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Electromagnetic Field Solutions in an Isotropic Medium
with Weakly-Random Fluctuations in Time and Some Applications

in the Electrodynamics of the Ionosphere

Victor Nijimbere* and Lucy J. Campbell

Abstract—Stochastic wave equations are derived to describe electromagnetic wave propagation in
an isotropic medium in which the electric permittivity and the magnetic permeability are weakly-
random functions of time. Approximate analytical solutions are obtained using separation of variables
and the WKB method for some configurations that can be used to model the electromagnetic field
in the ionosphere. The form of the initial and boundary conditions determines whether the solution
takes a form representing a direct current electric field or continuous pulsation electromagnetic waves.
The temporal variation of the calculated induced electromotive force (EMF) is in agreement with
observations.

1. INTRODUCTION

A random medium is a nonhomogeneous medium whose properties are random functions of either time
or position or both. The randomness may be due to the fluctuations in the thermodynamic properties of
the medium or due to irregular scatterers in the medium [25]. There are a number of situations in nature
where wave propagation occurs in a random nonhomogeneous medium, for example, acoustic-gravity
waves in the ocean and atmosphere, seismic waves and regular pulsation electromagnetic waves in the
ionosphere [19], and electromagnetic fluctuations in the human brain [2, 16]. When electromagnetic
waves propagate in a random medium, there are complex interactions between the fields which change
the spatial configuration, orientation or polarization of the electromagnetic field.

Electromagnetic wave propagation in a random medium can be simulated using a discrete model in
which it is assumed that there are randomly-distributed discrete scatters in the medium or a continuous
model in which the medium is considered to be a continuum whose properties are characterized by its
electric permittivity and magnetic permeability, which are considered to be statistical quantities [25]. In
the latter approach, the governing equations for the wave propagation are stochastic partial differential
equations. In this paper, we follow this continuum approach to examine the case of electromagnetic
wave propagation in an isotropic medium for which the electric permittivity and magnetic permeability
are functions of time, independent of position, and there is weakly-random temporal variation about
their temporal mean values. We derive stochastic wave equations for this configuration and consider
some initial and boundary conditions that allow us to obtain analytical solutions for the electromagnetic
field.

The configurations that we examine here can be considered as simple representations for
electromagnetic wave propagation in the ionosphere. The ionosphere is the region in the upper
atmosphere where the concentration of ions and electrons is high enough to affect the propagation
of radio waves [9]. Solar winds, magnetic storms and other phenomena transport random scatterers and
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perturb the geomagnetic field and can generate electromagnetic waves and ionospheric disturbances [19].
Downward-propagating ionospheric disturbances sometimes reach the lower atmosphere where they
interact with atmospheric waves and consequently affect the general circulation of the atmosphere
and, hence, weather and climate [13, 15]. On the other hand, waves generated in the lower and
middle atmosphere propagate upward and sometimes reach the ionosphere where they generate
travelling ionospheric disturbances [10, 25] and perturb radio wave propagation over long distances [8].
These atmosphere-ionosphere interactions can be studied using electromagnetohydrodynamic (EMHD)
equations [18], but in order to develop realistic models for the interactions based on these equations,
knowledge of the structure and propagation characteristics of the electromagnetic waves is required.

The ionosphere is a medium that fluctuates randomly in both space and time. There have been
analytical studies on electromagnetic wave propagation in a spatially-random ionospheric configuration,
dating back over four decades to the classical text of Yeh and Liu [25]. Other examples of wave
propagation in spatially-random media, besides the ionosphere, occur in medical imaging and radio
wave propagation [3, 20]. In this paper, we focus on the case of electromagnetic wave propagation in a
medium that varies randomly in time and we discuss the relevance of our solutions to the dynamics of
the ionosphere.

The paper is organized as follows. In Section 2, we describe the equations of the electromagnetic
fields in a time-dependent conducting or nonconducting medium with or without a charge source, and
we derive a version of the Kramers-Kronig relations which is valid for such a medium. We also derive
the equation describing the evolution of the charge density. In Section 3, we solve these equations in
an isotropic medium with weakly-random fluctuations in time using separation of variables and the
WKB (Wentzel, Kramers and Brillouin) method [4]. In Section 4, applications which are relevant to
the ionosphere are given and the induced electromotive force (EMF) is computed. In Section 5, a brief
summary of the results obtained in the paper is given.

2. ELECTROMAGNETIC WAVE EQUATIONS IN A TIME-DEPENDENT
ISOTROPIC MEDIUM

We start with Maxwell’s equations

∇× E = −∂B
∂t

, (1)

∇× H = J +
∂D
∂t

, (2)

∇ · D = ρ (3)

and
∇ ·B = 0, (4)

where E and H are the electric and magnetic field vectors; D and B are the electric and magnetic
flux densities; J is the current density and ρ is the charge density. The current density and the charge
density are related by the continuity equation

∂ρ

∂t
= −∇ · J. (5)

Following Kormiltsev and Mesentsev [14], we write the relationships between D and E, B and H,
and J and E in a dispersive time-dependent medium as Eq. (6)

D(r, t) =
d

dt
(ε(t) ∗ E(r, t)) =

d

dt

t�

0

ε(τ)E(r, t − τ)dτ

= ε(t)E(r, 0) +

t�

0

ε(τ)
∂E
∂τ

(r, t − τ)dτ = ε(0)E(r, t) +

t�

0

∂ε(τ)
∂τ

E(r, t − τ)dτ, (6)
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B(r, t) =
d

dt
(μ(t) ∗ H(r, t)) =

d

dt

t�

0

μ(τ)H(r, t − τ)dτ

= μ(t)H(r, 0) +

t�

0

μ(τ)
∂H
∂τ

(r, t − τ)dτ = μ(0)H(r, t) +

t�

0

∂μ(τ)
∂τ

H(r, t − τ)dτ (7)

and

J(r, t) =
d

dt
(σ(t) ∗ E(r, t)) =

d

dt

t�

0

σ(τ)E(r, t − τ)dτ

= σ(t)E(r, 0) +

t�

0

σ(τ)
∂E
∂τ

(r, t − τ)dτ = σ(0)E(r, t) +

t�

0

∂σ(τ)
∂τ

E(r, t − τ)dτ, (8)

where ∗ represents the Laplace convolution integral, ε the permittivity of the medium, μ the permeability
of the medium, and σ the conductivity of the medium.

We note that it is important that the convolution integrals reach some stationary states as t → ∞
in order for the principle of causality to be satisfied [25]. In that case, we can take the limit of t → ∞
and obtain the Fourier convolution integral. We also observe, for instance, that the convolution integral
in (6),

ε(t) ∗ E(r, t) =

t�

0

ε(τ)E(r, t − τ)dτ,

has the unit of the electric flux density D times the unit of time. In order to obtain a correct unit for
D, it is intuitive to differentiate the convolution integral with respect to time. One can interpret the
right hand side of Eq. (6) as the response of the medium to the electric field, while the left hand side of
Eq. (6) can be interpreted as the response of the electric field to the medium. This indicates that the
medium and the field affect each other. Differentiating the convolution integral with respect to time
t, on one hand, is to take into consideration the variation of the field as a result of the effects of the
medium on the field (the expressions on the left hand sides of Equations (6), (7) and (8)), while on
another hand, it is to take into consideration the variation of the properties of the medium as a result
of the effects of the field on the medium (the expressions on the right hand sides of Equations (6), (7)
and (8)).

The Fourier transforms of D,B and J are given respectively by

D̂(r, ω) = iωε̂(ω)Ê(r, ω), B̂(r, ω) = iωμ̂(ω)Ĥ(r, ω) and Ĵ(r, ω) = iωσ̂(ω)Ê(r, ω), (9)

provided that the convolution integrals in Eqs. (6)–(8) reach some stationary states as t → ∞. Taking
the Fourier transform in time of the second Maxwell’s Equation (2) and using Eq. (9) gives

∇× Ĥ(r, ω) = [σ(0) + iωσ̂(ω) + iωε(0) − ω2ε̂(ω)]Ê(r, ω). (10)

We write ε̂ as ε̂ = ε̂re + iε̂im, and σ̂ as σ̂ = σ̂re + iσ̂im, where the subscripts re and im stand for real and
imaginary parts respectively. Substituting these in Eq. (10) gives

∇×Ĥ(r, ω)={[σre(0)−ωσ̂im(ω)−ωεim(0)−ω2 ε̂re(ω)]+i[σim(0)+ωσ̂re(ω)+ωεre(0)−ω2ε̂im(ω)]}Ê(r, ω).
(11)

Taking into consideration the fact that, initially, the permittivity is nonzero, ε(0) = εre(0) + iεim(0) as
in Eq. (11), and using the Poisson Kernel and its pair conjuguate, the principle of causality leads to the
following version of the Kramers-Kronig relations in Fourier space (the ω domain),

ε̂re(ω) = εre(0)δ(ω − 0) +
1
iπ

PV

+i∞�

−i∞

ξε̂im(ξ)
ξ2 + ω2

dξ (12)



80 Nijimbere and Campbell

and

ε̂im(ω) = εim(0)δ(ω − 0) − 1
iπω

PV

+i∞�

−i∞

ξ2ε̂re(ξ)
ξ2 + ω2

dξ, (13)

where PV stands for the principal value of the integral.
Relations (12) and (13) are slightly different from those found in the classical books on

electromagnetism, such as Van Bladel [5], since they are obtained using ε′ = dε/dt as the causal function,
rather than ε as in Van Bladel [5], in order to satisfy Eqs. (6) and (11).

Under certain conditions, it is possible to simplify Eqs. (6)–(8) and get rid of the convolution
integrals. Here, we consider electromagnetic fields with small noncausal events as those in a weakly-
dispersive medium. In a weakly-dispersive time-dependent medium, the medium has a weaker effect
on the electromagnetic field, and so ε(τ), μ(τ) and σ(τ) can be approximated as ε(t), μ(t) and σ(t) in
the expressions on the left hand sides of Eqs. (6), (7), and (8), respectively. In doing so, we obtain the
simplified relations

D(r, t) = ε(t)E(r, t), B(r, t) = μ(t)H(r, t) and J(r, t) = σ(t)E(r, t). (14)

On the other hand, in a weakly-dispersive time-dependent medium, the electromagnetic field also
has a weaker effect on the medium. In that case, the electric field vector E(r, t − τ) in the expressions
on the right hand sides of Eqs. (6) and (8) can be approximated as E(r, t), while H(r, t − τ) can be
approximated as H(r, t) in the expression on the right hand side of Eq. (7). This, as expected, gives
Eq. (14). We also note that Eqs. (6)–(8) are reduced to Eq. (14) in a non-dispersive medium with
constant ε, μ and σ.

Next, taking the curl of Eq. (1) and using Eqsw. (2) and (14) gives

∇(∇ · E) −∇2E = −∂(μJ)
∂t

− μ
∂2(εE)

∂t2
− dμ

dt

∂(εE)
∂t

. (15)

Similarly, taking the curl of Eq. (2) and using Eqs. (1) and (14) gives

∇2H = ε
∂2(μH)

∂t2
+

dε

dt

∂(μH)
∂t

−∇× J. (16)

In a non-conducting source-free medium, ρ = 0 and J = 0; in that case, Equations (15) and (16)
are simplified to

∇2E − μ
∂2(εE)

∂t2
− dμ

dt

∂(εE)
∂t

= 0 (17)

and

∇2H − ε
∂2(μH)

∂t2
− dε

dt

∂(μH)
∂t

= 0. (18)

The case with constants ε and μ leads to the standard form of the equations for electromagnetic wave
propagation in a steady homogeneous medium.

More generally, Equations (17) and (18) are obtained in any configuration where

∇(∇ · E) = −∂(μJ)
∂t

and ∇× J = 0. (19)

Applying the divergence operator yields

∇2(∇ ·E) = −∂(μ∇ · J)
∂t

. (20)

Combining this with the third Maxwell Equation (3) and the continuity Equation (5) and expanding
the right hand side of Eq. (20) gives the equation for the electric charge density ρ,

∇2ρ = ε
dμ

dt

∂ρ

∂t
+ εμ

∂2ρ

∂t2
. (21)
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This equation is useful in the sense that it allows us to derive the expression for ρ even if that of the
electric field vector E is not known. If ε and μ are constants, ρ is thus a solution for the wave equation

∇2ρ = εμ
∂2ρ

∂t2
, (22)

as can be found in books on the basics of electromagnetism (e.g., [6]).
A configuration with time-dependent permittivity, but constant permeability, has been examined

in the past (see for example Pedrosa et al. [21]); they considered some special profiles of the permittivity
that allowed them to derive exact solutions. In our investigation, both the permittivity and the
permeability are functions of time and fluctuate randomly.

In the present paper, we examine Equations (17) and (18) in a two-dimensional domain described
by rectangular coordinates x and z. We consider a bounded domain in the x-direction (x1 ≤ x ≤ x2)
and define the z coordinate from some fixed altitude, say z = z1 (the wave source level) and extending
up to infinity (z1 ≤ z < ∞). We seek solutions of Eqs. (17) and (18) that are oscillatory and periodic
in the x direction and remain finite as z → ∞ and as the time t → ∞.

In total, six (initial and boundary) conditions are needed in order to define completely the electric
or magnetic field. Four of these conditions are: E(x, z, t) is finite as z → ∞, E(x, z, t) is finite as
t → ∞ and either periodic boundary conditions E(x = x1, z, t) = E(x = x2, z, t) or non-periodic
boundary conditions E(x = x1, z, t) �= E(x = x2, z, t). The others are the boundary condition at z = z1

(E(x, z = z1, t)), and either the initial condition E(x, z, t = 0) or ∂E
∂t (x, z, t = 0) which will be specified

later in Section 4. These types of initial-boundary conditions are relevant to the study of ionospheric
disturbances such as electrohydrodynamic disturbances (EHD), magnetohydrodynamic disturbances
(MHD), electromagnetohydrodynamic disturbances (EMHD) and their associated travelling ionospheric
disturbances (TIDs) [18].

3. APPROXIMATE ANALYTICAL SOLUTIONS IN AN ISOTROPIC MEDIUM
WITH WEAKLY-RANDOM FLUCTUATIONS IN TIME

In an isotropic medium where the electric and magnetic fields satisfy Eqs. (17) and (18) respectively,
each component E of the electric field vector E and each component H of the magnetic field vector H
satisfy, respectively,

∇2E − μ
∂2(εE)

∂t2
− dμ

dt

∂(εE)
∂t

= 0 (23)

and

∇2H − ε
∂2(μH)

∂t2
− dε

dt

∂(μH)
∂t

= 0. (24)

Equations (23) and (24) are symmetric in ε and μ. Once the expression for the electric field E is
derived, that of the magnetic field H is obtained by simply interchanging ε and μ. We thus focus on
the solution of Equation (23). Using the method of separation of variables, we seek a solution of the
form E(r, t) = R(r)T (t), where r is the position vector in two-dimensional space and t represents time.
Equation (23) then gives

∇2R

R
=

(μ(εT )′)′

T
= λ, a constant, (25)

where the prime stands for differentiation with respect to time t. This means that

∇2R − λR = 0 (26)

and
(μ(εT )′)′ − λT = 0. (27)

The constant λ may take different values depending on the problem that is being studied. In the
configuration considered here, which is relevant to the ionosphere, some particular values of λ are
considered.



82 Nijimbere and Campbell

3.1. Solutions Corresponding to λ = 0

If λ = 0, the solutions are oscillatory in space and vary randomly in time. In the two-dimensional
ionospheric configuration with periodic boundary conditions and sinusoidal oscillations in the x-direction
and exponential variation in the z-direction, the solution corresponding to λ = 0 which is finite as z → ∞
is

Eλ=0(x, z, t) =
e−ηz

ε(t)

[
a1 + a2

�
1

μ(t)
dt

]
(b1 cos ηx + b2 sin ηx) , (28)

where η, a1, a2, b1 and b2 are constants, and η can be determined from the boundary conditions specified
in the x direction.

In a medium with weakly-random temporal variations, the permittivity ε and permeability μ are
represented as

ε(t) = ε0εr(t) = ε0〈εr〉 + Δε(t) and μ(t) = μ0μr(t) = μ0〈μr〉 + Δμ(t), (29)
where ε0 is the permittivity of free space, εr(t) the relative permittivity of the medium, 〈εr〉 the temporal
average of the relative permittivity, μ0 the permeability of free space, μr(t) the relative permeability
of the medium, and 〈μr〉 the temporal average of the relative permeability. The fluctuations Δε(t)
and Δμ(t) from the average values are defined as stochastic variables each with mean zero and some
variance. Weak random variation of the medium means that |Δε(t)| 
 |ε0〈εr〉| and |Δμ(t)| 
 |μ0〈μr〉|.
The fluctuations are defined so that Δε(0) = 0 and Δμ(0) = 0 and Δε(t) and Δμ(t) both have variance
that equals t, then Δε(t) and Δμ(t) can be represented as standard Wiener processes (see Appendix B).

Using the asymptotic approximation (1 + a)θ ∼ 1 + θa which is valid when a 
 1, in a weakly-
random medium, we can write

1
ε(t)

=
1

ε0〈εr〉 + Δε(t)
∼ 1

ε0〈εr〉
[
1 − Δε(t)

ε0〈εr〉
]

and
1

μ(t)
=

1
μ0〈μr〉 + Δμ(t)

∼ 1
μ0〈μr〉

[
1 − Δμ(t)

μ0〈μr〉
]

. (30)

Thus,
�

1
ε(τ)dτ ∼ O(t) and

�
1

μ(τ)dτ ∼ O(t).
In order for Eλ=0 to remain finite as t → ∞, a2 must be zero. Therefore,

Eλ=0(x, z, t) =
e−ηz

ε(t)
(b1 cos ηx + b2 sin ηx) =

e−ηz

εr(t)

(
b̃1 cos ηx + b̃2 sin ηx

)

∼ e−ηz

〈εr〉
(
b̃1 cos ηx + b̃2 sin ηx

)[
1 − Δε(t)

ε0〈εr〉
]

, (31)

where the new constants b̃1 = b1/ε0 and b̃2 = b2/ε0. The temporal average of Eλ=0 can be approximated
by

〈Eλ=0〉 ∼ e−ηz

〈εr〉
(
b̃1 cos ηx + b̃2 sin ηx

)
. (32)

We observe that the rate of decay of the solution in the z direction is equal to the horizontal
wavenumber kx = η. We can then compute the electric flux density D as

Dλ=0(x, z, t) = ε(t)Eλ=0(x, z, t) = e−η(z−z1) (b1 cos ηx + b2 sin ηx) . (33)
We note that in this configuration E fluctuates in time, but D is time-independent and satisfies ∇2D = 0,
according to Eq. (23).

Interchanging ε and μ in Eq. (31) gives the solution for the magnetic field vector H corresponding
to λ = 0,

Hλ=0(x, z, t) =
e−ηz

μ(t)

[
ā1 + ā2

�
1

ε(t)
dt

] (
b̄1 cos ηx + b̄2 sin ηx

)
, (34)

where η, ā1, ā2, b̄1 and b̄2 are constants. In order for Hλ=0 also to remain finite as t → ∞, we must
have ā2 = 0. We can then obtain an expression for the corresponding magnetic flux density

Bλ=0(x, z, t) = μ(t)Hλ=0(x, z, t) = e−η(z−z1)
(
b̄1 cos ηx + b̄2 sin ηx

)
, (35)

which is time-independent and satisfies ∇2B = 0, according to Eq. (18).
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3.2. Solutions Corresponding to λ �= 0

Nonzero values of λ, on the other hand, give solutions that represent waves oscillating in both space
and time and varying randomly in time. With λ �= 0, Equation (26) can be solved using the method
of separation of variables. We seek a solution of the form R(x, z) = X(x)Z(z), which is oscillatory and
periodic in x and finite as z → ∞ and find that

X(x) = b1e
iηx + b2e

−iηx and Z(z) = c1e
√

η2+λ z + c2e
−
√

η2+λ z, (36)

where λ, b1, b2, c1 and c2 are complex constants. As before, kx = η is the horizontal wavenumber,
which is a real non-zero constant that can be determined from the boundary conditions specified in the
x direction.

Equation (27) can be written as

T̃ ′′ +
Δμ′

μ
T̃ ′ − c2λ

εrμr
T̃ = 0, (37)

where T̃ (t) = ε(t)T (t) and c = (ε0μ0)−1/2 ≈ 3 × 108 ms−1 is the speed of light in free space. We then
introduce another new function V (t) =

√
μ(t)T̃ (t) which eliminates the first derivative term in Eq. (37)

and gives

V ′′ −
[

c2λ

εrμr
+

1
2

(
Δμ′

μ

)′
+

1
4

(
Δμ′

μ

)2
]

V = 0. (38)

In a plasma such as the ionosphere, the nondimensional functions εr(t) and μr(t) are O(1), and the
constant c2|λ| which has dimension t−2 and units s−2, can be considered to be “large” provided that |λ|
is larger than 1/9 × 10−16 m−2. In that case, the second and third terms in the coefficient of V in (38)
is negligible compared with the first term, and V can thus be approximated by the function Ṽ which
satisfies

Ṽ ′′ −
[

c2λ

εrμr

]
Ṽ = 0. (39)

We are therefore justified to make use of the WKB method [4] (see Equation (C2) in Appendix C)
to obtain an approximate asymptotic solution for Equation (39). Applying the WKB method gives

Ṽ (t) ∼ d1

[
εr(t)μr(t)

c2λ

] 1
4

exp

⎧⎨
⎩c

√
λ

t�

0

[εr(τ)μr(τ)]−1/2dτ

⎫⎬
⎭

+d2

[
εr(t)μr(t)

c2λ

] 1
4

exp

⎧⎨
⎩−c

√
λ

t�

0

[εr(τ)μr(τ)]−1/2dτ

⎫⎬
⎭ + c.c., (40)

where d1 and d2 are constants, and “c.c.” denotes the complex conjugate of the preceding expression.
Thus, T can be approximated as

T (t) =
V (t)

ε(t)μ1/2(t)
∼ d̃1

exp
{

c
√

λ
t�
0

[εr(τ)μr(τ)]−1/2dτ

}
[ε3

r(t)μr(t)]1/4
+ d̃2

exp
{
−c

√
λ

t�
0

[εr(τ)μr(τ)]−1/2dτ

}
[ε3

r(t)μr(t)]1/4
+ c.c.,

(41)
where the new constants d̃1 = d1c

1/2/(ε1/2
0 λ1/4) and d̃2 = d2c

1/2/(ε1/2
0 λ1/4).

In general, λ is complex, so we write it as λr + iλi and define

αr + iαi =
√

λ =
√

λr + iλi =
1√
2

√
λr +

√
λ2

r + λ2
i + sgn(λi)

i√
2

√
−λr +

√
λ2

r + λ2
i (42)
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and

βr + iβi =
√

η2 + λ =
√

η2 + λr + iλi =
1√
2

√
η2 + λr +

√
(η2 + λr)2 + λ2

i

+sgn(λi)
i√
2

√
−(η2 + λr) +

√
(η2 + λr)2 + λ2

i . (43)

To obtain a solution that is finite as z → ∞ and as t → ∞, we set c1 and d̃1 to zero. Using the
asymptotic approximation (1 + a)θ ∼ 1 + θa, a 
 1, as before, the solution corresponding to λ �= 0 can
thus be approximated by

E(x, z, t) ∼
[1 − ϑE(t)] exp{−γ [t − θshift(t)/ω]} exp{−iω [t − θshift(t)/ω]}e−βrze−iβiz

(
b1e

iηx + b2e
−iηx

)
+ c.c.,

(44)

where ϑE(t) = (1/4) [3Δε(t)/(ε0〈εr〉) + Δμ(t)/(μ0〈μr〉)], γ is the decay rate of the wave, ω the frequency
of the wave, and γ and ω are given respectively by

γ =
c√〈εr〉〈μr〉

αr =
c

〈n〉αr and ω =
c√〈εr〉〈μr〉

αi =
c

〈n〉αi, (45)

with 〈n〉 =
√〈εr〉〈μr〉 being the mean value of the refractive index of the medium.

The wave phase shift induced by the randomness of the medium is

θshift(t) ∼ 1
2

αic

〈n〉

t�

0

[
Δε(τ)
ε0〈εr〉 +

Δμ(τ)
μ0〈μr〉

]
dτ =

ω

2

t�

0

[
Δε(τ)
ε0〈εr〉 +

Δμ(τ)
μ0〈μr〉

]
dτ. (46)

The index of refraction of the random medium is thus given by

n(t) = 〈n〉 + Δn(t) ∼ 〈n〉 +
〈n〉
2

[
Δε(t)
ε0〈εr〉 +

Δμ(t)
μ0〈μr〉

]
, (47)

where Δn(t) is the stochastic fluctuation induced by the randomness of the medium.
The horizontal and vertical wavenumbers are kx = η and kz = βi, αr ≥ 0, βr ≥ 0 and

sgn(αi) = sgn(βi) = sgn(λi). If λ is real, then we obtain different possibilities depending on the relative
magnitude of λ and η. The case λ < −η2 gives αr = 0 and βr = 0, so there are sinusoidal oscillations
in t and z with constant amplitude. This is the standard configuration given in textbooks, but it is
physically unrealistic on an unbounded vertical and temporal domain since the wave amplitude cannot
remain constant for infinite time and at infinite distance from the source level. The other possibilities
do not give vertically-propagating waves: λ = −η2 gives oscillations in t which are independent of z;
−η2 < λ < 0 gives αr = 0 and βi = 0 which means that there are sinusoidal oscillations in t with no
exponential decay and exponential decay in z with no oscillations; −η2 < 0 < λ gives exponential decay
in both z and t with no oscillations.

The mean of the time-dependent function in the solution (44) can be approximated as

〈T (t)〉 ∼ e−γte−iωt + c.c., (48)

and from Eqs. (42) and (43), we obtain

(αr + iαi)2 = λ = (βr + iβi)2 − η2. (49)

The real part of Eq. (49) gives
α2

i = α2
r − β2

r + β2
i + η2,

and so

ω2 =
c2

〈εr〉〈μr〉 (k
2
x + k2

z + α2
r − β2

r ). (50)

This is the dispersion relation for the electromagnetic wave propagation; it is a generalization of the
standard form ω2 = c2(k2

x +k2
z)/(εrμr) normally given in textbooks on electromagnetism for waves with
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constant amplitude in a two-dimensional configuration with constant permittivity and permeability.
From Eq. (50), we note that the vertical component of the group velocity is

∂ω

∂kz
=

c

(〈εr〉〈μr〉)1/2

kz

(k2
x + k2

z + α2
r − β2

r )1/2
, (51)

which is positive since ω and kz have the same sign. This indicates that the waves propagate upwards
from their source. If we were to consider instead a configuration where the waves were generated in the
upper levels of the ionosphere and propagated downwards, then we would instead set c2 = 0 in (36)
and the exponent of the function Z(z) in (36) would then be (−βr − iβi)z. In that case, the vertical
component of the group velocity would be negative according to Eq. (51).

From Eq. (44), we obtain the following approximation for the electric flux density,

D(x, z, t) = ε(t)E(x, z, t)

∼ [1 − ϑD(t)] exp{−γ [t − θshift(t)/ω]} exp{−iω [t − θshift(t)/ω]}e−βrze−iβiz
(
b1e

iηx + b2e
−iηx

)
+ c.c.,

(52)

where ϑD(t) = (1/4) [Δε(t)/(ε0〈εr〉) − Δμ(t)/(μ0〈μr〉)]. Solutions for H and B can be obtained in a
similar manner by interchanging ε and μ.

4. SOME CONFIGURATIONS RELEVANT TO THE ELECTRODYNAMICS OF THE
IONOSPHERE

In this section, we describe some configurations that lead to solutions that can be used to describe
certain phenomena observed in the ionosphere. Measurements of electric field variables indicate that,
under certain circumstances, the upper region of the ionosphere, known as the F region, may behave
like an electric dynamo with a direct current electric field [12,22]. This situation can be represented by
the solutions of Eqs. (28) and (34) in a domain with suitably chosen boundary and initial conditions,
while solutions of the form (44) corresponding to λ �= 0 can be used to represent continuous pulsation
electromagnetic waves [11,19].

In a two-dimensional domain given by x1 < x < x2 and z1 < z < ∞ shown in Figure 1, we let

E = x̂Ex + ẑEz and D = x̂Dx + ẑDz, (53)

where x̂ and ẑ are, respectively, the unit vectors in the x and z directions. We solve Eq. (17) subject
to the initial conditions

Ex(x, z, 0) =
ρse

−η1z

ε0〈εr〉 sin η1x and Ez(x, z, 0) =
ρse

−η2z

ε0〈εr〉 cos η2x, x1 ≤ x ≤ x2, z1 ≤ z < ∞ (54)

and the boundary conditions

Ex(x, z1, t) =
ρs

ε0εr(t)
sin η1x and Ez(x, z1, t) =

ρs

ε0εr(t)
cos η2x, t ≥ 0, (55)

where ρs is the surface charge density. We also consider non-periodic boundary conditions E(x =
x1, z, t) �= E(x = x2, z, t) in order to have a potential difference between the boundaries x1 and x2.

According to Section 3, these conditions give the solutions

Ex(x, z, t) =
ρs

ε(t)
e−η1(z−z1) sin η1x ∼ ρs

ε0〈εr〉e
−η1(z−z1) sin η1x

[
1 − Δε(t)

ε0〈εr〉
]

(56)

and

Ez(x, z, t) =
ρs

ε(t)
e−η2(z−z1) cos η2x ∼ ρs

ε0〈εr〉e
−η2(z−z1) cos η2x

[
1 − Δε(t)

ε0〈εr〉
]

. (57)

From Eq. (14), the components of the electric flux density are

Dx(x, z, t)=ε(t)Ex(x, z, t)=ρse
−η1(z−z1) sin η1x and Dz(x, z, t)=ε(t)Ez(x, z, t)=ρse

−η2(z−z1) cos η2x.
(58)
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Thus, the charge density ρ is

ρ(x, z) = ∇ · D =
∂Dx

∂x
+

∂Dz

∂z
= η1ρse

−η1(z−z1) cos η1x − η2ρse
−η2(z−z1) cos η2x. (59)

Since ρ is time-independent, the solution represents a situation where the ionosphere acts like an electric
dynamo with a direct current.

The magnetic flux density is obtained using Eq. (1),

B=−
�

∇× Edt=
�

ŷ
(

∂Ez

∂x
− ∂Ex

∂z

)
dt= ŷρs

[
η1e

−η1(z−z1) sin η1x−η2e
−η2(z−z1) sin η2x

]� 1
ε(t)

dt. (60)

This corresponds to the situation where ā1 = 0 and ā2 �= 0 in the magnetic field solution (34). The
induced electromotive force (EMF) is obtained using Faraday’s law of induction,

EMF = − d

dt

Æ
A

B · ŷdA =
ρs

ε(t)

[
1
η1

(cos (η1x2) − cos (η1x1)) − 1
η2

(cos (η2x2) − cos (η2x1))
]

∼ ρs

ε0〈εr〉
[

1
η1

(cos (η1x2) − cos (η1x1)) − 1
η2

(cos (η2x2) − cos (η2x1))
] [

1 − Δε(t)
ε0〈εr〉

]
, (61)

where A is the area of our rectangular domain shown in Figure 1. Thus, the solutions corresponding to
λ = 0 obtained in Section 3 give a representation of an electromagnetic field corresponding to a direct
current.

+ +

z

ẑ

z1

x 1 x x 2

Ex
ŷ

B = ŷ B y

E z

x̂

∞ ∞

Figure 1. A schematic of the scattering configuration.

Figure 2 shows a plot of the horizontal component of the electric field Ex as a function of t at
fixed x and z, as given by the solution (56). The fluctuation of the permittivity is represented as
Δε(t)/(ε0〈εr〉) = δEW (t), where W (t) is a standard Wiener process (see Appendix B) and δE is a small
constant. To ensure that δEW (t) is indeed small for all t, after generating the random vector of W
values, we identify the maximum value Wmax of W over the time interval and set δE = 0.05/Wmax.

In the graph shown, four realizations corresponding to Δε(t)/(ε0〈εr〉) =
{
0.21W1(t), 0.19W2(t),

0.27W3(t), 0.31W4(t)
}

were performed. The time t is represented in milliseconds, and the amplitude of
the electric field has been normalized to fluctuate around a mean value of 1, and the standard deviation
is calculated as SD{Ex} = [δ2

1 Var{W1(t)} + δ2
2 Var{W2(t)} + δ2

3 Var{W3(t)} + δ2
4 Var{W4(t)}]1/2/4 =

(δ2
1 + δ2

2 + δ2
3 + δ2

4)1/2
√

t/4 = 0.12
√

t = 0.12
√

250 × 10−3 = 0.02. We observe that these graphs resemble
the graphs of direct current electric field measurements in the ionosphere given in Figure 5 of [12].

The variance of the electric field Ex, Var{Ex}, as a function of time t in each realization is shown in
Figure 3(a), while the variation of the variance, Var{Ex}, with respect to the nondimensional fluctuation
of the permittivity Δε(t)/(ε0〈εr〉) in each realization is shown in Figure 3(b). We observe that the
maximum value of the variance of the electric field in the four realizations is O(10−3).

As a first example of the application of formula (61), we consider medium scale travelling ionospheric
disturbances (MSTIDs) with horizontal wavelength λx = 120 km and vertical wavelength λz = 90km
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observed in the ionospheric F region (ρs ≈ 10−10 C/m2) generated by the electric field described by
Eq. (53) and the magnetic field given by Eq. (60) as a result of a magnetic storm [24], then η1 can
be approximated as η1 ≈ 2kx = 2(2π/λx) while η2 ≈ 2kz = 2(2π/λz). This means that the MSTIDs
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Figure 2. The horizontal component Ex of the electric field vector E (normalized to have a mean
amplitude of 1) as a function of time t (in milliseconds), calculated according to the expression (56).
In this configuration, the medium acts like an electric dynamo with a direct current [12]. The solid
curve corresponds to the first realization, the dashed curve corresponds to the second realization, the
dotted-dashed curve corresponds to the third realization and the dotted curve corresponds to the fourth
realization.
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Figure 3. (a) The variance of the horizontal component Ex of the electric field vector E, shown in
Figure 2, as a function of time t (in milliseconds), calculated as Var{Ex} = Var{δEWE(t)} = δ2

E t.
(b) The variation of the variance with respect to Δε(t)/(ε0〈εr〉). The solid curve corresponds to the first
realization, the dashed curve corresponds to the second realization, the dotted-dashed curve corresponds
to the third realization and the dotted curve corresponds to the fourth realization.
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Figure 4. (a) The mean 〈Ex〉 of the horizontal component of the electric field vector E (normalized
to have an initial amplitude of 1) as a function of time t (in milliseconds), calculated according to the
expression (48), and (b) the corresponding stochastic function Ex calculated according to the expression
(44). In this configuration, the solution resembles continuous pulsation waves in the ionosphere [11].

double their wavelengths as a result of the nonlinear interactions between the electromagnetic field
and the medium [18]. Taking x1 = 0, x2 = λx and 〈εr〉 = −1.5 [17], we obtain an induced average
〈EMF〉 = 45kV and a standard deviation SD{EMF} = 1kV, leading to a 95% confidence interval
EMF = 〈EMF〉 ± 2SD{EMF} = (45 ± 2) kV. And so, the overall average electric field vector is
E = x̂Ex+ ẑEz = x̂EMF/λx + ẑEMF/λz = [(0.38 ± 0.01)x̂ + (0.50 ± 0.02)ŷ] mV/m as can be observed
in the ionosphere [23].

As a second example of the application of formula (61), we consider large scale travelling
ionospheric disturbances (LSTIDs) or electromagnetohydrodynamic disturturbances (EMHD) with
horizontal wavelength λx = 1200 km and vertical wavelength λz = 1000 km observed in the ionospheric
F region generated by the electric field (53) and the magnetic field (60) as a result of a magnetic
storm [7, 24], make the approximations η1 ≈ 2(2π/λx) and η2 ≈ 2(2π/λz), and take x1 = 0, x2 = λx

and 〈εr〉 = −1.5 as before [17]. We then obtain the induced EMF = (500± 22) kV as might be observed
in the ionosphere [23].
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Solutions of the form (44), which correspond to λ �= 0, resemble regular pulsation waves in the
ionosphere [11, 19]. Figure 4(a) shows a plot of the mean of the horizontal component of the electric
field 〈Ex〉 as a function of t at fixed x and z, as given by Eq. (48), while Ex given by Eq. (44) is
shown in Figure 4(b). The fluctuations are represented as Δε(t)/(ε0〈εr〉) = δE WE(t) = 0.21WE(t) and
Δμ(t)/(μ0〈μr〉) = δH WH(t) = 0.09WH(t) as in Appendix B, where WE(t) and WH(t) are independent
Gaussian random variables. We have set ω = 106 s−1 and γ = 0.2 × 106 s−1, t is represented in
milliseconds, and the amplitude of the electric field has been normalized to start from an initial value of 1.
The variance of Ex is asymptotically given by Var{Ex} ∼ (0.5625δ2

E +0.0625δ2
H )t exp(−2γt) exp(−2iωt),

and thus quickly approaches zero as the time t increases. According to the dispersion relation, this value
of ω corresponds to waves with vertical wavelengths of the order of 103 m, as might be observed in the
ionosphere.

On the other hand, Figure 5 shows the horizontal component of the electric field Ex for a case
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Figure 5. The horizontal component Ex of the electric field vector E (normalized to have a mean
amplitude of 1) as a function of time t (in milliseconds), calculated as a linear combination of the
expressions (44) and (56). (a) first realization, (b) second realization, (c) third realization and (d) fourth
realization. In this configuration, the solution resembles continuous pulsation waves superimposed on a
direct current electric field in the ionosphere [11].
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where the initial conditions are such that the solution shown is a linear combination of the functions
shown in Figures 2 and 4(b) and thus represents a single wave superimposed on a direct current electric
field. The coefficient of the wave term in the linear combination has been set to 0.1, and that of the
direct current term has been set to 1. We observe that the graphs shown in Figures 4(b) and 5 resemble
that in Figure 2 of [11] which shows the intermittent time evolution of the electromagnetic field for
continuous pulsation waves in the ionosphere. The variance of the electromagnetic wave mean amplitude
is negligible compared to that of the direct current dynamo term shown in Figure 3. Therefore, the
variance of Ex in Figure 5 is asymptotically given by Var{Ex} ∼ δ2

Et, the variance of the direct current
electric field shown in Figure 3.

5. CONCLUSIONS

In this paper, we obtained a version of Kramers-Kronig relations for a time-dependent dispersive medium
taking into consideration the derivative of the convolution integrals in Eqs. (6)–(7). We also showed that
for a weakly-dispersive medium with small noncausal events, the convolution integrals in Eqs. (6)–(10)
become multiplicative relations as in dynamic time-dependent media, relations given by Eq. (14).

We derived solutions to electromagnetic wave equations in an isotropic medium where the
permittivity and permeability are weakly-random functions of time. We described some configurations
that lead to solutions that resemble electromagnetic fields in the ionosphere, in particular a situation
where the ionosphere behaves like an electric dynamo with a direct current and a case where there are
continuous pulsation waves. These special cases were illustrated in Figures 2–5. We also obtained a
formula for the EMF in terms of the ionospheric disturbance characteristics (wavenumber or wavelength)
by means of Faraday’s law of induction, Equation (61).

We also note that the graphs shown in Figures 2–5 resemble electromagnetic field signals that
could be obtained in the other contexts involving wave propagation in a medium with weakly-random
variations in time, such as the bio-electromagnetic fluctuations from the human brain [2] that are
measured using the EEG method [1, 16]. Configurations similar to those described here could be used
to model these other types of waves.

APPENDIX A. NOTATIONS FOR THE PHYSICAL PARAMETERS AND
ABBREVIATIONS

A list of the main notations for the physical parameters and abbreviations used throughout the paper:

〈 〉 : mean
Δ : temporal fluctuations about the mean

Var : Variance
SD : standard deviation
ε : permittivity of the medium
εr : relative permittivity
ε0 : permittivity of the free space
εre : the real part of the permittivity
εim : the imaginary part of the permittivity
μ : permeability of the medium
μr : relative permeability
μ0 : permeability of the free space
μre : the real part of the permeability
μim : the imaginary part of the permeability
σ : conductivity of the medium

σre : the real part of the conductivity
σim : the imaginary part of the conductivity
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ρs : surface charge density
n : refractive index of the medium
kx : horizontal wavenumber
kz : vertical wavenumber
λx : horizontal wavelength
λz : vertical wavelength

EMF : electromotive force
EHD : electrohydrodynamics disturbances
MHD : magnetohydrodynamics disturbances

EMHD : electromagnetohydrodynamics disturbances
TIDs : travelling ionospheric disturbances

MSTIDs : medium scale travelling ionospheric disturbances
LSTIDs : large scale travelling ionospheric disturbances

W : standard Wienner process
WKB : Wentzel-Kramers-Brillouin (methods)

APPENDIX B. STANDARD WIENER PROCESS REPRESENTATION OF THE
PROPERTIES OF THE MEDIUM ε AND μ

A standard Wiener process W (t), 0 ≤ t ≤ tmax is a Gaussian random variable satisfying the properties
[26]:

(i) W (0) = 0 with probability 1.
(ii) If 0 < s < t < tmax, then the random variable ΔW = W (t) − W (s) is normally distributed with

mean 0 and variance t − s, and satisfies

ΔW ∼ √
t − sN(0, 1). (B1)

(iii) If 0 < s < t < v < w < tmax, ΔW1 = W (t) − W (s) and ΔW2 = W (w) − W (v), then ΔW1 and
ΔW2 are independent.

Note that if s = 0, then the variance of ΔW = W (t) − W (s) = W (t) − W (0) is simply t.
In a medium with weakly-random fluctuations in time as defined by Eq. (29), if Δε(0) = 0 and

Δμ(0) = 0 and we define Δε(t) and Δμ(t) so that each has a variance of t, then Δε(t) and Δμ(t) can
be represented as standard Wiener processes by

Δε(t)
〈ε〉 = δEWE(t) and

Δμ(t)
〈μ〉 = δHWH(t), (B2)

where δE and δH are small constants.

APPENDIX C. WENTZEL-KRAMERS-BRILLOUIN (WKB) METHOD

For reference, on the interval 0 ≤ t < ∞, the second order ordinary differential equation

y′′(t) − c2P (t)y(t) = 0, (C1)

where c is a constant and P (t) �= 0, has the asymptotic WKB solution [4], valid for c � 1

y(t) ∼ d1[P (t)]−1/4e
c

t�

0

√
P (u)du

+ d2[P (t)]−1/4e
−c

t�

0

√
P (u)du

, (C2)

where d1 and d2 are constants.
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