed of 200 m/s. The jamming is
released from the target at the 30th time step and then executes two CT maneuvers of 10 s to form
cooperative flying. Then the target moves parallel to the decoy until the simulation terminates, and the
total time of simulation is 60 time step. The trajectories of target and decoy are shown in Figure 4(a),
and Figures 4(b) and 4(c) demonstrate the range difference and angle error between the target and
decoy. It can be seen that the target and decoy are unresolved after the jamming is released in the
simulation process.
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(a) Trajectory of target and decoy

(b) Range difference (c) Angle error
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In the experiment, the radar adopts the monopulse model, and the half power beamwidth of radar
sum channel BW = 2.4◦. The noise variance of real and imaginary components of sum channel is set to
σ2

s = σ2
d = 1, and the SNR of single pulse is defined as

SNR =
E(α2

i )
σ2

s

=
E(α2

i )
σ2

d

=
σ̄κ2

r4
(36)

where assume hli(r) = 1 and F 2∑(θ) = 1. The signal power of target and decoy is decided by the average
radar cross section (ARCS) σ̄, and the interference suppression ratio is equal to σ̄T /σ̄D, where T denote
the target and D the decoy. The radar constant κ is equal to the square of the initial range of target:
κ = r2

0,T . Therefore, the SNR is only controlled by the ARCS and the range of the target and decoy.
In this scenario, the range between radar and target is approaching gradually, and the SNR increases
gradually. The dwell time interval in radar beam is T = 1 s, the number of pulses M = 40, and the
range unit ΔR = 45 m.

The motions of target and decoy are approximated as a constant velocity model, where the state
transformation matrix and noise covariance are shown as follows.

F =

⎡⎢⎣ 1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1

⎤⎥⎦ , Q = σ2
w

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

T 4

4
T 3

2
0 0

T 3

2
T 2 0 0

0 0
T 4

4
T 3

2

0 0
T 3

2
T 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(37)

The initial distribution of m0 is set as μ0 = 0.8, μ1 = 0.1 and μ2 = 0.1, and the transfer matrix of
mk is set as

Π =

[ 0.8 0.1 0.1
0.1 0.8 0.1
0.1 0.1 0.8

]
(38)

5. SIMULATION RESULTS

Experiment 1: In the implement of MALD jamming, in order to attract and deceive the radar
beamforming to point to the false angle of jamming, usually the power of decoy is greater than that
of target echo, and the typical interference suppression ratio is ISR = 2 ∼ 8. The joint detection and
tracking results with the jamming scene of ISR = 2 are shown in the following figures. 200 times Monte
Carlo simulation are utilized to evaluate the performance of the algorithm. The initial SNR is 0 dB,
and the detection threshold is set as T1 = 0.5 and T2 = 1.5.

Figure 5 shows the mean of estimated number of targets in the radar beam. The number of targets
exceeds the threshold T1 at the 12th time step, and this indicates that the target is detected. The
reality is that the target appears at the 11th time step, so the detection delay is about one time step.
The number of targets exceeds the threshold T2 at the 32th time step, and this indicates that the decoy
is released by the target, and the detection delay is about 2 time step compared to the actual decoy
releasing time.

Figure 6 shows the tracking trajectories of target and decoy in the jamming situation. It can be
seen that the estimation of target and decoy coincides with the true value in most cases except the
beginning time of decoy release. Figure 7, Figure 8 and Figure 9 show the range estimation RMSE,
angle estimation RMSE, and position estimation RMSEs of the target and decoy, respectively. It can
be seen that the uncertainty of the target estimation decreases rapidly after the target appears, and
this uncertainty increases at the time slot when the decoy is released, then decreases again. On the
other hand, the uncertainty of decoy estimation is large when the decoy is released by the target, then
gradually decreases with the converge of the filter. The RMSEs of the target and decoy are small, which
ensure the accurate estimation and stable tracking of the target by the monopulse radar.
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The simulation results of above experiment show that the proposed joint detection and tracking
algorithm of unresolved target and decoy is available to detect the occurrence of MALD jamming, and
the detection delay is no more than 5 time steps. The accurate estimation of target and decoy states
can be achieved, and the estimation error is small. This ability can meet the needs of stable tracking.

Experiment 2: Based on experiment 1, the performance of joint detection and tracking algorithm
for unresolved multi-targets under different ISR conditions is investigated to verify the adaptability of
the algorithm to different jamming conditions. Six typical jamming conditions are selected, and 200
times Monte Carlo experiments are also used for performance evaluation. The results of target number
estimation in radar beam under different ISR conditions are shown in the following figures.

It can be seen in Figure 10 that the detection delay of target is maintained at one time under
different ISR conditions, and the detection of decoy releasing is continuously improved as the ISR
increases. The larger the ISR is, the faster the estimated target number rises to 2 after the decoy
releasing; therefore, the detection delay is smaller, and the detection performance is better.

The state estimation results of the target and decoy under different ISR conditions are shown in
the figures.

The tracking trajectories of target and decoy in Figure 11 show that the joint detection and tracking
algorithm is available to realize stable and accurate state estimation in these typical jamming conditions.
The greater the ISR is, the more stable the tracking trajectory of the decoy is, and conversely the
estimation accuracy of target is reduced.
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(a) Tracking trajectory for all time
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Figure 11. Tracking trajectory of target and decoy under different ISR conditions.

(a) Target range estimation RMSE (b) Decoy range estimation RMSE

R
an

ge
 R

M
SE

 (
m

)

Time(s)
30 35 40 45 50 55 60

Po
si

tio
n 

R
M

SE
 (

m
)

0

500

1000

1500

2000

2500

3000
Decoy Position Estimation RMSE

ISR=1
ISR=3
ISR=5
ISR=7

Target Range Estimation RMSE
2500

2000

1500

1000

500

0
10 15 20 25 30 35 40 45 50 55 60

Time(s)

Figure 12. Range estimation RMSE of proposed algorithm under different ISR conditions.

(a) Target angle estimation RMSE

A
ng

le
 R

M
SE

 (
de

g)

(b) Target angle estimation RMSE

Decoy Position Estimation RMSETarget Range Estimation RMSE
0.7

0.6

0.4

0.2

0.1

0.5

0.3

0
10 15 20 25 30 35 40 45 50 55 60

Time(s)

A
ng

le
 R

M
SE

 (
de

g)

0.9

0.8

0.4

0.2

0.1

0.5

0.3

0

0.7

0.6

Time(s)
30 35 40 45 50 55 60

Figure 13. Angle estimation RMSE of proposed algorithm under different ISR conditions.



Progress In Electromagnetics Research B, Vol. 83, 2019 57

(a) Target position estimation RMSE (b) Target position estimation RMSE
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The range estimation RMSEs, angle estimation RMSEs, and position estimation RMSEs of target
and decoy under different ISR conditions are shown in Figure 12, Figure 13, Figure 14, respectively.

It can be seen form above figures that the estimation errors of the decoy in the range, angle and
position are all small, with the exception of at the beginning of the experiment when the decoy is just
released. Different from the decoy, the estimation errors of the true target in range angle and position
are related to the ISR conditions, and with the increase of the ISR, the estimation accuracy of target
decreases a little. Especially in the condition of strong jamming of ISR = 7, the estimation accuracy
of target becomes worse, and the estimation error increases. Overall, the proposed algorithm has a
good performance in both detection correctness and estimation accuracy, and can ensure the monopulse
radar to always detect and track the target and decoy stably before the target is deceived to exit from
the radar beam.

6. CONCLUSIONS

In this study, the counteracting of typical MALD jamming of a monopulse radar was investigated.
Through the establishment of measurement model of target and decoy, a joint detection and tracking
algorithm of unresolved target and decoy that utilized multi-targets probability density was developed.
Simulation results showed that the proposed algorithm was capable of quickly and accurately detecting
the existence of the true target and the decoy, and estimating the position of both. The estimation
error was observed to be small, and this ensured that the monopulse radar detected and tracked the
target stably before the target was deceived to escape form the radar beam.
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