
Progress In Electromagnetics Research C, Vol. 89, 133–147, 2019

Elliptical Slot Circular Patch Antenna Array with Dual Band
Behaviour for Future 5G Mobile Communication Networks

Muhammad I. Khattak1, *, Amir Sohail1, Ubaid Khan1,
Zaka Ullah1, and Gunawan Witjaksono2

Abstract—This paper presents a dual band circular microstrip patch antenna with an elliptical slot
for future 5G mobile communication networks. The antenna has resonating frequencies of 28 GHz and
45 GHz, with bandwidths of 1.3 GHz and 1 GHz, respectively. Efficiency of the antenna is 85.6% at
28 GHz and 95.3% at 45 GHz. The return loss at 28 GHz is −40 dB, with maximum gain of 7.6 dB while
at 45 GHz return loss is −14 dB with maximum gain of 7.21 dB. The antenna is designed on a Rogers
RT5880 (lossy) substrate with dielectric constant of 2.2 and loss tangent (tan δ) of 0.0013. The antenna
has a compact size of 6× 6× 0.578 mm3. Array configuration is used to achieve 12 dB gain, required for
mobile communication. The proposed array has resonance frequencies of 28 GHz, 34 GHz and 45 GHz
with maximum gain of 13.5 dB and radiation efficiency of 98.75%. Centre series fed technique is used
for the excitation of array. SAR value of array antenna obtained at 28 GHz is 1.19 W/kg, at 34 GHz is
1.16 W/kg, and at 45 GHz is 1.2 W/kg. CST Microwave Studio, a 3D simulating tool, is used for the
antenna design and calculation of the antenna parameters along with the SAR analysis.

1. INTRODUCTION

Mobile wireless technology has been assessed from 0G to 4G, bringing the revolution in mobile
communications [1, 2]. Each generation is an old, improved version [2]. 4G technology has many
applications, such as remote host monitoring, video call data flow and machine type communication [2].
4G has some advantages but is unable to solve the problems of poor quality, poor coverage, loss of
connections, high energy consumption, bad interconnectivity and overcrowded channels [3, 4]. Due to
the rapid growth of communication system connected devices, current 4G technology will not meet
the recent demand [5]. Therefore, the mobile communication system must be upgraded to the next
generation (5G) in order to meet the future demand of high data rates [6]. Research is underway for
5G mobile communications and is expected to be commercialized early in the 21st century [4, 7].

With rapid increase in user equipment, the bandwidth requirement is also increased to enable the
flow of large amount of data [8]. The exponential increase is expected in a number of devices such as
HD TVs, laptops, smart phones, home appliances, video surveillance systems, sensors, wearable devices,
cameras and robots in near future. 5G technology promises the required data rate and bandwidth for
such applications [9] such that 5G mobile communication is expected to assist large number of real time
applications, tactile internet [10] and services with different levels of quality (QoS) (like, bandwidth,
jitter, packet delay, latency and packet loss) and quality of experience (like network providers and users).
The high-speed data transfer, zero latency and ubiquitous connectivity are the main characteristics of
5G technology. 5G technology will interconnect every electronic and digital appliance/services like
temperature maintenance, printers, air conditioners, refrigerators, LED’s door locks, microwave oven,
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etc. and will enable remote control of such appliances [11]. 5G technology is considered as a real
wireless world with no limitations, which will develop worldwide wireless web and dynamic ad-hoc
wireless network [12]. It also offers high resolution and bidirectional large bandwidths in giga bits to
make advance billing interface more attractive and effective with the special provision of multiple paths
for data transfer [13].

5G technology was introduced in a new era of digital mobile communications systems, which
introduces the Internet of Things (IOTs) into the network of devices (D2Ds) [14, 15] with wider
bandwidth [16], lower battery consumption, higher data rates and better coverage [14, 17], and will
solve various challenges such as latency, security, reliability, availability and equipment costs [18].
Spectrum allocation is one of the main concerns of 5G communications. The fifth generation of
mobile communications is being studied in the millimeter wave band [14, 19, 20]. Some of the expected
bands recommended for 5G mobile communications are: 27.5–29.5 GHz, 33.4–36 GHz, 37–40.5 GHz,
42–45 GHz, 47–50.2 GHz, 50.4–52.6 GHz and 59.3–71 GHz [6]. However, for cellular communications,
the 28 GHz and 38 GHz bands are advantageous [6, 21], but operating at higher frequency bands will
bring complexity in the antenna design of mobile communication system [2].

Microstrip patch antennas are of great interest due to higher data rate and directional radiation for
wireless applications. Heinrich Hertz in 1886 demonstrated a patch antenna for the first time, and in
1901, Guglielmo Marconi gave its practical application. The first practical antenna was designed in early
1970s by Howell and Muson. For practical applications, bandwidth and size of the antenna are the main
concern for antenna designers. Microstrip patch antennas have numerous advantages like low cost, small
size, high efficiency, easy manufacturing and fabrication [22–25] and are mechanically robust when being
mounted on a rigid surface [26]. Dual and triple band operational frequencies can be easily achieved with
minimal efforts along with various polarizations of E-fields by using different feeding methods and shapes
of radiation patches [27]. Microstrip antennas are widely used in Global Positioning System (GPS),
wireless local area network, mobile communication system, and microwave sensors [28, 29]. Despite
of these attractive advantages, microstrip antennas also have some limitations which include narrow
bandwidth [30] and low gain. Research shows that bandwidth can be improved using different methods
such as using slotted patch, thick substrates [31], substrate of low effective permittivity, incorporating
multiple resonances, and optimizing impedance matching [32]. Array configuration is implemented to
improve the gain limitations [33].

Particularly for the fifth generation mobile communications, recently some researchers have put
forward various patch antenna designs. A compact patch antenna for 5G mobile communications has
been presented by the authors of [3] with resonant frequencies at 10.15 GHz and 28 GHz and maximum
gains of 5.51 dB at 10.15 GHz and 8.03 dB at 28 GHz. The antenna was designed using a Rogers-5880
substrate with thickness of 0.787 mm and total area of 21 × 21 mm2. The authors of [34] presented a
PIFA antenna for 5G application with operating frequencies of 28 GHz and 38 GHz consisting of shorted
patch with a U-shape slot etched in the radiating patch. The maximum gain obtained at 28 GHz is
3.75 dB and 5.06 dB at 38 GHz. An FR-406 substrate is used to isolate ground and the patch. Ali et
al. proposed a small antenna, excited with coplanar waveguide (CPW) feed, attaining a maximum gain
of 6.6 dB at 28 GHz, while a Roger RT5880 substrate is used with the size of 5 × 5 mm2 and height
of 0.254 mm [35]. In [36], the authors have introduced an antenna array for 5G cellular networks and
MIMO applications. This array network helped in achieving a maximum gain of 6.6 dB at 28 GHz. The
authors of [37] presented a 5G capable slotted microstrip patch antenna having a resonance frequency
at 11 GHz with a compact size of 22×19 mm2. The antenna has a directivity of 6.348 dB and maximum
gain of 6.3 dB. In [38], the authors introduced a compact antenna using a microwave dielectric ceramics
substrate for 5G applications with small size dimensioning as 14× 14 mm2. The maximum gain for the
design is 5.4 dB with 93% radiation efficiency. The authors of [39] presented a T and L-shaped slotted
microstrip patch antenna for future 5G mobile and wireless communication, using FR4 epoxy material
as the substrate with dimensions of 10 × 10 × 1.6 mm3. The operating frequency of the antenna here is
28 GHz with the highest gain of 5.57 dB for the said resonant frequency.

The design complications such as complexity and larger size along with low radiation efficiency,
low gain are some of the main concerns associated with the cited research. Table 1 summarizes the
details of the cited work. The aim of this research is, therefore, to overcome the low performance and
design complexity of the microstrip patch antenna for 5G mobile communication networks. An easy to
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Table 1. Comparison of size, gain and efficiency of different antennas.

Reference paper Antenna size (mm2) Operating frequency (GHz) Gain (dB) Efficiency (%)
[3] 21 × 21 10, 28 7.5 62
[34] 3 × 7 28, 38 3.7 69
[35] 5 × 5 28 6.6 73
[36] 120 × 40 28 6.6 77
[37] 22 × 19 11 6.3 -
[38] 14 × 14 28 5.4 93
[39] 10 × 10 28 5.57 -

This work 6 × 6 28, 45 7.6, 7.21 85.6, 95.3

fabricate microstrip patch antenna is proposed here, having an elliptical slotted circular radiating patch
over a Roger RT-5880 substrate, due to its low dielectric constant and low loss dispersion, which is
considered as a suitable material for ultrahigh frequency (UHF). The required 12 dB gain and radiation
pattern for mobile communication is achieved by using an array structure.

2. ANTENNA THEORY AND DESIGN

The first important step in designing an antenna was the selection of the substrate. The impedance
matching and bandwidth of an antenna are highly influenced by the parameters of substrate like height,
dielectric constant and tangent loss (tan δ). High copper losses may occur due to using a very thin
substrate while a thicker substrate can degrade the performance of antenna due to surface waves.
In the proposed antenna design, a Roger RT-5880 substrate is used whose dimensions and electrical
properties are given in Table 2. To obtain the desired resonance frequency of 28 GHz, a circular patch
of a particular radius (Rp) is used relating to Equation (1). The patch has an elliptical slot in order
to improve the bandwidth of the antenna. The circular patch of the antenna is fed by using a 50 Ω
microstrip line. Figure 1 shows different views of the unit cell, and its parameters are given in Table 3.
The actual radius of the circular patch is calculated by the formula given by [40].

Rp =
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2h

πεF

[
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2h

)
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]
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f
√

ε
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Rp = the radius of the patch, h = the height of the substrate, f = the resonance frequency in hertz,
ε = the effective dielectric constant of substrate.

Table 2. Dimensions and electrical properties of Rogers RT-5880.

Parameters Values
Dielectric constant 2.2

Loss tangent 0.0013
Dimension 6 × 6 mm2

Substrate height 0.508 mm
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Table 3. Design dimensions of the proposed elliptical slotted patch antenna.

Parameters Description Value (mm)
Ls Substrate Length 6
Ws Substrate width 6
H Substrate height 0.508
Rp Patch radius 2
Dy Diameter of slot on y-axis 2
Dx Diameter of slot on x-axis 0.8
Mt Patch Height 0.035
Wf Feed line Width 0.38
Lg Ground Length 6
Wg Ground width 6

(a) (b) (c)

Figure 1. The proposed antenna design. (a) Front view, (b) back view and (c) perspective view.

2.1. Array Design

For the aim of achieving 12 dB gain for 5G Mobile communication applications, a series array of 1 × 4
elements is implemented. The array is fed at the centre, and the configuration is shown in Figure 2.

Figure 2. Front view of the proposed array with design dimension variables.

The array resonates at 28 GHz, 34 GHz and 45 GHz, respectively. The 34 GHz resonance frequency
appears due to the introduction of a series feeding network on the substrate. Since the size of the unit
cell is very small, the flux linkage of the radiating patch with conductors of the feeding network results in
an extra resonance at 34 GHz. This phenomenon will be further clarified in the surface currents plot in
Figure 8(b) in Results and Discussion Section. All elements of the array resonate at the same frequency
and are designed for radiation in broadside direction. The array is split into two linear subarrays and fed
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in the middle through quarter-wave transformer. The cross polarization level of the array is improved
by this type of symmetric arrangement. It also prevents the beam pointing direction from varying
with frequency. In this way, the cross polarization generated from two opposite sides of the array are
cancelled out in broadside direction. Unit cells are kept 4.4 mm apart for the necessary prevention of
the interference. The array is fed with center series fed technique. Dimensions of the array are given in
the Table 4.

Table 4. Dimensions of the various design variables of the proposed array configuration.

Parameters Description Value (mm)
D Distance b/w unit cells 4.4

Wa Array width 31
La Array length 7
Wf Centre fed 1

Wf1 = Wf2 Series fed 0.19

3. RESULTS AND DISCUSSION

In this section the simulated and measured results of the proposed unit cell design of the antenna are
discussed. In Part A and Part B VSWR and S11 (dB) commonly known as voltage standing wave ratio
and return loss of the microstrip patch antenna as a unit cell and series fed 1 × 4 array configuration
are presented. Parts C, D and E explain 2D plots of the radiation patterns, current distribution and 3D
gain plots, respectively, of both microstrip patch antenna as a unit cell and 1 × 4 array configuration.
Finally, the SAR analysis is performed for both the configurations.

3.1. VSWR

Impedance matching of the antenna and transmission line is a key factor in evaluating the antenna
performance. VSWR parameter defines how well the impedance of antenna is matched with transmission
line by taking the ratio of the reflected maximum and minimum voltage wave. A value of VSWR ≤ 2
is considered as the main requirement. The suggested antenna in this work has a VSWR value of 1.01
and 1.5 at resonating frequencies of 28 GHz and 45 GHz, respectively. Array of the proposed antenna
has VSWR values of 1.15, 1.3 and 1.43 at 28 GHz, 34 GHz and 45 GHz, respectively. VSWRs of both
unit cell and 1 × 4 array configurations are given in Table 5, and the respective graphs are shown in
Figure 3.

Figure 3. VSWR of the proposed antenna as (a) unit cell configuration and (b) array configuration.
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Table 5. Voltage standing wave ratio (VSWR) values of unit cell and array configurations.

Antenna Unit cell Array
Frequency (GHz) 28 45 28 34 45

VSWR 1.01 1.5 1.15 1.3 1.43

3.2. Return Loss

Return loss is the ratio of incident power to the reflected power of an antenna in decibels (dB). Return
loss of an antenna is represented by S11 (dB). For an antenna to perform in effective way, S11 (dB) should
be less than −10 dB. The proposed antenna has S11 (dB) of −40 dB and −14 dB at 28 GHz and 45 GHz,
respectively, and array of the suggested antenna has return losses of −25.8 dB, −18 dB and −15 dB at
28 GHz, 34 GHz and 45 GHz, respectively, as shown in Table 6. The obtained results are optimized by
changing the values of Dx and Dy. It can be clearly seen form Figures 4(a), (b) that for Dx = 0.8 mm
and Dy = 2 mm better results are obtained. Moreover, changing these values can shift the resonance
frequencies. Graphs of both the unit cell and 1 × 4 array configurations are given in Figure 4(c).

Table 6. Return loss (S11 (dB)) values of the proposed antenna as a unit cell and array configurations.

Antenna Unit cell Array
Frequency (GHz) 28 45 28 34 45
Return loss (dB) −40 −14 −25.8 −18 −15

The values of characteristic parameters of the proposed antenna as a unit cell and 1 × 4 array
configurations in terms of gain, resonance frequency, directivity, bandwidth and efficiency are tabulated
in Table 7.

Table 7. Characteristic parameters of the proposed antenna as a unit cell and array configuration.

Antenna
Resonance

Frequency (GHz)
Bandwidth

(GHz)
Efficiency

(%)
Gain
(dB)

Directivity
(dBi)

Unit Cell
28 1.3 85.6 7.6 7.68
45 1 95.3 7.21 7.26

Array
28 1.2 99.3 13.5 13.5
34 0.92 94.7 11.2 11.5
45 1.2 91.9 12.1 13.17

3.3. 2D-Polar Radiation Patterns of the Proposed Antenna

1) Unit Cell Configuration : The radiation patterns at various spot frequencies are presented
in Figure 5. The solid line represents E-plane (XZ, ∅ = 0◦), and dashed line represents H-plane
(Y Z, ∅ = 90◦) radiation pattern. The radiation efficiencies at the spot frequencies of 28 GHz and
45 GHz are 85.6% and 95.3% respectively while directivities are 7.68 and 7.26 respectively for the
targeted frequencies.

2) Array Configuration : The radiation patterns at various spot frequencies are presented
in Figure 6. The solid line represents E-plane (XZ, ∅ = 0◦), and dashed line represents H-plane
(Y Z, ∅ = 90◦) radiation pattern. The radiation efficiencies at the spot frequencies of 28 GHz, 34 GHz and
45 GHz are 99.3%, 94.7% and 91.9% respectively while directivities are 13.5, 11.5 and 13.17 respectively
for the targeted frequencies.
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(a)

(b)

(c)

Figure 4. (a) Optimized S11 (dB) with respect to Dx, (b) optimized S11 (dB) with respect to Dy, (c)
S11 (dB) of the unit cell and array configuration.

3.4. Surface Current Distribution

1) Unit Cell Configuration : Surface current distributions of microstrip antenna at target frequencies
of 28 GHz and 45 GHz are given in Figure 7. At 28 GHz current distribution is maximum at the slot
and circular edge, while at 45 GHz the current distribution is maximum at junction of the microstrip
line and the radiating circular patch which causes the maximum radiation lobe to split to ±30◦, and
the same argument is valid for all such phenomena.

2) Array Configuration : Surface current distributions of array antenna at 28 GHz, 34 GHz and
45 GHz are shown in Figure 8.

3.5. 3D Gain Plots of the Proposed Antenna

1) Unit Cell Configuration : 3D gain plots for the unit cell configuration are shown in Figure 9 at
the spot frequencies of 28 GHz and 45 GHz, respectively. It can be clearly observed from Figure 9 that
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(a) (b)

Figure 5. Polar plots of the unit cell at spot frequencies of (a) 28 GHz and (b) 45 GHz.

(a) (b) (c)

Figure 6. Polar plots of E and H plane of the array antenna at (a) 28 GHz, (b) 34 GHz and (c) 45 GHz.

(a) (b)

Figure 7. Surface current distribution of the unit cell configuration at spot frequencies of (a) 28 GHz
and (b) 45 GHz.

the unit cell antenna exhibits monopole radiation pattern at both frequencies.
2) Array Configuration : 3D gain plots for the array configuration are shown in Figure 10 at

the spot frequencies of 28 GHz, 34 GHz and 45 GHz, respectively. It is observed from the figure below
that with increase in gain the beamwidth becomes narrower.
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(a) (b)

(c)

Figure 8. Surface current distribution of the array at spot frequencies of (a) 28 GHz, (b) 34 GHz and
(c) 45 GHz.

(a) (b)

Figure 9. 3D Gain plots of the unit cell configuration at spot frequencies of (a) 28 GHz and (b) 45 GHz.

4. SAR ANALYSIS

Specific absorption rate (SAR) is a measure of the rate at which energy is absorbed by the human body
from the RF electromagnetic fields. It has unit of watt per kilogram (W/Kg), and it is usually averaged
over 1 g or 10 g sample of the tissue. SAR can be calculated as

SAR =
δE2

2ρ
(3)

where

δ is the sample electrical conductivity
E is the RMS electric field
ρ is the sample density.
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(a) (b) (c)

Figure 10. 3D gain plots of the array configuration at spot frequencies of (a) 28 GHz, (b) 34 GHz and
(c) 45 GHz.

(a) (b)

Figure 11. SAR analysis of the unit cell configuration at target frequencies of (a) 28 GHz and (b)
45 GHz.

The RF current in the antenna induces RF electric field, and the radiations produced by the induced RF
field are absorbed by the body tissue and cause cell mutation. According to FFC and CENELEC SAR
values must be a level at or less than 1.6 W/kg averaged over 1 g of tissue and 2 W/Kg taken over the
volume containing mass of 10 g of the tissue. Figure 11 shows the view of SAR distribution on human
body analysis at different frequencies for the unit cell while Figure 12 shows the SAR analysis of the
1×4 array configurations. To estimate radiation effects of the proposed antenna at different frequencies,
10 g mass test is used. In the case of unit cell, SAR value for 28 GHz is 1.25 W/kg and 1.38 W/kg at
45 GHz. For array configuration, SAR value at 28 GHz is 1.19 W/kg, at 34 GHz is 1.16 W/kg and at
45 GHz is 1.37 W/kg. SAR analysis is done on flat body model which consists of three layers that are
skin, fats and muscle having length and width of 100 ∗ 100 mm2. The thickness of skin is 3mm; that of
fat is 10 mm; and that of muscle is 20 mm, such layered body models are common in practice [41–43].
SAR values at all the resonating frequencies are less than SAR limit defined by telecom authorities.
Values of SAR at all the operating frequencies for both unit cell and array antenna are shown in Table 8.

5. MEASURED RESULTS

The array antenna is fabricated using a Rogers RT5880 (lossy) substrate, with the height of 0.508 mm.
The Anritsu 37369D 40 GHz VNA is used for measurement of S11 (dB) parameter. There is a reasonable
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(a) (b)

(c)

Figure 12. SAR analysis of the array configuration at target frequencies of (a) 28 GHz, (b) 34 GHz
and (c) 45 GHz.

Figure 13. Measured and simulated return loss of the proposed array configuration for 5G mobile
communications.

agreement between measured and simulated results as shown in Figure 13. Both the measured
and simulated S11 (dB) graphs of the array antenna justify the required bands of operations for 5G
applications. From the graph it is clear that the simulated S11 (dB) is less than −10 dB in the ranges
of 27.4–28.6 GHz and 33.4–34.32 GHz, while measured S11 (dB) is less than −10 dB in the ranges of
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Table 8. SAR values of the proposed antenna as a unit cell and array configurations for various spot
frequencies.

Antenna Unit cell Array
Frequency (GHz) 28 45 28 34 45

SAR value (W/Kg) 1.25 1.38 1.19 1.16 1.37

Figure 14. A photograph of the proposed array configuration for 5G mobile communications.

27.4–28.6 GHz and 33.75–35.125 GHz. A sample photograph of the fabricated array antenna with SMA
40 GHz connector is shown in Figure 14.

6. CONCLUSIONS

A novel dual band circular microstrip patch antenna with an elliptical slot is presented in this research
for possible future 5G applications. The antenna is further configured to an array of 1 × 4 linear
elements to make it suitable for 5G mobile communication systems. This simple design is achieved
on a Rogers 5880 substrate which resonates at millimeter-wave frequencies of 28 GHz and 45 GHz as
a unit cell and with an extra resonance at 34 GHz when be configured as an array. The maximum
gain 7.6 dB is achieved at 28 GHz for unit cell and a gain of 7.21 dB at 45 GHz, and the gain is further
enhanced to 13.5 dB at 28 GHz in array configuration to make the antenna system suitable for 5G mobile
communications, with a gain of 11.2 dB at 34 GHz and 12.1 dB at 45 GHz. The directional properties
of the radiation pattern are also simulated for the particular 5G application at the spot frequencies of
28 GHz, 34 GHz in the case of array and 45 GHz, and were found to be in good competition with designs
already available in the literature. At the end one of the important aspects mandatory for hand-held/
wearable applications, the SAR (Specific Absorption Rate), is also simulated, and in the case of unit
cell, SAR value for 28 GHz is 1.25 W/kg and 1.38 W/kg at 45 GHz, and for array configuration, SAR
value at 28 GHz is 1.19 W/kg, at 34 GHz is 1.16 W/kg and at 45 GHz is 1.37 W/kg. These values appear
in accordance with the standards mentioned in FFC and CENELEC.
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