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Wave Diffraction Problem from a Semi-Infinite Truncated Cone
with the Closed End

Dozyslav B. Kuryliak1, *, Kazuya Kobayashi2, and Zinoviy T. Nazarchuk1

Abstract—The electromagnetic wave diffraction from the modified cone formed by a circular truncated
cone whose aperture is closed by a spherical cap is considered. The problem is reduced to the solution
of the mixed boundary value problem for the Helmholtz equation. The axially symmetric version
of the problem, where the cone is excited by a radial electric dipole (E-polarization wave diffraction
problem), is analyzed. A new approach to the solution is proposed. The solution includes the application
of the Kontorovich-Lebedev integral transformation, the nonstandard procedure for derivation of the
Wiener-Hopf equation and its reduction to the set of linear algebraic equations of the second kind.
Their solution ensures the fulfillment of all the necessary conditions including the edge condition. The
approximate equation for the sharp truncated cone terminated by the spherical cap is analyzed. The
low frequency approximation as well as the transition to the plane which incorporates the hemispheric
cavity is analysed. The numerical calculation results are presented.

1. INTRODUCTION

We consider the scattering of electromagnetic waves from a closed truncated cone. The cone consists
of the semi-infinite cone with a cut vertex and an open end which is closed by the spherical cap; the
spherical radius and the angle of this cap are equal to the spherical radius and to the angle of the
conical hole respectively. The conical scatterer created by this way possesses the sharp rectangular
circular edge; the edge is formed by the orthogonal coordinate surfaces in the spherical coordinate
system. This is a canonical problem of the wave diffraction theory. The rigorous solution of this
problem has broad applications depending on the geometrical parameters; the modeling of the reflector
and horn antennas as well as of the semi-spherical cavities at the plane surface for modeling of the
cavity type defects are also included. Nevertheless, the existing literature focuses mainly on the wave
diffraction from the closed finite cone; it is a cone open end which is closed by the spherical cap. The
mode matching technique is mainly used for the analysis of this problem [1–3]. It is well known that
the singularity of field components at the edge for such structure behaves like ρ−1/3 as ρ → 0, where
ρ is the distance to the edge in the local coordinates. This determines the asymptotic behaviour of
the magnitudes for expansion modes as xn = O(n−2/3) if n → ∞. This feature, as a rule is not taken
into account in well the known mode matching technique. For the potential theory the finite closed
cone was analysed by the Wiener-Hopf technique in [4]. The one-sided or two-sided closed structures
in the rectangular and cylindrical coordinates like the cavities or rods are studied rigorously using
the Wiener-Hopf technique in the Fourier transform domain [5–10]. The application of this powerful
tool for the solution of the mentioned problems in the rectangular and cylindrical coordinates is not
standard because of the existence of the boundary condition at the lateral plane surfaces. In this paper
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we develop the Wiener-Hopf technique for the rigorous solution of the wave diffraction problem for
a closed truncated cone. This is a new canonical problem, which is much more complicated due to
the involvement of the Kontorovich-Lebedev (K-L) integral transformation. For the potential theory
semi-infinite truncated hollow cone was analysed by the Wiener-Hopf technique and the Mellin integral
transform in [11]. The Wiener-Hopf technique and the K-L integral transform were earlier applied to the
solution of the wave diffraction problems for finite and semi-infinite truncated hollow cones [12–15]. A
particular case to these problems namely the wave diffraction from the disc was analysed by this method
in [16]. In [17] the K-L integral transform for the finite interval [18] and the Wiener-Hopf technique
were applied to the analysis of the scattering characteristics of the finite cone in spherical perfectly
conducting resonator. The analytical regularization technique for the solution of the different kinds of
the wave diffraction problems was considered for hollow conical scatterers excited by the electromagnetic
and acoustic waves in [14, 19–24]. Earlier in [25] we analysed the wave diffraction by the openended
conical cavity formed by the truncated cone with the internal spherical diaphragm. This structure
excited axially-symmetrically by the radial electric dipole and the resonance scattering of the different
kinds of the open sphere-conical resonators were studied. The analytical regularization technique was
applied to obtain the solution. The technique applied earlier does not allow for the rigorous analysis of
the clear closed truncated cone. Here this problem is solved rigorously by the Wiener-Hopf technique.

2. FORMULATION OF THE PROBLEM

In spherical coordinates (r, θ, ϕ) let us consider an axially symmetric electromagnetic wave diffraction
by the perfectly conducting semi infinite truncated cone closed by the spherical cap as

Q = {c < r <∞ for θ = γ and r = c for γ < θ ≤ π} (1)

(see Fig. 1). The coordinate ϕ ∈ [0, 2π) is omitted in this notation. The cone in Eq. (1) is excited by
the radial electric dipole that is located at the conical axis. The time factor is assumed to be e−iωt and
is suppressed throughout this paper.

Figure 1. Geometry of the problem.

Let us formulate our problem in terms of the scalar Debye potential and express the nonzero field
components outside of Q in the form

Er = −(r sin θ)−1∂θ (sin θ∂θU) ,

Eθ = r−1∂rθ (rU) ,

Hϕ = ikZ−1 ∂θU,

(2)

where U = U(r, θ) is the Debye potential of the diffracted field, which satisfies the Helmholtz equation;
k is the wave number, k = ω

√
εμ, (k = k′ + ik′′; k′, k′′ > 0); Z =

√
μ/ε is the impedance of the

medium; ε, μ are dielectric permittivity and permeability respectively.
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Next, we reduce the wave diffraction problem to the solution of the boundary value problem for
the Helmholtz equation as (∇2 + k2

)
U = 0, (3)

which is valid outside the closed truncated cone; its solution satisfies the boundary conditions

(r sin θ)−1∂θ

(
sin θ ∂θU

(t)
)

= 0, if θ = γ, c < r <∞, (4a)

r−1∂rθ

(
r U (t)

)
= 0, if γ < θ ≤ π, r = c, (4b)

as well as the radiation condition in the Sommerfeld form and the condition at the rectangular circular
edge [5, 6, 10] in form Eθ, Er(r,γ) ∼ |β1(θ − γ) + β2(c − r)|−1/3, if r → c, θ → γ, where β1, β2 are
constants to be determined by the strength of the source; the obtained solution must be regular at
r = 0.

Here the symbol ∇2 denotes the Laplace operator in spherical coordinates for the axial symmetric
case

∇2 = r−2∂r

(
r2∂r

)
+ (r2 sin θ)−1∂θ (sin θ ∂θ) ,

U (t) = U (t)(r,θ) is the total field. We suppose that the cone in Eq. (1) is excited by the radial electric
dipole that is located at the conical axis θ = 0. Taking this into account, let us determine the total field
as

U ( t) =
{
U (i) + U, if 0 ≤ θ < γ,

U, if γ < θ ≤ π,
(5)

where U (i) = U (i)(r, θ) is the incident field excited in the semi-infinite perfectly conducting circular cone
due to the radial electric dipole with coordinate r = l > 0 at the conical axis, which is taken in the form

U (i) =
A

(e)
0

πi
√
sr

∫
Γ∗

ν [Pν−1/2(cos γ)Pν−1/2(−cos θ) − Pν−1/2(−cos γ)Pν−1/2(cosθ)]
cos(πν)Pν−1/2(cos γ)

Kν(sl)Iν(sr)dν, (6)

if 0 ≤ θ < γ and U (i) ≡ 0 when γ < θ ≤ π. Here Γ∗ ∈ Π is a vertical straight line in the regularity strip
Π = {ν : |Reν| < 1/2}; s = −ik; Pν−1/2(·) is the Legendre function of the first kind; Iν(·), Kν(·) are the

modified Bessel and Macdonald functions respectively; A(e)
0 = A0/(l

√
sl), where [A(e)

0 ] = V , A0 = πp0Z
is the known value, and p0 is the dipole moment. Integral (6) is absolutely convergent for θ < 2γ. If
ν ∈ Π, the arguments of the modified Bessel and Macdonald functions sr and sl can be also swapped
without the changing of this integral.

3. FIELD REPRESENTATION IN THE TRANSFORM DOMAIN

Let us introduce the Kontorovich-Lebedev (K-L) integral transform as

F (ν) =
�

K{φ(r); ν} =

∞∫
0

φ(r)Kν(sr)
dr√
r
, (7a)

φ(r) =
�

K
−1

{F (ν); r} =
1

π i
√
r

∫
Γ∗
ν F (ν)Iν(sr)dν, (7b)

where Re(s) ≥ 0 and φ(r) = O(rq1) with q1 > −1/2, if r → 0 and φ(r) = O(rq2) with q2 ≤ −1, if
r → ∞, Γ∗ ∈ Π. Hence F (ν) is the regular function in the strip Π. For the further analysis we assume
that Re(s) > 0 and Im(s) = 0 to ensure the convergence of the K-L integral transforms. The solution
for real k (s = −ik) will be obtained at the end of the analysis.

Let us define the K- L transform of the scattered field U(r,θ), if 0 ≤ θ < γ as follows

Φ(ν,θ) =

∞∫
0

U(r,θ)Kν(sr)
dr√
r
. (8)
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Applying the K-L transform to Eq. (3), we find that the function in Eq. (8) satisfies the ordinary
differential equation

1
sin θ

d

dθ

(
sin θ

d

d θ
Φ(ν,θ)

)
+ (ν2 − 1/4)Φ(ν,θ) = 0, (9)

the general solution of which bounded at θ = 0 is

Φ(ν,θ) = A(ν)Pν−1/2(cosθ), if 0 ≤ θ < γ. (10)

Here A(ν) is an arbitrary function to be determined from the boundary conditions. For our convenience,
let us rewrite Eq. (10) as

Φ(ν,θ) = E(ν, γ − 0)
Pν−1/2(cosθ)

(ν2 − 1/4)Pν−1/2(cosγ)
, (11)

where E(ν,γ − 0) is the K-L transform of the electric field Er(r,γ − 0) which is defined as

E(ν,γ − 0) =

c∫
0

rEr(r,γ − 0)Kν(sr)
dr√
r
. (12)

This follows from the boundary condition in Eq. (4a) and the definition of the incident field in Eq. (6).
Due to the separation of variables U (t)(r, θ) = U

(t)
1 (r)U (t)

2 (θ), the total field representation of Eq. (5)
and the assumption that ∂θU

(t)
2 (θ) �= 0, if γ < θ ≤ π, we get the following correlation from the boundary

condition in Eq. (4b)

∂c U(c, θ) = −c−1U(c, θ), if γ < θ ≤ π. (13)

Applying the K-L transformation to Eq. (3), if γ < θ ≤ π we arrive at the equation

1
sin θ

d

dθ

(
sin θ

d

d θ
Φ1(ν,θ)

)
+ (ν2 − 1/4)Φ1(ν,θ) = c∂c

[√
cKν(sc)

]
U(c,θ), (14)

where c∂c[
√
cKν(sc)]U(c,θ) is the unknown inhomogeneous term;

Φ1(ν,θ) =

c∫
0

U(r,θ)Kν(sr)
dr√
r
. (15)

Let us introduce the K-L integral in the form

Φ2(ν,θ) =

c∫
0

U(r,θ)Iν(sr)
dr√
r
. (16)

The function in Eq. (16) satisfies the differential Eq. (14) with the unknown inhomogeneous term as
c ∂c[

√
cIν(sc)]U(c,θ). Then, the function

F (ν,θ) = Φ1(ν,θ)∂c

[√
c Iν(sc)

] − Φ2(ν,θ)∂c

[√
cKν(sc)

]
(17)

that is formed by using the correlations in Eqs. (15), and Eq. (16) satisfies the homogeneous differential
Eq. (9), the solution of which bounded for γ < θ ≤ π looks as follows

F (ν, θ) = B(ν)Pν−1/2(− cos θ). (18)

Here B(ν) is an arbitrary function to be determined from the boundary conditions.
Taking into account the representation in Eq. (18), let us rewrite Eq. (17) in the form

F (ν, θ) =
{
E1(ν,γ + 0)∂c

[√
cIν(sc)

] − E2(ν,γ + 0)∂c

[√
cKν(sc)

]} Pν−1/2(−cosθ)
(ν2 − 1/4)Pν−1/2(−cosγ)

. (19)
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Here E1(2)(ν,θ) = − (sin θ)−1∂θ [sin θ ∂θΦ1(2)(θ)] or, as follows from the definitions in Eqs. (15), (16) and
first correlation in Eq. (2),

E1(ν,γ + 0) =

c∫
0

rEr(r,γ + 0)Kν(sr)
dr√
r
, (20a)

E2(ν,γ + 0) =

c∫
0

rEr(r,γ + 0)Iν(sr)
dr√
r
. (20b)

Then, we use the boundary condition in Eq. (4a) as well as the condition of the continuity for
tangential electric fields at θ = γ and derive Er(r,γ − 0) = Er(r,γ + 0) = Er(r,γ) for 0 < r < c and

E(ν,γ − 0) = E1(ν,γ + 0) = E1(ν,γ), (21)

where

E1(ν,γ) =

c∫
0

rEr(r,γ)Kν(sr)
dr√
r
. (22)

Equations (11), (19) are the desired field representation in the K-L transform domain that are regular
in the strip Π.

4. WIENER-HOPF EQUATION

For the tangential magnetic fields it follows from the boundary condition that

H(t)
ϕ (r, γ + 0) − H(t)

ϕ (r, γ − 0) =
{

0, if 0 < r < c,

j1(r), if c < r <∞.
(23)

Applying the K-L transform to Eq. (23) we receive

J1(ν, γ) = H(ν, γ + 0) −H(ν, γ − 0) = −
∞∫
c

H(t)
ϕ (r, γ − 0)Kν(sr)

dr√
r
, (24)

where

J1(ν, γ) =

∞∫
c

j1(r, γ)Kν(sr)
dr√
r

(25)

is the even entire function and

H(ν,γ − 0) =

∞∫
0

H(t)
ϕ (r,γ − 0)Kν(sr)

dr√
r
, H(ν,γ + 0) =

c∫
0

H(t)
ϕ (r,γ + 0)Kν(sr)

dr√
r
. (26)

Taking into account Eqs. (11) and (15), we represent Eq. (24) as

(iωε)−1J1(ν,γ) = Φ′
1(ν,γ + 0) − Φ′(ν,γ − 0) − Φ′(i)(ν,γ). (27)

Here
Φ′(ν, γ − 0) = lim

θ→γ−0
∂θΦ(ν, θ), Φ′

1(2)(ν, γ + 0) = lim
θ→γ+0

∂θΦ1(2)(ν, θ), (28)

and

Φ′(i)(ν,γ) =
A

(e)
0√
s

Pν−1/2(cosγ)∂γ Pν−1/2(−cosγ) − Pν−1/2(−cosγ)∂γ Pν−1/2(cosγ)
cos(πν)Pν−1/2(cosγ)

Kν(sl) (29)

is the K-L integral transformation of the known value ∂θU
(i)(r, γ).
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Differentiating correlations in Eqs. (11), (19) with respect to θ and setting θ = γ ± 0, we obtain
from the expressions (21), (17) that

Φ′(ν, γ − 0) = E1(ν, γ)
∂γPν−1/2(cos γ)

(ν2 − 1/4)Pν−1/2(cos γ)
, (30a)

Φ′
1(ν,γ + 0) = Φ′

2(ν,γ + 0)
{√scKν(sc)}′
{√scIν(sc)}′

+

{
E1(ν,γ) − E2(ν,γ + 0)

{√scKν(sc)}′
{√scIν(sc)}′

}
×

× ∂γPν−1/2( − cos γ)
(ν2 − 1/4)Pν−1/2( − cos γ)

. (30b)

Considering the definition in Eq. (5) and the representation in Eq. (16) let us introduce the new
notation as

Φ′
2(ν,γ + 0) =

1
iωε

H2(ν,γ), (31)

where

H2(ν, γ) =

c∫
0

H(t)
ϕ (r, γ + 0)Iν(sr)

dr√
r

= iωε ∂γ

c∫
0

U(r, γ + 0)Iν(sr)
dr√
r
. (32)

Taking into account the known relationship [26]

Pν−1/2(− cos γ)∂γPν−1/2(cos γ) − Pν−1/2(cos γ)∂γPν−1/2(− cos γ) =
2 cos(πν)
π sin γ

,

we rewrite Eq. (29) as

Φ′(i)(ν, γ) = − 2
π sin γ

A
(e)
0 Kν(sl)√

sPν−1/2(cos γ)
. (33)

Then, substituting correlations in Eqs. (30), (31), and (33) into Eq. (27) and taking into account the
equality in Eq. (32), we arrive at

E1(ν, γ)M(ν, γ) + E2(ν, γ + 0)
π sin γ ∂γPν−1/2(− cos γ)

2(ν2 − 1/4)Pν−1/2(− cos γ)
{√scKν(sc)}′
{√scIν(sc)}′

−

− A
(e)
0 Kν(sl)√

sPν−1/2(cos γ)
= −π sin γ

2iωε

{
J1(ν, γ) −H2(ν, γ)

{√scKν(sc)}′
{√scIν(sc)}′

}
, (34)

where
M(ν, γ) =

cos(πν)
(ν2 − 1/4)Pν−1/2(cos γ)Pν−1/2(− cos γ)

. (35)

Here M(ν, γ) is the even meromorphic function without zeros in the strip of regularity Π; if |ν| → ∞,
M(ν, γ) tends to zero in Π as ν−1. Out of Π the function M(ν, γ) possesses the real simple zeros at
ν = ± zn(≡ n + 1/2) and poles at ν = ± νn and ν = ±μn (n = 1, 2, 3, . . .) that are determined from
the solution of the transcendental equations

Pνn−1/2(cos γ) = 0, (36a)
Pμn−1/2(cos γ) = 0. (36b)

The asymptotic behaviour of the roots of these equations, if n→ ∞ is as follows [26]:

νn = π(n− 1/4)/γ +O(1/n), μn = π(n− 1/4)/(π − γ) +O(1/n). (37)

Equation (34) is the desirable form of the representation of the Wiener-Hopf equation of the problem;
E1(ν, γ), E2(ν, γ+0) and J1(ν, γ), H2(ν, γ) are the unknown functions that are regular at least for ν ∈ Π.
Taking into account that the function {√scIν(sc)}′ does not have zeros for Re(ν) ≥ 0, if Im (s) = 0,
Re(s) > 0 [17, 18], we find that Eq. (34) is valid in Π1: {0 ≤ Re(ν) < 1/2}.
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5. SOLUTION OF THE WIENER-HOPF EQUATION

Using the known relation between the modified Bessel functions of the first and the second kind
we represent the unknown function in Eq. (21) as follows [16]

E1(ν, γ) =
1
2
E+

1 (ν, γ)
(sc

2

)ν
Γ(−ν) +

1
2
E−

1 (ν, γ)
(sc

2

)−ν
Γ(ν), (38)

where Γ(·) is the Gamma function,

E±
1 (ν, γ) = Γ(1 ± ν)

(sc
2

)∓ν
c∫

0

rEr(r, γ)I±ν(sr)
dr√
r
. (39)

Since the asymptotic representation of the modified Bessel function looks as I±ν(sr) ∼
(sr/2)±ν/Γ(1 ± ν), if |ν/sr| >> 1 and taking into account the function Er(r, γ) = O(1) if r → 0,
we obtain that

E±
1 (ν, γ) ≤ C1

1∫
0

x1/2±νdx =
C1

3/2 ± ν
,

where x = r/c < 1 and C1 = const. From this it follows that the functions E±
1 (ν, γ) are regular in the

complex overlapping half-planes Re(ν)>−3/2
<3/2 respectively.

Taking into account that Er(r,γ) ∼ (c− r)−1/3 along the conical rim (r → c− 0, θ = γ), we find as

E±
1 (ν, γ) ≤ C2

1∫
0

x1/2±ν(1 − x)−1/3dx = C2B(±ν+3/2, 2/3) = O(ν−2/3), Re(ν)>−3/2
< 3/2 and |ν| → ∞,

where C2 = const, B(z,y) is the beta-function [27].
The kernel function M(ν, γ) is factorized as

M(ν, γ) = M+(ν, γ)M−(ν, γ), (40)

where M±(ν, γ) are split functions regular and nonzero in Re( ν)>− 1/2
< 1/2 , M+(ν, γ) = M−(−ν, γ) and

M±(ν, γ) = O(ν−1/2) as |ν| → ∞ with Re(ν)>−1/2
<1/2 ;

M−(ν, γ) = B0

{
(1/2 − ν )Γ(1/2 − ν )e− ν χ

∞∏
n=1

(1 − ν/ξn) e ν/ξn

}−1

,

with {ξn}∞n=1 = {νp}∞p=1 ∪ {μk}∞k=1 is the growing sequence; νn and μn for n = 1, 2, 3, . . . denotes the
positive roots of the transcendental Eqs. (36a) and (36b),

B0 = i
√
π{P−1/2(cos γ)P−1/2(− cos γ)}−1/2,

χ =
γ

π
ln
γ

π
+
π − γ

π
ln
π − γ

π
− ψ(3/4) − S(γ) − S(π − γ),

S(γ) =
∞∑

n=1

[
γ

π(n− 1/4)
− 1
νn

]
, S(π − γ) =

∞∑
n=1

[
π − γ

π(n− 1/4)
− 1
μn

]

and ψ(·) is the logarithmic derivation of the Gamma function [27].
Using the correlations in Eqs. (20b), (21), and (39) we derive

E2(ν, γ + 0) =
E +

1 (ν, γ)
Γ(1 + ν)

(sc
2

)ν
. (41)
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Let us substitute the equality in Eq. (38) into Eq. (34) and multiply both sides of the obtained equation
by 2(sc/2)νM−1

+ (ν, γ)Γ−1(ν). Then using Eq. (41) we arrive at

E −
1 (ν, γ)M−(ν, γ) + E +

1 (ν, γ)M−(ν, γ)
Γ(−ν)
Γ(ν)

(sc/2)2ν+

+E +
1 (ν, γ)

Υ1(ν, γ)(sc/2)2ν

M+(ν, γ)Pν−1/2(− cos γ)
{√scKν(sc)}′
{√scIν(sc)}′

− A
(e)
0√
s

Λ(ν, sl, sc, γ) =

= −π sin γ
iωε

J1(ν, γ)(sc/2)ν

M+(ν, γ)Γ(ν)
+

Ω+
1 (ν, γ, sc)(sc/2)2ν

M+(ν, γ)
{√scKν(sc)}′
{√scIν(sc)}′

.

(42)

Here ν ∈ Π1;

Υ1(ν, γ) =
π sin γ ∂γPν−1/2(− cos γ)
(ν2 − 1/4)Γ(ν)Γ(1 + ν)

, (43a)

Λ(ν, sl, sc, γ) =
Kν(sl) (sc/2)ν

M+(ν, γ)Pν−1/2(cos γ)Γ(ν)
, (43b)

Ω+
1 (ν, γ, sc) =

π sin γ
iωε

H+
2 (ν, γ)

Γ(ν)Γ(1 + ν)
, (43c)

where
H+

2 (ν, γ) = Γ(1 + ν)(sc/2)−νH2(ν, γ). (43d)
Let us consider the function as

h+(ν, γ) =
J1(ν,γ)

M+(ν,γ)Γ(ν)
(sc/2)ν . (44)

Here J1(ν,γ) is determined in Eq. (24) and is the entire function in the complex plane ν.
Taking into account the asymptotics of the Macdonald’s function Kν(sr) ∼ Γ(±ν)(sr/2)∓ ν/2,

if Re(ν) → ±∞ and by using the Stirling’s formula for the Gamma function as well as the edge
condition for H

(t)
ϕ (r, γ + 0), j1(r) ∼ (c − r)2/3, if r → c, we find from Eqs. (25), (26) that

H+
2 (ν, γ), h+(ν, γ) are regular functions in the half-plane Re(ν) ≥ 0. These functions tend to zero,

if |ν| → ∞, in all the regularity region; for Re(ν) > 1 H+
2 (ν, γ) ∼ B(ν + 11

2 , 1
2
3 ) = O(ν−5/3) and

h+(ν, γ) ∼ ν1/2B( ν−1, 12
3 ) = O(ν−7/6). Then we find that all terms in the right-hand part of Eq. (42)

are regular functions at least in Re(ν) ≥ 0 and tend to zero, if |ν| → ∞, in the regularity region. The
first term in the left-hand part of Eq. (42) is a regular function in the complex half-plane Re(ν) < 1/2.
All three rest terms in this part of Eq. (42) are regular in the strip Π1 and tend to zero, if |ν| → ∞ in
this strip. In order to arrange Eq. (42) into the Wiener-Hopf form, it is necessary to decompose each of
these three terms into the sum of two functions regular in the left-hand and the right-hand half-planes
overlapping on strip Π1 due to the relation

[· · ·]∓ = ± 1
2π i

i∞+iε1∫
−i∞+iε1

[· · ·] dν

ν − α
, (45)

where 0 < ε1 < 1/2; Re(α) < ε1 and Re(α) > ε1 for upper and lower signs respectively. In Eq. (42), we
split the terms that are regular in the overlapping half-planes and place them on the opposite sides of
the equality symbol. Thus, we form the entire function which, according to the Liouville’s theorem, is
identical to zero. Then, we arrive at

�

E
−
1 (α, γ)M+(α,γ) +

1
2πi

i∞+ε1∫
−i∞+ε1

�

E
+

1 (ν, γ)M−(ν,γ)
Γ( − ν)
Γ(ν)

(sc/2)2ν dν

ν − α
+

+
π sin γ
2πi

i∞+ε1∫
−i∞+ε1

�

E
+

1 (ν,γ)∂γPν−1/2(− cos γ) (sc/2)2ν {√scKν(sc)}′
(ν2 − 1/4)M+(ν,γ)Pν−1/2(− cos γ)Γ(ν)Γ(1+ν) {√scIν(sc)}′

dν

ν − α
= A

(e)
0 f(α).

(46)
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For convenience we introduced the notation
�

E
±
1 (α, γ) =

√
sE±

1 (α, γ); Re(α) < ε1;

f(α) =
1

2πi

i∞+ε1∫
−i∞+ε1

Λ(ν, sl, sc, γ)
dν

ν − α
. (47)

It is seen that the singularities associated with the first and second integrands in Eq. (46) for
Re(ν) > ε1 are simple poles, if ν = n, ξn, and ν = μn respectively with n = 1, 2, 3, . . .. The singularities
of the integrand Eq. (47) for Re(ν) > ε1 are the simple poles at ν = νn. Then, evaluating the integral
by enclosing the contour into the right half-plane after some manipulations we derive

�

E
−
1 (α, γ)M−(α, γ) +

∞∑
n=1

(−1)n
�

E
+

1 (n, γ)M−(n, γ)(sc/2)2n

Γ(n)Γ(n+ 1)(n − α)
+

+
∞∑

n=1

π
�

E
+

1 (ξn, γ)(sc/2)2ξn

Γ(ξn)Γ(ξn + 1) sin(πξn)[M−1
− (ξn, γ)]′(ξn − α)

+

+2π sin γ
∞∑

n=1

�

E
+

1 (μn, γ)P 1
μn−1/2(− cos γ) {√scKμn(sc)}′ / {√scIμn(sc)}′ (sc/2)2μn

(μ2
n − 1/4)Γ(μn)Γ(μn + 1)M+(μn, γ)(μn − α)∂μPμn−1/2(− cos γ)

= f(α)A(e)
0 ,

(48)

where

f(α) = −
∞∑

n=1

Kνn(sl) (sc/2)νn

Γ(νn)M+(νn,γ)(νn − α)∂νPν−1/2(cos γ)|ν=νn

. (49)

The series in the left-hand side of Eq.(48) is absolutely convergent for any parameters of the cone
and the series in Eq. (49) is absolutely convergent, if l > c. In order to derive the second kind linear
algebraic system, we set α = −p, α = −νp, α = −μp in Eq. (48), p = 1, 2, 3, . . .. This procedure leads
to the three sets of linear algebraic equations as follows

x(1)
p +

∞∑
n=1

b(11)pn x(1)
n +

∞∑
n=1

b(12)pn x(2)
n +

∞∑
n=1

b(13)pn x(3)
n = f (1)

p ,

...

x(2)
p +

∞∑
n=1

b(21)pn x(1)
n +

∞∑
n=1

b(22)pn x(2)
n +

∞∑
n=1

b(23)pn x(3)
n = f (2)

p ,

...

x(3)
p +

∞∑
n=1

b(13)pn x(1)
n +

∞∑
n=1

b(23)pn x(2)
n +

∞∑
n=1

b(33)pn x(3)
n = f (3)

p .

...

(50)

Here x(q)
p =

�

E
+

1 (η(q)
p ), x(q)

p = O(p−2/3), if p → ∞; η(1)
p = p, η

(2)
p = νp, η

(3)
p = μp, p = 1, 2, 3, . . .;

f
(q)
p = f

(
−η(q)

p

)
A

(e)
0 /M+

(
η

(q)
p , γ

)
, q = 1, 2, 3;

b(q1)pn =
(−1)nM−(n, γ) (sc/2)2n

Γ(n)Γ(n+ 1)M+

(
η

(q)
p , γ

) (
n+ η

(q)
p

) ,
b(q2)pn =

π(sc/2)2νn

Γ(νn)Γ(νn + 1) sin (πνn)M+(η(q)
p , γ)

{
M−1

− (νn,γ)
}′ (

νn + η
(q)
p

) ,

b(q3)pn =
π(sc/2)2μn

Γ(μn)Γ(μn + 1)M+(η(q)
p , γ)(μn + η

(q)
p )

{
1

sin (πμn)
{
M−1

− (μn,γ)
}′ +
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+
2sinγP 1

μn−1/2(− cos γ) {√scKμn(sc)}′

(μ2
n − 1/4)M+(μn,γ)∂μPμn−1/2(− cos γ) {√scIμn(sc)}′

}
.

Let us consider the version l < c. In this case, let us represent expression (47) as

f(α) =
1

2πi

2∑
p=1

i∞+ε1∫
−i∞+ε1

Λp(ν, sl, sc, γ)
dν

ν − α
, (51)

where

Λ1(ν, sl, sc, γ) =
Γ(1 − ν)I−ν(sl)

2M+(ν,γ)Pν−1/2(cos γ)

(sc
2

)ν
, (52a)

Λ2(ν, sl, sc, γ) = − πIν(sl)
2 sin(πν)Γ(ν)M+(ν,γ)Pν−1/2(cos γ)

(sc
2

)ν
. (52b)

We evaluate the integrals in Eq. (51) by enclosing their contours into the left half-plane for the
first integral; the singularities associated with the first integrand for Re (ν) < ε1 are simple poles at
ν = α and ν = − zn with n = 1, 2, 3, . . .. In the second integral Eq. (51) we evaluate enclosing the
contour into the right-half plane; the singularities associated with the second integrand for Re( ν) > ε1
are simple poles at ν = n and ν = νn with n = 1, 2, 3, . . .. Taking these into account and using the
residue theorem we arrive at

f(α) =
Γ(1 − α)I−α(sl) (sc/2)α

2M+(α, γ)Pα−1/2(cos γ)
+

∞∑
n=1

Γ(1 + zn)Izn(sl) (sc/2)−zn

2{M−(zn, γ)}′Pzn−1/2(cos γ)(zn + α)
+

+
∞∑

n=1

(−1)nIn(sl) (sc/2)n

2Γ(n)M+(n, γ)Pn−1/2(cos γ)(n − α)
+

+
∞∑

n=1

πIνn(sl) (sc/2)νn

2 sin(πνn)Γ(νn)M+(νn, γ)∂νPνn−1/2(cos γ)(νn − α)
.

(53)

Here f(α) is a regular function in the left complex half-plane (Re(α) < 0); the series included into this
function are absolutely convergent, if l/c < 1. In order to derive the second kind linear algebraic system
from Eq. (48) we need to determine the function in Eq. (53) at α = −p(−νp,−μp) for p = 1, 2, 3, . . ..
It is necessary to note that the first term in the right-hand side of the equality in Eq. (53) is limited
at α = −νp because lim

α→ −νp

M+(α,γ)Pα−1/2(cos γ) = ∂αPνp−1/2(cos γ)/
{
M−1

− (νp,γ)
}′ �= 0 and the

singularity of this term at α = −zn is suppressed by the singularity of the n-th term of the first series in
Eq. (53). If α = −μp, the first term in the equality of Eq. (53) equals zero because lim

α→−μp

M+(α, γ) → ∞.

6. TRANSITION TO THE HEMISPHERIC CAVITY WITH A FLANGE (γ = π/2)

For this particular case the wave diffraction problem is reduced to the key relations in Eq. (48) with
the kernel function in Eq. (35) as

M(ν, π/2) = M+(ν, π/2)M−(ν, π/2) =
Γ2(ν/2 + 3/4)Γ2(−ν/2 + 3/4)

(ν2 − 1/4)Γ(ν + 1/2)Γ(−ν + 1/2)
.

Here

M±(ν, π/2) = i
2±νΓ2(±ν/2 + 3/4)

(±ν + 1/2)Γ(±ν + 1/2)
,

where M−(ν, π/2), M+(ν, π/2) are split functions regular in the overlapping semi-planes Re(ν) < 1/2,
Re(ν) > −1/2; their simple zeros and poles are located in the supplemental half planes at zn =
±(2n + 1/2), ξp = ±(2p − 1/2) respectively, p, n = 1,∞; M−(ν, π/2) = M+(−ν, π/2) = O(ν−1/2), if
|ν| → ∞ in the regularity region.
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7. TRANSITION TO THE SHARP TRUNCATED CONE

The obtained set of linear algebraic equations gives the exact solution to the Wiener-Hopf Eq. (34).
The three first terms in the left-hand side of Eq. (48) describe the wave diffraction from the aperture of
the semi-infinite truncated cone and the forth term identifies the wave diffraction from the spherical cap
termination. It is easy to see that for the thin conical wire (γ → π) the last term in the left-hand side
of this equation decreases and can be omitted; in these cases we neglect the effects of wave interaction
with the spherical cap and arrive at

�

E
−
1 (α, γ)M−(α, γ) +

∞∑
n=1

(−1)n
�

E
+

1 (n, γ)M−(n, γ)(sc/2)2n

Γ(n)Γ(n+ 1)(n− α)
+

+
∞∑

n=1

π
�

E
+

1 (ξn, γ)(sc/2)2ξn

Γ(ξn)Γ(ξn + 1) sin(πξn)
{
M−1

− (ξn, γ)
}′ (ξn − α)

= A
(e)
0 f(α). (54)

This equation coincides with the early obtained equation for the solution of the wave diffraction problem
by the hollow truncated cone with any opening angle [14, 15].

8. LOW-FREQUENCY APPROXIMATION

For this purpose let us consider the solution of our problem for static limit (|s| → 0). To find this
solution, we introduce the new unknown functions

X±(ν, γ) = lim
s→0

�

E
±
1 (ν,γ) �= 0.

Using the asymptotic behaviour of the modified Bessel functions and their derivatives for the small
argument, we arrive at

{√scKμn(sc)}′
{√scIμn(sc)}′ ∼ −(2μn − 1)Γ(μn)Γ(μn + 1)

2(2μn + 1)

(sc
2

)−2μn

. (55)

Let us substitute Eq. (55) into Eq. (48). Then, taking into account Eqs. (49), (53) and neglecting the
terms with (sc/2)2ηn , ηn = n, (νn, μn) we arrive at the linear algebraic system, which keeps only the
unknowns X+(μp,γ), where p = 1, 2, 3, . . .. as

X+(μp,γ) − sinγ
∞∑

n=1

bpnX
+(μn,γ) = dp, (56)

where

bpn =
π(2μn − 1)P 1

μn−1/2(− cos γ)

(μ2
n − 1/4)(2μn + 1)(μn + μp)M+(μp,γ)M+(μn,γ)∂μPμn−1/2(− cos γ)

, (57a)

dp =
A

(e)
0

2M+(μp,γ)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−
∞∑

n=1

(c/l)νn

Γ 2(νn)M+(νn,γ)(νn + μp)∂ν Pν−1/2(cos γ)
∣∣
ν=νn

, if l > c,

∞∑
n=1

(l/c)zn

{M−(zn,γ)}′ Pzn−1/2(cos γ)(zn − μp)
, if l < c.

(57b)

The unknownsX+(p,γ), X+(νp,γ) can be expressed through the X+(μp,γ) by the relation (48). Eq. (56)
gives the exact solution of the initial Wiener-Hopf Eq. (34) for the static limit.



262 Kuryliak, Kobayashi, and Nazarchuk

9. FIELD REPRESENTATION

Let us turn to determination of the wave field U(r, θ) for 0 ≤ θ ≤ γ, 0 < r < ∞. Applying the inverse
K-L transform to Eq. (8) and taking into account Eqs. (11), (21) and (38), we derive that

U(r, θ) = U1(r, θ) + U2(r, θ). (58)

Here

U1(r,θ) =
1

2πi
√
sr

∫
Γ∗

�

E
+

1 (ν,γ)
νPν−1/2(cosθ)Γ(−ν)

(ν2 − 1/4)Pν−1/2(cosγ)

(sc
2

)ν
Iν(sr)dν, (59a)

U2(r,θ) =
1

2πi
√
sr

∫
Γ∗

�

E
−
1 (ν,γ)

νPν−1/2(cosθ)Γ(ν)
(ν2 − 1/4)Pν−1/2(cosγ)

(sc
2

)−ν
Iν(sr)dν, (59b)

where Γ∗ ⊂ Π.
It is seen that the singularities associated with the integrands Eqs. (59a) and (59b) for Re(ν)>< Γ∗

are the simple poles at ν = ±1/2, ν = ±n, ν = ±νn with n = 1, 2, 3, . . ., respectively. Then, evaluating
the integral Eqs. (59a) and (59b) by enclosing the contour into the right and left half-planes respectively
and applying the residue theorem we arrive at the representation of the field potential in Eq. (58) in
form as

U(r,θ) = − 2√
sr

∞∑
n=1

�

E
+

1 (νn,γ) (sc/2)νn Pνn−1/2(cosθ)
(ν2

n − 1/4)Γ(νn)∂ν Pν−1/2(cosγ)
∣∣
ν=νn

Kνn(sr). (60)

Here r > c and the terms associated with the poles at ν = ±1/2 are omitted because they are
independent of coordinate θ and do not contribute to the field components representation. To obtain
this formula the terms associated with the residues of the integrands in Eqs. (59a) and (59b) at ν = n
and ν = −n respectively were canceled, and the terms associated with the residues at ν = νn and
ν = −νn were used for the formation of the Macdonald’s function Kνn .

The correlation in Eq. (60) allows for obtaining the field components anywhere for r > c in the form
of absolutely convergent series using the relations in Eq. (2). Taking this into account and applying the
estimation of the solutions of Eq. (50), we find that the singularity of the normal to the conical edge
field components is

lim
r→c+0, θ=γ

|Er|, |Eθ| ≤ C
∞∑

n=1

∣∣∣∣�

E
+

1 (νn, γ)
∣∣∣∣ e−nπ

γ
| ln(c/r)| ∼ | ln(c/r)|−1/3, (61)

where C is the known constant. Then, the expression for far-field patterns looks as follows

Hϕ = Z−1Eθ =
�

D(θ)eikr/r for r → ∞. (62)

Here
�

D(θ) =
�

D1(θ) +
�

D2(θ), where
�

D1(θ) and
�

D2(θ) are Hϕ far field distribution for diffracted and
incidence fields respectively,

�

D1(θ) =
√

2πZ−1
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n=1

�

E
+

1 (νn,γ) (sc/2)νn P 1
νn−1/2(cosθ)

(ν2
n − 1/4)Γ(νn)∂ν Pν−1/2(cosγ)
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ν=νn

, (63a)

�

D2(θ) = −
√

2πZ−1A
(e)
0

∞∑
n=1

νnPνn−1/2(−cos γ)Iνn(sl)P 1
νn−1/2(cosθ)

cos(πνn)∂ν Pν−1/2(cosγ)
∣∣
ν=νn

. (63b)

For the next numerical analysis we suppose that the cone would be placed in the hypothetical
environment with the unit dielectric and magnetic parameters excited by the dipole field in Eq. (6)
with p0k = 1/(4π) [A].

The scattered characteristics are analysed by the numerical solution of the finite system of linear
algebraic equations obtained by the truncated method from Eq. (50) and by the equations obtained, if
the dipole is located at the θ = π. The order of reduction has been chosen as N = [|sc|+ q] with q ≥ 10

Let us consider the closed truncated cone Q with γ > π/2. This cone can be seen as a model of the
concave spherical reflector with the cone flange. The scatterer is excited by the radial electric dipole
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(b)(a)

(d)(c)

Figure 2. Far-field pattern of the closed truncated cone with kc = 18, γ = 160◦; (a) kl = 0.5;
(b) kl = 9.0; (c) kl = 12.0; (d) kl = 17.0; dipole location: (1) r = l, θ = 180◦, (2) r = l, θ = 0◦.

which is placed at the axis of the symmetry of the cone. The shadow region of this reflector is limited
by the conical surface; the cone forms the barrier for wave penetration into the region γ < θ ≤ π. In
Figs. 2(a)–(d) the numerical examples of the total far field D = |�

D(θ)| with 0 ≤ θ ≤ γ are shown. For
the convenience of this study, we represent the features of the far field formation by the two curves in
each of the Figs. 2(a)–(d) with the same parameter kl; curves 1 and 2 show the total far fields, if the
dipole is located at the axis θ = π and θ = 0 or, in other words, if the dipole is located closer to or
further from the reflector. From these figures we observe how the changes of the dipole location at these
axes influence |D(θ)|. Thus, the behaviour of the curves in these figures for the narrow flange spherical
reflector (γ = 160◦) weakly influences the dipole far field distribution in the semi-infinite conical region,
if its location is not far from center of the scatter (r = 0) for both semi-axes θ = π and θ = 0 (see
Fig. 2(a)).

Let us shift the dipole at the axis θ = π closer to the reflector. This leads to weak oscillations of
the far field (see curves 1, Figs. 2(b), (c), (d)), the effective radiation into the narrow sector of angles
spanning the axis θ = 0◦, and to the formation wide angle area, where the field practically does not
penetrate (see curve 1, Fig. 2(d)). This effect could be explained by the focusing properties of the
concave spherical mirror. Let us put the dipole at the axis θ = 0 and move it further from the reflector.
In this case, we observe sharp oscillations of the far field for all the observation angles (see curves 2 in
Figs. 2(c), (d)). This shows the intensive interference of the waves scattered from different elements of
our structure, such as the circular edge, conical and concave spherical surfaces.

In order to confirm our conclusions we analyse the wider reflector with the opening angle γ = 130◦
and the same radius kc = 18. We find the similar scattering properties (see Figs. 3(a)–(d)). Note that
curves 1 in Figs. 3(c), (d) show the far-field patterns of the dipole which is encompassed by the spherical
mirror because kc cos(π − γ) < kl.

Similar to the characteristics in Fig. 2(d), we find the effective radiation near the axis θ = 0 and
the formation of the wide angle area, into which the field practically does not penetrate (see curves 1,
Figs. 3(c), (d)). We also observe the sharp oscillations of the far field, if the dipole is located at the
axis θ = 0 and moves further from the aperture (see curves 2, Figs. 3(c), (d)).

Let us now investigate the scattering properties of the hemispheric cavity with the plane flange,
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(b)(a)

(d)(c)

Figure 3. Far-field pattern of the closed truncated cone with kc = 18, γ = 130◦; (a) kl = 0.5;
(b) kl = 6.0; (c) kl = 12.0; (d) kl = 17.0; dipole location: (1) r = l, θ = 180◦, (2) r = l, θ = 0◦.

(b)(a)

(d)(c)

Figure 4. Far-field pattern of the closed truncated cone with kc = 18, γ = 89◦; (a) kl = 0.1;
(b) kl = 3.0; (c) kl = 6.0; (d) kl = 12.0; dipole location: (1) r = l, θ = 180◦, (2) r = l, θ = 0◦.

which we create from our cone, if γ → π/2. Some representative numerical results of the far-field
patterns for this case are shown in Figs. 4(a)–(d). From the behaviour of the curves we observe that
changing of the dipole position at the axis leads to the essential change of the far field patterns. The
change of the directions of the main radiation clearly shows this for both cases, if the dipole is located
at the axis θ = 0 and θ = π.
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Let us consider the scatter Q with γ < π/2 which is the model for the analysis of wave radiation
from the spherical resonator into the semi-infinite conical horn; it is important to maximize the radiated
power into the horn. For this purpose we analyse the radiation of the resonance modes that can be
excited in the closed spherical resonator through the circular hole in the conical horn. Radiations trough
the circular hole in the spherical resonator in continuum were analysed early in [28]. In Figs. 5(a), (b)
the radiation of the TM10n resonance mode into the conical horns with the different opening angles is
shown. Here the indexes n = 1, 2, 3, 4 determine the number of the corresponding spherical resonance
radiuses for the closed spherical resonator; all these resonance modes are similarly dependent on the
polar angle θ as P 1

1 (cos θ) = − sin θ [27]. From these figures we observe that the effectiveness of the
radiation of the spherical modes as well as the properties of their transformation at the circular edge
into the conical modes essentially depend on the conical horn opening angle and on the hole radius.
These two parameters can be applied to govern the far field distribution.

(b)(a)

Figure 5. Far-field radiation from the spherical resonator into the conical horn; TM10n resonance
modes are determine by the indexes n = 1, 2, 3, 4 with kl = 0.5 (a) γ = 50◦; (b) γ = 30◦; dipole
location is as r = l, θ = 0◦ (1) kc = 2.743, (2) kc = 6.117, (3) kc = 9.317, (4) kc = 12.486.

In order to select the required frequencies for the effective radiation into the horn we represent the
dependences of the far field |D(γ)| at the conical face on the dimensionless parameter kc, if l/c = const
(see Figs. 6(a), (b)). From these figures we observe the number of peaks |D(γ)|. These peaks show the
discrete resonances that allow for the effective radiation through the circular hole into the conical horn.
In Fig. 6(a) and Fig. 6(b) the maximum peaks correspond to radiation into the conical horn TM101

and TM201 resonance modes determined for the closed spherical resonator respectively. As follows from
these figures variations of the conical horn opening angle and the radius of the circular hole of the
spherical cavity allow for selecting of the effectively radiating modes; this means that our cavity works
like the frequency filter.

(b)(a)

Figure 6. Dependencies of the |D(γ)| on the parameter kc if l/c = 0.5; (a) γ = 50◦; (b) γ = 30◦; dipole
location is as r = l, θ = 0◦.
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10. CONCLUSIONS

In this paper the new canonical wave diffraction problem for circular truncated cone with closed aperture
by the spherical cap is solved rigorously using the Wiener-Hopf technique and the Kontorovich-Lebedev
integral transformation. The modified Wiener-Hopf Eq. (42) is derived and reduced to the solution of
the three sets of linear algebraic equations of the second kind using the truncation methods. This allows
for obtaining of the solution in the required class of sequences that ensure the satisfactory conditions
for the field components including the edge condition. The transition to the important particular cases,
namely the flanged hemispheric cavity, sharp truncated cone, and the low frequency approximation are
considered. By means of numerical calculation, the scattering characteristics of the flanged spherical
reflectors and the radiation properties from the open spherical resonator into the semi-infinite conical
horns are analysed.
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