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A New Fast and Accurate Compressive Sensing Technique
for Magnetic Resonance Image

Huihui Yue and Xiangjun Yin*

Abstract—In this paper, the main problem to be solved is how to achieve magnetic resonance imaging
(MRI) accurately and quickly. Previous work has shown that compressive sensing (CS) technology can
reconstruct a magnetic resonance (MR) image from only a small number of samples, which significantly
reduces MR scanning time. Based on this, an algorithm to improve the accuracy of MRI, called
regularized weighting Composite Gaussian smoothed �0-norm minimization (RWCGSL0), is proposed
in this paper. Different from previous methods, our algorithm has three influential contributions: (1) a
new smoothed Composite Gaussian function (CGF) is proposed to be closer to the �0-norm; (2) a new
weighting function is proposed; (3) a new �0 regularized objective function framework is constructed.
Furthermore, the optimal solution of this objective function is obtained by penalty decomposition (PD)
method. It is experimentally shown that the proposed algorithm outperforms other state-of-the-art CS
algorithms in the reconstruction of MR images.

1. INTRODUCTION

MRI plays an essential role in clinical diagnosis and is a medical imaging technique which uses strong
magnetic fields and radio waves to produce images of human body, but the process of MRI data
acquisition is limited by the following factors: [1]

• It is inconvenient for patients to collect information of their physical condition by long-time
scanning.

• Too many samples need a lot of storage space, so these samples need to be compressed.
Therefore, how to reconstruct an MR image with good quality from only a small number of
measurements (that is, to restore the MR image accurately by undersampling) has become a
widespread concern. It can significantly shorten MR scanning time and reduce storage space.
Recent developments in CS [2–4] have shown that it is possible to realize this idea. As a theory
to solve the underdetermined linear inverse problem, CS can seek an approximate sparse solution
(which has only a few non-zero values) of a linear system. In other words, CS technology can
accurately reconstruct the original sparse vector with less sampling, thereby reducing the storage
space and shortening the scanning time. So CS technology can be successfully applied to MRI
when the following two conditions are satisfied:

• Medical images can be converted to sparse images by proper transformation.
• MRI scanners generally obtain samples in encoded form.

In fact, MR images can be sparsely represented by appropriate basis such as DCT, Fourier, Wavelet
Curvelet, and Gabor [5]. MR image is constructed by collecting a sequence of frames of data, called
acquisitions [6]. So the above two conditions can be satisfied. Furthermore, the application of CS
in MRI has attracted worldwide attention.
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For CS, its core algorithms are some families of matching pursuit and optimization classes.
Matching pursuit algorithms are effective sparse reconstruction methods, such as OMP [7], GOMP [8],
CoSaMP [9], and SP [10]. Although these algorithms can accurately reconstruct the original sparse
vector, they need known vector sparsity as a priori information and are sensitive to noise, which
limits their application in MR image reconstruction. Basis pursuit (BP) is a class of representative
optimization algorithms, which is based on constrained �1-norm minimization [11]. The BP algorithm
makes it a problem of linear programming which solves problem by polynomial equation. However, the
performance of BP algorithm is also poor in noise environment. Since the smoothed function to approach
�0-norm (SL0) is proposed [12, 13], CS can be well applied in MRI. SL0 is a fast algorithm based on
overcomplete sparse decomposition, which can directly minimize the �0-norm. It has a reconstruction
speed of 2 to 3 times faster than the BP algorithm with the same or higher accuracy. Based on SL0, Wang
et al. proposed the Thresholded SL0 (TSL0) [14], Ghalehjegh et al. proposed the Block SL0 (BSL0) [15],
and Zhao et al. proposed Newton SL0 (NSL0) [16]. These methods give adequate consideration on
sparsity and convergence of the solution, but they are unstable in a noisy environment. Based on
this, the �2-SL0 [17–19] transformed the �0-norm problem into the regularized least squares problem
(LSP) [20], which includes sparsity regularizer and deviation term, to improve the performance of sparse
vector recovery under noisy conditions. Further, �p-RLS [21] that converts the sparsity regularizer into
�p-norm is introduced to effectively reduce the computational complexity. The �2-SL0 algorithm and
�p-RLS algorithm both improve the performance of sparse vector recovery under noise conditions and
become more effective sparse signal reconstruction methods at present, which make CS better applied
in MR image reconstruction. However, the common defect of these two algorithms is their limited
reconstruction accuracy.

Based on all the popular algorithms mentioned above, this paper proposes RWCGSL0 algorithm
to improve the accuracy of signal and MR image reconstruction under noisy conditions. The core of
this algorithm is to achieve a further approximation of the �0-norm [22] with a new smoothed CGF
and combine it with a weighting function to promote sparsity and speed up convergence. Meanwhile,
the objective function is obtained by regularization mechanism which can suppress noise in �2-SL0 and
�p-RLS algorithms. Furthermore, PD method is performed to optimize the process of approximating
the optimal solution.

The rest of this paper is organized as follows. Section 2 reviews the basic theoretical background of
MRI and CS technology. Then the theories of RWCGSL0 is introduced in Section 3. In Section 4, the
performance of the RWCGSL0 algorithm is verified through simulation experiments, and this algorithm
is applied to MRI. Section 5 concludes this paper.

2. BACKGROUND

The undersampling process in MRI can be expressed as

y = ψϕx + b (1)

where y ∈ R
m is the acquired data from the scanner called as k-space MRI data, and x ∈ R

n is the
MR image rearranged to a column vector, m � n. ψ ∈ R

m×n represents a random undersampling
matrix, and ϕ ∈ R

n×n represents the sparse basis matrix that MR mapped to it can be sparse. b ∈ R
m

denotes noise that obeys a Gaussian distribution. Therefore, the key problem to be solved in MRI is to
accurately reconstruct the original MR from an underdetermined system of linear equation (USLE).

In essence, the CS theory is to solve an underdetermined linear inverse problem, which seeks an
approximate sparse solution to a linear system. The model of CS is

y = Φx + b (2)

where Φ = ψϕ ∈ R
m×n, which can be further represented as Φ = [φ1,φ2, . . . ,φn], φi ∈ R

m, i =
1, 2, . . . , n. ψ and ϕ as shown in Eq. (1). Eq. (2) can be interpreted as a sparse constraint problem [23–
25] with relaxing the equality constraint to allow some error tolerance ε ≥ 0:

arg min
x∈Rn

||x||0 s.t. ||Φx− y||2 ≤ ε (3)
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where || · ||0 is �0-norm, which represents the number of nonzero elements in a vector. We can use a
parameter λ > 0 to balance the twin objectives of minimizing both error and sparsity, and reformulate
Equation (3) as the regularized LSP

arg min
x∈Rn

1
2
||Φx − y||22 + λ||x||0. (4)

Unfortunately, solving ||x||0 in Equations (3) and (4) is an NP-hard problem, and its computational
complexity grows geometrically with respect to the signal size. In order to solve this problem, the state-
of-the-art algorithms replace ||x||0 with h(x)

arg min
x∈Rn

1
2
||ΦΦΦx − y||22 + λh(x). (5)

Now, our goal is to solve Equation (5) using the RWCGSL0 algorithm.

3. THE PROPOSED RWCGSL0 ALGORITHM

3.1. Related Work

In this section, On the basis of Eq. (5), we proposed a new �0 smoothed function, and therefore, a new
�0 regularized objective function framework is proposed and shown as follows,

arg min
x∈Rn

1
2
||y − Φx||22 + λW

n∑
i=1

(
1 − 2

1 + ex2
i /σ2

)
(6)

where W is the weighting function, 1 − 2

1+ex2
i

/σ2 the smoothed CGF proposed in this paper, and σ a

smoothed parameter that determines the quality of the approximation. Let fσ(xi) = (1− 2

1+ex2
i

/σ2 ), and

we can know that lim
σ→0

fσ (xi) =
{

0 if xi = 0
1 if xi �= 0 , and the �0-norm can be expressed as ||x||0 ≈ Fσ(x) =

lim
σ→0

n∑
i=1

fσ(xi) as proof by Theorem 1.

Theorem 1. Let χi ⊆ R and φi: R → R for i = 1, . . . n be given. Suppose that r is a positive
integer and 0 ∈ χi for all i. Consider the following �0-norm minimization problem:

min φ(x) =
n∑

i=1

φi(xi) : ||x||0 ≤ r, x ∈ χ1 × . . . × χn. (7)

Let x̃∗
i ∈ argmin {φi(xi) : xi ∈ χi} and I∗ ⊆ {1, . . . , n} be the index set corresponding to r largest values

of {v∗i }n
i=1, where v∗i = φi(0) − φi(x̃∗

i ) for i = 1, . . . n. Then, x∗ is an optimal solution of problem in
Eq. (6), where x∗ is defined as:

x∗
i =

{
x̃∗

i if i ∈ I∗

0 otherwise
i = 1, . . . , n. (8)

Therefore, the �0-norm can be approximated by the smoothed function fσ(xi) when σ → 0, which
smartly solves the NP-hard problem led by �0-norm. In order to make a clear and scientific explanation,
we conduct the simulation of the new CGF and compare it with the state-of-the-art functions: Gaussian
function in �2-SL0 algorithm [17] and ||xi||pp,ε in �p-RLS algorithm [21], as shown in Fig. 1 (when σ = 0.1,
p = 0.5 and x ∈ [−0.5, 0.5]).

Figure 1 displays that the “steeper” the smoothed function is, the closer its value is to the �0-
norm. Obviously, the CGF is “steeper” than the Gaussian function and ||xi||pp,ε. So the CGF has better
performance in approximating the �0-norm.

W = [w1, w2, · · · , wn] is given to solve the problem that converges slowly, in which

wi =
1

ex2
i

, i = 1, 2, . . . , n. (9)
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Figure 1. Different smoothed functions are plotted in this figure for σ = 0.1, and displays �1-norm of
2D for comparison.

where wi ∈ [0, 1] is an even function that monotonically decreases on xi ∈ [0,∞), so it has maximum
at xi = 0 and minimum at xi → +∞ or xi → −∞. When W is added to Fσ(x), the large entries in W
could be used to discourage nonzero entries in the recovered signal, while the small entries in W could be
used to encourage nonzero entries. Therefore, compared with popular algorithms that do not consider
the weighting strategy (namely, these algorithms are weighting fσ(xi) with a same value: wi = 1) [27],
the combination of W and Fσ(x) leads to a sparse solution faster in the process of optimization [28].

3.2. Optimization by the PD Method of the Proposed RWCGSL0 Algorithm

In this section, we will introduce the PD [29] method to solve the problem in Eq. (6), and Eq. (6) is
rewritten as

arg min
x∈Rn

1
2
||y − Φx||22 + λWFσ(x) (10)

where Fσ(x) =
n∑

i=1
(1 − 2

1+ex2
i

/σ2 ). Through the idea of [26], we can reformulate Eq. (10) as follows

arg min
x∈Rn

1
2
||y − Φx||22 +

∑
i

λHσ(x) (11)

The PD method uses the �0-norm to constrain the wavelet frame coefficients to make the
deconvolution as a regular term, so that the sharp features and smoothness of the acquired signal
are balanced. Lu and Zhang [26] proposed the model in Equation (12) for solving the minimum of the
�0-norm by the PD algorithm:

min
u∈U

f(u) + α||uP||0 (12)

where U ∈ R
n, f : R

n → R is a continuous integrable function, and α > 0, ||uP||0 represents
the cardinality from the P index to the u subvector. Let u = (x1, . . . ,xn,H1, . . . ,Hm), P =
{n + 1, . . . , n + m}, P̄ = {1, . . . , n}, f(u) = 1

2 ||y−ΦuP̄||22, U = {u ∈ R
n+m : uP = WuP̄}, problem in

Eq. (10) can be directly converted to Equation (11). In this case, we can use the PD method to directly
solve the deconvolution problem.

In order to better solve this optimization problem, the penalty term 	 is added to Eq. (10), and
then the block coordinate descent (BCD) method is used to solve the minimization problem of each
sub-problem in the PD method. The model for implementing the optimization process of the RWCGSL0
algorithm with the PD method is as follows:

ι�(x,Hσ(x)) :=
1
2
||y −Φx||22 +

∑
i

λHσ(x) +
	

2
||WFσ(x) − Hσ(x)||2 (13)
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In addition, the process that the smoothed function Fσ(x) gradually approaches the �0-norm can
be accomplished by using a sequential σ-continuation strategy. Given σ a small target value σT , and a
sufficiently large initial value of parameters σ1, monotonically decreasing sequence {σt|t = 2, 3, . . . , T}
is generated as

σt = σ1e
−γ(t−1), and t = 2, 3, . . . , T (14)

where γ = log(σ1/σT )
T−1 , and T is the maximum of iterations.

Based on these, we summarize the steps of the RWCGSL0 algorithm as shown in Table 1.

Table 1. Regularized weighting composite gaussian smoothed l0-norm minimization (RWCGSL0)
algorithm using PD method.

Input: Φ, x, y, b, σ1, σT , T, λ and x∗ = 0

Step1: Compute W using (9), σt for t = 2, 3, . . . , T − 1 using (14);
Step2: For t = 1, 2, . . . , T

1) Set σ = σt, τ = 0, x(τ) = x∗, δ > 1, 	0 > 0, H0 = 0, q = 0
2) While does not meet the termination criteria of the BCD method

a) q = q + 1
b) Compute xτ,q ∈ arg min

x
ι�τ (x,Hτ,q−1)

c) Compute Hτ,q ∈ arg min
H

ι�τ (xτ,q−1,H)

3) If (xτ ,Hτ ) satisfies the termination condition set in the PD
set x∗ = xτ

else
δτ+1 := δτ

τ = τ + 1
Step3: Output x = x∗

As shown in Table 1, λ = 0.1λmax and λmax = 2||ΦTy||∞ are the same as the values in [30]. As
for σ, it can be shown that function Fσ(x) remains convex in the region where the largest magnitude
of the component of x is less than σ. Based on this, a reasonable initial value of σ can be chosen as
σ1 = max(|xi|) + τ to ensure the optimization starts in a convex region. This greatly facilitates the
convergence of the RWCGSL0 algorithm.

4. NUMERICAL SIMULATION AND ANALYSIS

In this section, we will verify the performance of the RWCGSL0 algorithm in the case of noise and
apply the algorithm to MRI. The numerical simulation platform is MATLAB 2017b, which is installed
on the WINDOWS 10, 64-bit operating system. The CPU is Inter (R) Core (TM) i5-3230M, and the
frequency is 2.6 GHz.

First, we analyze the reconstruction performance of the proposed RWCGSL0 algorithm, including
normlized mean square error (NMSE) and signal to noise ratio (SNR). The NMSE is defined as
||x − x̂||2/||x||2, and the SNR is defined as 20 log(||x − x̂||2/||x||2). In order to visually display this
performance, we choose the SL0 [12, 13], �2-SL0 [17–19] and �p-RLS [21] algorithms for comparison.

Further, we apply the proposed RWCGSL0 algorithm to recover MRI. For MRI recovery,
Peak Signal to Noise Ratio (PSNR) and Structural Similarity Index (SSIM) are employed to
valuate the anti-noise performance and reconstruction similarity performance of RWCGSL0 algorithm,
respectively. PSNR is defined as

PSNR = 10 log(2552/MSE) (15)
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where MSE = ||x − x̂||22, and SSIM is defined as

SSIM(p, q) =
(2μp + μq + c1)(2σpq + c2)

(μ2
p + μ2

q + c1)(σ2
p + σ2

q + c2)
. (16)

where μp is the mean of image p, μq the mean of image q, σp the variance of image p, σq the variance of
image q, and σpq the covariance between image p and image q. Parameters c1 = z1L and c2 = z2L, in
which z1 = 0.01, z2 = 0.03, and L is the dynamic range of pixel values. Range of SSIM is [−1, 1], and
when these two image are same, the SSIM equals 1.

4.1. The Performance Verification of RWCGSL0 Algorithm

For the performance verification experiments, we firstly fix n = 256, m = 100 and vary the sparsity k
(the number of nonzero entries in x) from 1 to 71 at the interval of 5. For each experiment, we randomly
generate 100 pairs of {x,Φ,b}: the nonzero positions of the sparse signal x ∈ R

n are generated by
Gaussian distribution N (0, 1) and the nonzeros entries valued 1; Φ is a m×n random Gaussian matrix
with normalized and centralized rows; b is randomly formed and follows the Rayleigh distribution of
R(0, ξ).

Given the measurement vector y = Φx + b, the sensing matrix Φ and noise b, we try to recover
signal x. If ||x − x̂||2/||x||2 < 10−3, the recovery is considered to be a success. The parameters are
selected to obtain the best performance for each method: for the SL0 algorithm, σmin = 10−2, and scale
factors are set as S = 5, ρ = 0.8; for the �2-SL0 algorithm, σmin = 0.01, S = 10, ρ = 0.8; for the �p-RLS
algorithm, p1 = 1, pT = 0.1, ε1 = 1, εT = 10−2; and for the RWCGSL0 algorithm, σT = 10−2. Based
on the 100 trials, we compute the NMSE of the above algorithms and plot it in Fig. 2.

From Fig. 2 we can see that the NMSE of all the selected algorithms increases with the increase of
k, but the RWCGSL0 algorithm always obtains the smallest NMSE when k < 50. This indicates that
the RWCGSL0 algorithm has the most accurate recovery performance among all algorithms when the
compression ratio (m/n) is within an appropriate range.

We next try to recover the sparse signal x from a noisy measurement vector y with different noise
intensities ξ, that is input SNR. Specifically, we fix n = 256, m = 100, k = 20 and increase the input
SNR. We randomly generate 100 triples of {x,Φ,b}. The average SNRs of the recovered signals are
shown in Fig. 3. From this figure we can see that the RWCGSL0 approach performs better than the
other three approaches. This shows that the RWCGSL0 approach has the best anti-noise performance.
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Figure 2. Signal NMSE analysis for SL0, �2-
SL0, �p-RLS algorithms and proposed RWCGSL0
algorithm with sparsity k from 1 to 71 at the
interval of 5, while 100 runs in the noise case
ξ = 0.1.
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Through the above simulation experiments, we prove that the RWCGSL0 algorithm has good
recovery accuracy and noise resistance, which provides a basis for the application of the RWCGSL0
algorithm in MRI.

4.2. Application of RWCGSL0 Algorithm in MRI

MR image is considered approximately sparse under some proper basis, such as the DCT basis and
DWT basis. Here we compare the recovery performances of the forementioned sparsity approaches
based on the real image in Fig. 4. Specifically, in order to reveal the sparse coefficients x of the real
image Δ, we use a DWT basis V: Δ = Vx, and x = VT Δ. The noisy measurement y is obtained as
follows:

y = ψΔ + B = ψVx + B = Φx + B. (17)

where ψ represents a random undersampling matrix, Φ = ψV. The entries of the noise B are generated
using i.i.d. Rayleigh distribution R(0, ξ). Taking the RWCGSL0 algorithm, we have the following
recovery problem:

arg min
Δ

1
2
||y − ΦΔ||22 + λWFσ(VTΔ) (18)

Since the image recovery model has been established as Equation (18), we try to recover the MR
image Δ from a noisy measurement vector y. We firstly fix ξ = 0.01 and vary the compression ratio
(CR) ∈ [0.10.20.30.40.50.6], and CR is defined as m/n. The recovered MR images by different
approaches are shown in Figs. 5–10, and scientific data are shown in Table 2.

Figure 4. Original MR image (256 × 256).

Table 2. PSNR and SSIM of recovery images by SL0, �2-SL0 and �p-RLS algorithms and proposed
RWCGSL0 algorithm.

CR
PSNR (dB) SSIM (%)

SL0 �2-SL0 �p-RLS RRCGSL0 SL0 �2-SL0 �p-RLS RRCGSL0
0.1 10.4181 11.8908 11.4916 12.2672 9.4 11.21 12.90 14.65
0.2 14.7935 14.6812 14.3427 16.5095 47.42 51.43 53.35 68.29
0.3 24.2354 24.4376 24.5534 24.8979 94.52 94.81 94.97 95.40
0.4 26.0331 26.2983 26.4491 27.1441 96.47 96.67 96.79 97.28
0.5 27.2542 27.5049 27.6154 28.6093 97.24 97.38 97.35 97.46
0.6 27.8599 27.9762 28.2383 29.9468 97.69 97.75 97.82 98.56
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As shown in Figs. 5–10, when the CR exceeds 0.5, all algorithms can clearly recover the MR image,
which fully confirms the feasibility of CS technology in MRI. Further, from the scientific data shown in
Table 2, we can see that the RWCGSL0 algorithm has better PSNR and SSIM than other three selected
algorithms, which verifies the good MR image recovery performance of proposed RWCGSL0 algorithm.

We next fix CR to 0.5 and analyze MR image recovery effects of the RWCGSL0 algorithm at
ξ = [0, 0.05, 0.1, 0.2, 0.5]. In order to better show the performance of the proposed RWCGSL0 algorithm,
we compare it with the �p-RLS algorithm. The recovered MR images by the �p-RLS algorithm and

Figure 5. MR image recovery effect with CR = 0.1. From left to right, first imshow is the restored
image of SL0, second imshow is the restored image of �2-SL0, third imshow is the restored image of
�p-RLS, while the last imshow is the restored image of proposed RWCGSL0.

Figure 6. MR image recovery effect with CR = 0.2. From left to right, first imshow is the restored
image of SL0, second imshow is the restored image of �2-SL0, third imshow is the restored image of
�p-RLS, while the last imshow is the restored image of proposed RWCGSL0.

Figure 7. MR image recovery effect with CR = 0.3. From left to right, first imshow is the restored
image of SL0, second imshow is the restored image of �2-SL0, third imshow is the restored image of
�p-RLS, while the last imshow is the restored image of proposed RWCGSL0.
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Figure 8. MR image recovery effect with CR = 0.4. From left to right, first imshow is the restored
image of SL0, second imshow is the restored image of �2-SL0, third imshow is the restored image of
�p-RLS, while the last imshow is the restored image of proposed RWCGSL0.

Figure 9. MR image recovery effect with CR = 0.5. From left to right, first imshow is the restored
image of SL0, second imshow is the restored image of �2-SL0, third imshow is the restored image of
�p-RLS, while the last imshow is the restored image of proposed RWCGSL0.

Figure 10. MR image recovery effect with CR = 0.6. From left to right, first imshow is the restored
image of SL0, second imshow is the restored image of �2-SL0, third imshow is the restored image of
�p-RLS, while the last imshow is the restored image of proposed RWCGSL0.

proposed RWCGSL0 algorithm are shown in Fig. 11 and Fig. 12, respectively. Meanwhile, scientific
data are shown in Table 3.

Figure 12 shows anti-noise performance of the proposed RWCGSL0 algorithm when recovering MR
images, while Fig. 11 shows the corresponding performance of the �p-RLS algorithm. It can be seen
that when ξ is less than 0.2, the difference in MR image recovery of the proposed RWCGSL0 algorithm
is not obvious, but when ξ is over 0.2, the effect of MR image recovery is significantly reduced, so is
the �p-RLS algorithm. However, the RWCGSL0 algorithm performs better than the �p-RLS algorithm
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Table 3. PSNR and SSIM of recovered MR images by the �p-RLS algorithm and the proposed
RWCGSL0 algorithm at different ξ.

ξ Algorithm PSNR (dB) SSIM (%)

0
RWCGSL0 29.0067 98.21

�p-RLS 27.8262 97.64

0.05
RWCGSL0 27.6638 97.58

�p-RLS 26.3769 96.76

0.1
RWCGSL0 23.1215 93.41

�p-RLS 22.9231 93.11

0.2 RWCGSL0 18.8572 84.16
�p-RLS 16.9773 77.25

0.5
RWCGSL0 7.7832 28.97

�p-RLS 7.4864 28.07

Figure 11. MR image recovery effect by �p-RLS algorithm when noise is incrementing according to a
sequence ξ = [0, 0.05, 0.1, 0.2, 0.5]. And from left to right, from top to bottom, first imshow corresponds
to the original image, second imshow is the restored image at the first level (ξ = 0), third imshow is
the restored image at the second level (ξ = 0.05), fourth imshow is the restored image at the third level
(ξ = 0.1), fifth imshow is the restored image at the fourth level (ξ = 0.2), while the last imshow is the
restored image at the fifth level (ξ = 0.5).

under the same ξ. The scientific data in Table 3 also fully show it. These indicate that the proposed
RWCGSL0 algorithm has denoising capability within a certain range of noise.

Through all the above experiments, we can conclude that the proposed RWCGSL0 algorithm has
good signal recovery performance and can be successfully applied in MRI. Compared with state-of-the-
art reconstruction approaches, RWCGSL0 algorithm has better MR image reconstruction accuracy on
the basis that CS technology can accelerate the speed of MRI. The main reason is that the algorithm
has advantages in three aspects: (1) the CGF can approximate the �0-norm well; (2) the combination
of the weighting function and the CGF can promote sparsity; (3) the regularization mechanism has the
ability to resist noise.
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Figure 12. MR image recovery effect by proposed RWCGSL0 algorithm when noise is incrementing
according to a sequence ξ = [0, 0.05, 0.1, 0.2, 0.5]. And from left to right, from top to bottom, first
imshow corresponds to the original image, second imshow is the restored image at the first level (ξ = 0),
third imshow is the restored image at the second level (ξ = 0.05), fourth imshow is the restored image
at the third level (ξ = 0.1), fifth imshow is the restored image at the fourth level (ξ = 0.2), while the
last imshow is the restored image at the fifth level (ξ = 0.5).

5. CONCLUSIONS

In this paper, we propose an RWCGSL0 algorithm that reconstructs MR images by a new smoothed
function, weighting strategy, and regularization mechanism. The optimal solution of the algorithm’s
objective function framework is obtained by PD method. Further, the performance of the RWCGSL0
algorithm is verified by comparing with SL0, �2-SL0, �p-RLS algorithms. The experimental results
show that the RWCGSL0 approach performs well in fast and accurate reconstruction of MR images
and is superior to other popular approaches. In addition, testing the RWCGSL0 algorithm on different
applications is our future work.
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APPENDIX A. PROOF OF THEOREM 1.

Proof of Theorem 1. By the assumption 0 ∈ χi for all i and the definitions of x∗, x̃∗ and I∗, we clearly
see that x∗ ∈ χ1 × . . . × χn and ||x∗||0 ≤ r. Hence, x∗ is a feasible solution of Eq. (6). It remains to
show that φ(x) � φ(x∗) for any feasible point x of Eq. (6). Indeed, let x be arbitrarily chosen such that
||x||0 � r and x ∈ χ1 × . . .×χn, and let J = {i|xi �= 0}. Clearly, |J| � r = |I∗|. Let Ī∗ and J̄ denote the
complement of I∗ and J, respectively. It then follows that |J̄∩I∗| = |I∗|−|I∗∩J| � |J|−|I∗∩J| = |J∩ Ī∗|.
In view of the definitions of x∗, I∗, Ī∗, J and J̄, we further have

φ (x) − φ (x∗) =
∑

i∈J∩I∗
(φi (xi) − φi (x∗

i )) +
∑

i∈
−
JJJ ∩

−
III
∗ (φi (xi) − φi (x∗

i ))

+
∑

i∈
−
JJJ ∩I∗

(φi (xi) − φi (x∗
i )) +

∑
i∈J∩

−
III
∗ (φi (xi) − φi (x∗

i )),
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≥
∑

i∈
−
JJJ ∩I∗

(φi (0) − φi (x∗
i )) +

∑
i∈J∩

−
III
∗ (φi (x∗

i ) − φi (0)),

=
∑

i∈
−
JJJ ∩I∗

(φi (0) − φi (x∗
i )) +

∑
i∈J∩

−
III
∗ (φi (0) − φi (x∗

i )),

where the last inequality follows from the definition of I∗ and the relation |J̄ ∩ I∗| � |J ∩ Ī∗|. Thus, we
see that φ(x) � φ(x∗) for any feasible point x of Eq. (6), which implies that the conclusion holds [26].
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