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On Localized Antenna Energy in Electromagnetic Radiation
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Abstract—We provide a general and rigorous formulation of antenna localized electromagnetic
radiation energy in generic antenna systems based on Poynting flow instead of the spectral approach
proposed earlier. The main theory is first developed using the principles of energy-momentum
conservation and the center-of-energy theorem, culminating in the derivation of a direct localized
energy expression. It is rigorously established that this expression satisfies the main features expected
of physical energy, mainly positive definiteness and regularity. The obtained formula involves only the
radiated fields (no current or charge) source and is easier to compute using specialized direct time-domain
EM solvers. The proposed approach is expected to play a role in understanding energy localization in
coupled antennas and shed light on gain enhancement methods.

1. LOCALIZED ENERGY: MOTIVATIONS AND GENERAL CONSIDERATIONS

The subject of localized energy has emerged in recent years as one of the potential critical domains
projected to play increasingly important roles in various applications. For example, we mention 5G
and mmWave technologies, which are accompanied by interactions and energy exchange at multiple
physical scales, often in dense and complex electromagnetic environments; indeed, systems like
Ultra-Dense Networks (UDN) and massive MIMO involve interactions in the near-zone and hence
increased localization [1, 2]. Also, it is now established that near-field nano-optics, subwavelength
imaging, plasmonics, and optical antennas all involve highly nontrivial processes of local energy
enhancement [3, 4]. Electromagnetic energy localization has also been studied in depth within the
context of condensed matter physics [5] and is a familiar subject in periodic structures like photonic
crystals. Energy localization is now seen as a fundamental factor in electromagnetic therapy in general [6]
and microwave hyperthermia in particular [7]. However, while looking into the electromagnetic energy
in the near-field of antennas, the applied electromagnetics community mostly focuses the attention
towards the “reactive energy” for antennas [8–15]. It should be noted here that near-field focusing is
another classical antenna application where energy localization is essential [16–18], and the same is true
for the closely related subject of wireless power transfer [19]. Also in traditional RF and microwave
antenna engineering, localized energy has been singled out as one of the main principles behind ultra-
wide band (UWB) performance [20, 21]. Therefore, it has become essential to look into the near-fields
of the antennas more comprehensively and focus on aspects like localized energy, moving beyond the
standard notions of reactive-energy and antenna-Q factors [22–27].

The subject of localized energy was recently treated from a more general perspective, that of
the Weyl (plane-wave) expansion [28, 29], which was used to propose a spacetime spectral theory of
localized energy in [30, 31]. Localized energy in the near-field interaction zone was also analyzed and
estimated in [32] for strongly-coupled wire antennas. In contrast to the previous spectral approach to
localized energy proposed in [30], this paper provides a justification of localized electromagnetic energy
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in radiation problems based on the Poynting flow, especially in comparison with its sister more familiar
concept of reactive energy. Our main goal is to attain some conceptual clarity relating to how localized
energy can be separated from the total field by relying on relative motion of energy (propagating field)
with respect to non-propagating fields (fields at rest with respect to the antenna frame of reference.) In
order to effect this separation in a rigorous manner, we use an argument based on the energy-momentum
conservation and center of energy theorem. The derived expression is then demonstrated to be positive
definite and regular.

The paper is organized as follows. The motivation of this research is given in Sec. 2, where
comparison with some previous attempts in the spectral domain are highlighted. The main conceptual
and theoretical aspects of Poynting localized energy are discussed in Sec. 3, where the major result
of this paper is given by expression (20). The obtained localized energy is then briefly analyzed in
Sec. 4 and shown to obey most of the important physical characteristics of energy, including positive
definiteness and regularity. Also, comparison is made with reactive energy and the relativistic approach
to further distinguish the two concepts. Finally, conclusions are given.

2. MOTIVATION AND BACKGROUND

It has been suggested before (see [22, 30, 31]) that there are three, fundamentally distinct types of
electromagnetic energy pertinent to antennas, i.e., radiation, problems; these are reactive Energy,
localized Energy, and stored Energy. Reactive energy, the energy type most commonly addressed in
applied electromagnetics, relates to that energy stored in the circuit representation of the input port
of the antenna system. Indeed, it is well known that the frequency-domain input impedance of any
antenna has the structure of [33]

R + i(XL − XC),

where R,XL,XC ≥ 0. Physically, R is interpreted as the radiation resistance, while XL and −XC

are taken as the inductive and capacitive reactances, respectively. As noted in [31], since this RLC
circuit is merely a model of the physically measurable input impedance, it cannot be considered an
actually existing physical medium inside which electromagnetic energy is stored. On the other hand,
electromagnetic stored energy is best treated as a real physical property of the fields, i.e., this energy
does not reside in the circuit model of the input port but is somehow distributed within the global
structure of the field configuration of the entire system, including most prominently the near-field zone.
Consequently, it was suggested in [30, 31] that stored energy and reactive energy should be distinguished
from each other. A more useful definition of stored energy briefly proposed in [30] and further developed
in [25–27] was to define stored energy as recoverable energy, i.e., the energy that can be retrieved from
the antenna system after switching off its steady-state source. In this paper, we focus on the second
energy type listed above, localized energy, which we consider an independent energy form distinct from
both reactive and stored energy. Intuitively, we define localized energy density, hereafter wloc, as the
spatial density of electromagnetic energy confined or concentrated in space around the source, i.e., the
energy that potion of energy that tends not to flow or propagate away from the source, but instead is
concatenated within a bounded spatial domain enclosing the radiating source.

There are two possible senses for the term ‘localized energy’, depending on how energy movement
is defined. If we focus on energy propagation, the natural definition of wloc will be that effected in
terms of nonpropagating modes. Since in vacuum nonpropagating modes can be shown to be strictly a
superposition of evanescent modes, the original definition and derivation of wloc, originally given in [30],
involved spectral integrals including all possible evanescent modes added together in order to estimate
the total localized energy Wloc given by

Wloc (t) =
∫

V
d3r wloc (r, t) , (1)

where the integration region V is the field support. A different approach to localized energy is to use
the idea of power flow instead of energy propagation. In this case, instead of performing a generalized
Fourier analysis through the Weyl expansion as done in [30] in order to decompose the total field into
propagating and evanescent parts, one use the Poynting theorem to describe how electromagnetic energy
move around in vacuum. Unfortunately, there is some evidence that the two pictures are not isomorphic.
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Indeed, it was found in [31] that differential equations describing energy propagation according to the
Weyl expansion and the Poynting theorem, respectively, do not lead to the same physical description.

In this paper, we adopt the Poynting picture of localized energy, in contrast to the Weyl picture
advocated in [31]. There are several motivations for doing this, which we summarize as follows. First,
although exact and rigorous expressions for localized energy where derived in [30], these involve quite
complicated spectral integrals with potential pole and branch point singularities. To our best knowledge,
no attempt has been made so to numerical compute localized energy based on the expressions derived
in [30], though some examples for the scalar case were presented in [31]. Second, although the Weyl
picture in terms of propagating and nonpropagating (evanescent) modes is rigorous and more physically
appealing, most current engineering applications tend to formulate energy flow in terms of power, relying
mainly on the Poynting theorem to establish connection with electromagnetic fields. Third, even though
the Weyl picture adopted in [31] is an exact spacetime approach to energy flow, it remains important
for completeness to develop the second theory (the Poynting picture) in order to gather enough material
to compare the two energy localization concepts together.

To recap, there are two possible localized energy types:

(i) Weyl Localized Energy (Localization = No spacetime).
(ii) Poynting Localized Energy (Localization = No power flow).

It is important to emphasize that we do not claim that the two localized energy types are the same; in
fact, we anticipate they are different. However, very little is known about both and we hope that by
focusing in the present paper on the Poynting type, we can provide some contribution to the topic.

3. POYNTING LOCALIZED ENERGY: THE FUNDAMENTAL THEORY

We assume an arbitrarily-shaped antenna supporting a continuous electric current density J(r, t) defined
on region Vs. The current radiates into an infinite isotropic and homogeneous medium with permittivity
ε and permeability μ. For simplicity, in this paper we focus on non-dispersive media, i.e., we include
neither temporal nor spatial dispersion. In fact, we consider the medium of the radiation field to be
essentially like the vacuum. In this case, the speed of electromagnetic wave propagation c and group
velocity are the same, and both are equal to

|vg| = c = 1/
√

εμ. (2)

Our goal here is to find a formula suitable for calculating time-dependent localized energy by utilizing
the Poynting flow to characterize the energy localization process. In order to achieve this, a compromise
between the Weyl and Poynting pictures is attempted based on the use of the center-of-energy theorem,
which also utilizes the Poynting theorem. The idea of the center of energy is to bestow upon Poynting
flow a spacetime flavour allowing it to come closer to the pure spacetime approach of the Weyl localized
energy. Indeed, since the latter depends on treating moving energy as essentially the energy of the pure
propagating modes, while localized energy is that of the evanescent nonpropgating modes, it follows
that a treatment of power flow through a concept like “moving center of energy” or “electromagnetic
mass” can provide an intuitive bridge between the two energy types.

To derive the Poynting localized energy, we first consider the traditional total electromagnetic
energy density given by [34–38],

wem (r, t) =
1
2
ε |E (r, t)|2 +

1
2
μ |H (r, t)|2 . (3)

It is well known that the total radiation energy in an unbounded exterior region is infinite. That is, if
the exterior domain is denoted by VR, where R is the maximum dimension of VR, then the following
divergence holds for any radiating antenna [11, 31, 25, 26]

lim
R→∞

∫
VR

d3r wem (r, t) = ∞. (4)

Reactive, localized, and stored energies all have to deal with this problem, which is the reason why a
careful derivation of a “subtraction term” required to regularize (4) is needed, e.g., see various different
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approaches in [8–15]. In order to find the regularization term suitable for subtraction from (3), we turn
toward the center-of-energy theorem for help.

We start by noting that in general, the fields radiated by any source can be decomposed into
propagating and nonpropagating modes using the Weyl expansion (also known as the plane-wave
spectrum method, see [28]). That is, we have

E (r, t) = Epropag. (r, t) + Enonpropag. (r, t) , H (r, t) = Hpropag. (r, t) + Hnonpropag. (r, t) . (5)

From this it follows that the total electromagnetic energy can be decomposed as

wem (r, t) = wloc (r, t) + wpropag (r, t) , (6)

where wloc(r, t) and wpropag(r, t) are the localized and propagating energy densities, respectively. Note
that there is also a third energy type, that of due to interaction between propagating and nonpropagating
energy. However, the analysis in [30] has suggested that this interaction energy is essentially localized,
and hence we include it with the nonpropagating energy density to give the total localized energy
according to the prescription

wloc (r, t) = wnonpropag (r, t) + winteraction (r, t) . (7)

In this manner, the determination of localized energy will be completed by finding the propagating
energy density wpropag(r, t) since from (6) we have

wloc (r, t) = wem (r, t) − wpropag (r, t) . (8)

Next, consider a source-free region, i.e., a vacuum configuration where only pure propagating waves
exist; in other words, we focus now on the case

E (r, t) = Epropag. (r, t) , H (r, t) = Hpropag. (r, t) , (9)

which corresponds to the energy configuration

wem (r, t) = wpropag (r, t) , wloc (r, t) = 0. (10)

This will serve as the extreme limit scenario in which energy localization is nonexistent. In this case,
electromagnetic energy is understood to be set by a source “at infinity” into a perpetual motion in which
local accumulation of energy is prohibited. We would like now to describe how such purely propagating
energy “moves in spacetime” via the idea of Poynting power flow.

Let us focus on an electromagnetic pulse belonging to the pure propagating wave configuration of
Eqs. (9) and (10). Let the electromagnetic energy density corresponding to this pulse be denoted by
uem(r, t). Schwinger defined the center-of-energy of this pulse as [34]

〈r (t)〉 :=
∫

Vpulse

d3r ruem (r, t) , (11)

where Vpulse is the pulse support. Therefore, the center-of-energy in electromagnetics plays a role
analogous to the one played by center of mass in rigid-body mechanics. It intuitively gives an idea about
where the focal point of the moving electromagnetic energy is located within this energy distribution
itself. The usefulness of the center of energy concept is that it allows us to visualize (and quantify) how
energy is moving in space by tracing how the point 〈r(t)〉 changes location with time.

Based on the Poynting theorem, the following differential equation, often referred to as the center-
of-energy theorem, can be solved to obtain the trajectory of energy centriod [34, 37]

vEWem(t) = c2P(t). (12)

Here, vE is the speed of the center of energy defined as

vE :=
d

dt
〈r (t)〉 . (13)

The total electromagnetic momentum P in Eq. (12) can be computed by

c2P(t) =
∫

Vpulse

d3r S (r, t) , (14)
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where S is the time-dependent Poynting vector S(r, t) = E(r, t) × H(r, t). The total propagating
electromagnetic energy itself is found by

Wem(t) :=
∫

Vpulse

d3r uem (r, t) . (15)

However, it is not possible to directly use the center-of-energy theorem (12) in order to estimate
the propagating energy density since the latter is a local quantity. The reason is that Eq. (12) is not
a local (point) function relation in space, but an integrated (or spatial average) of such relation. In
order to obtain the local version, we utilize the fact that in its original derivation, the center of energy
theorem does not impose any restriction on the field region Vpulse appearing in integrals like Eqs. (14)
and (15). We then choose an infinitesimal volume V → dv and approximate these integrals as

Wpropag. � wem (r, t) dv, c2P � S (r, t) dv. (16)

Consequently, the center-of-energy theorem (12) becomes

vEwem (r, t) = S (r, t) , (17)

which is the local relation we need. It can be interpreted as the center-of-energy theorem applied to a
highly-concentrated spatial pulse centered at the spacetime point (r, t). Conversely, by using partition
of unity techniques in differential topology, one can also build any large region Vpulse out of a finite
number of overlapping pulses each with very small support such that Eq. (17) applies to every one
of these infinitesimal pulses, and then recover Eq. (12) from Eq. (17) using proper spatial averaging
process.

The final step is to estimate the center-of-energy velocity. For that matter, we make use of the
fact that it is the pure propagating field configuration (9) what is under consideration. In this case,
Fourier analysis of the field (wave packet analysis) reveals that the speed of energy propagation is equal
to group velocity, that is, we have the classic result [38]

|vE | = |vg| = c. (18)

Substituting Eq. (18) into Eq. (17), we arrive at

wpropag (r, t) =
1
c
|S (r, t)| , (19)

where the first relation in Eq. (10) was used. Deploying Eq. (19) in Eq. (8) results in

wloc (r, t) =
1
2

(εE · E + μH ·H − 2
√

με|E × H|) . (20)

This is the main result of the present work. It expresses the spacetime localized energy density fully in
terms of spatiotemporal electromagnetic fields by utilizing the Poynting vector. The key motivating idea
behind the proposed definition of localized energy using Eq. (20) is the use of the Poynting vector S in
Eq. (19) to estimate the propagating energy density wpropag and only this density type. In other words,
the signature of the Ponying picture of electromagnetic energy localization is that S contributes nothing
to nonpropagating energy. This is intuitively clear within the framework of the usual interpretation of
the Poynting theorem since one expects that nonpropgating energy (stationary energy) has S = 0.

4. GENERAL CHARACTERISTICS OF LOCALIZED ENERGY

A comprehensive analysis and investigation of the Poynting localized energy given by Eq. (20) is beyond
the scope of the present paper but will be tackled by the authors in other places. For the purpose of the
present work, we provide a quick overview of what we consider the most salient features of the energy
type addressed by Eq. (20).
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4.1. Positive Definiteness

We rigorously prove that the term wloc(r, t) is strictly positive semi-definite, i.e., the relation

wloc (r, t) � 0, Wloc (t) � 0, (21)

which is the minimum necessary condition for any energy form to correctly models energy phenomena.
The proof runs as follows.

We start with the vector identity

|A× B|2 = |A|2 |B|2 − (A · B)2 . (22)

By direct computations, this can be expanded in the form

|A× B|2 =

(
|A|2 + |B|2

2

)2

−
⎡
⎣( |A|2 − |B|2

2

)2

+ (A · B)2

⎤
⎦ . (23)

We immediately infer from Eq. (23) that

|A× B|2 �
(
|A|2 + |B|2

2

)2

, (24)

where equality holds if and only if the following two conditions are satisfied

A · B = 0, |A|2 = |B|2 . (25)

Next, we insert the following substitutions A =
√

εE, B =
√

μH, into Eq. (24), resulting in

√
εμ |E× H| �

(
1
2
ε |E|2 +

1
2
μ |H|2

)
. (26)

In other words,
1
2
ε |E|2 +

1
2
μ |H|2 −√

εμ |E× H| � 0,

and from Eq. (20) the relation in Eq. (21) immediately follows, which is the required statement of
localized energy positive definiteness.

Note that according to Eq. (25), the equality in Eq. (21) holds if and only if the following condition
is satisfied:

E ·H = 0,
1
2
ε |E|2 =

1
2
μ |H|2 . (27)

Clearly, these conditions hold in the case of pure propagating electromagnetic waves in vacuum, which
confirms the intuitive foundations of localized energy. Indeed, only in the case of pure propagating
modes does the localized energy identically vanishes.

4.2. Energy Regularity

The next important general characteristic is that localized energy must satisfy is regularization, which
in our case can be expressed by the condition

lim
R→∞

∫
VR

d3r wloc (r, t) < ∞. (28)

This says that the total localized energy obtained by means of Eq. (1) must be finite when computed
within an unbounded radiation domain contained within the antenna exterior region. A rigorous general
proof of Eq. (28) is lengthy and will be reported elsewhere.

The proof requires developing a time-dependent power series expansion for wloc in terms of 1/r,
using a time-dependent version of the frequency-domain Wilcox expansion [39]. By expanding both
electric/magnetic energy and the Ponyting vector in powers of 1/r, one can estimate the asymptotic
behaviour of localized energy when r → ∞ using techniques similar to those developed in [22]. The
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main difficulty in completing the proof resides in moving from the frequency domain, as was originally
done in [31], to the time domain to show that all radial terms 1/rn with power n < 3 are exactly
zero, i.e., they do not contribute to total energy. That will ensure that the total energy infinite radial
integral in Eq. (1) is actually finite. However, the presence in Eq. (20) of the absolute value of S instead
of direct quadratic quantities as in electric and magnetic energy density considerably complicates the
calculations but the main idea above remains the same. The authors will report these detailed and
lengthy details elsewhere.

4.3. Comparison with Reactive Energy

Next, we briefly compare localized energy with the more popular reactive energy. For the determination
of Wloc(t) using Eq. (20), one subtracts all the radial energy-flow terms having spatial variation function
1/rn (n = 2m, m 	= 1) [22]. The presence of such terms can be predicted using the Wilcox expansion
principle [39]. Thus, this localized energy Wloc(t) is not same as the reactive antenna energy Wreact(t).
Moreover, the following condition holds for any arbitrary antenna system:

Wloc(t) < Wreact(t). (29)

A convenient FDTD model developed in [40, 41] was applied to the problem of calculating reactive
energy in [42]. Using this FDTD simulation paradigm, some initial result relating to this relation
between localized energy and reactive energy is reported here in Figure 1, which is in perfect agreement
with Eq. (29). Additional numerical results will be reported for array systems in strong and weak
mutual coupling scenarios.

Figure 1. Comparison between localized and reactive energy for a half-wavelength thin-wire dipole
having impedance matching point at 3.73 GHz with impedance bandwidth 11.06%. The input excitation
impulse is shown in the inset.

4.3.1. Comparison with the Relativistic Approach

Finally, we briefly comment on some relativistic considerations in electrodynamics [34–38] relating to
localized energy as defined here. Like total electromagnetic energy and reactive energy, the localized
energy (20) is not relativistic, which is the typical case in antennas since the presence of a classic source
term destroys Lorentz invariance (the frame at rest with the classic current becomes the preferred
inertial coordinate system.) However, it is instructive to compare our formulation with some manifestly
relativistic energy formulation proposed earlier. In particular the approach [43, 44], motivated by
relativistic considerations, defines an equivalent “electromagnetic mass” of propagating waves in terms
of the fields. From this mass, the “energy at rest” of the field is defined by means of the familiar
relativistic formal E = mc2, is taken as an estimation of “localization energy,” given by

winertial (r, t) =
√

|wem (r, t)|2 − |S (r, t)|2.
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This expression, however, is essentially local (like Eq. (20)). It was not investigated in connection with
global energy (total energy in the entire space or in large spatial regions). Moreover, the author in [43]
defines reactive energy as essentially the inertia energy above, and hence is not in agreement with
our approach, which treats reactive and localized energies as distinct. In fact, the inertia energy and
ours do not agree numerically (see Figure 2), which is not surprising given that they address different
physical phenomena. For example, the Bateman theory is expected to apply to relativistic particle
dynamics scenarios, while ours is connected with classical fields in antennas and does not cover such
situations. On the other hand, our localized energy approach goes beyond traditional reactive energy
in conventional electromagnetics and explore new phenomenon like spatial energy localization around
radiators in global domains, which is currently being actively investigated for applications like high gain
antennas and energy harvesting.

Figure 2. Comparison between localized and inertial energy for a half-wavelength thin-wire dipole
having impedance matching point at 3.73 GHz with impedance bandwidth 11.06%. The input excitation
impulse is shown in the inset.

5. CONCLUSION

Antenna Localized energy, distinct from both reactive and stored energy, was investigated in this
paper from a very general perspective and without restriction to specific antenna type by developing
a concept of Poynting localized energy in contrast to the previously proposed spectral approach. A
simple derivation of a direct expression for time-dependent localized energy density in terms of total
electromagnetic fields was given based on energy-momentum conservation and the center-of-energy
theorem. The obtained localized energy was shown to enjoy many of the important characteristics of
physical energy, including positive definiteness and regularity. The authors believe that suitable time-
domain full-wave solvers could be developed to compute reactive and localized energy based on this will
be reported by the authors in future work for several antenna types.
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