
Progress In Electromagnetics Research M, Vol. 78, 1–10, 2019

New Robust Adaptive Beamforming Method for Multipath Coherent
Signal Reception

Min Tang*, Dong Qi, Chengcheng Liu, and Yongjun Zhao

Abstract—In this paper a novel robust beamforming method is devised to receive multipath signals
effectively. The new algorithm constructs a transformation matrix derived through high-order angle
constraint to suppress the interferences with the directions of arrival (DOA) of interference signals.
Using the transformed data, the composite steering vector of the multipath signals is estimated as the
principal eigenvector of the signal subspace, and then is utilized in minimum variance distortionless
response (MVDR) beamforming to compute the optimal weight vector. The new algorithm is improved
in robustness to DOA error by forming wide nulls in incident directions of the interferences, and keeps
effective in the presence of coherent interferences. Simulations analyses are provided to illustrate the
robustness and effectiveness of the new beamformer.

1. INTRODUCTION

Adaptive beamforming technique, which implements adaptive enhancement of the desired signal and
suppression of the interferences and noises, has been utilized in numerous domains [1, 2]. In filed
engineering, the presence of coherent signals always causes rank-deficiency of the covariance matrix
which leads to signal cancellation in conventional adaptive beamformers [3, 4]. Common in practice,
multipath propagation is one of the main causes of coherent signals, which implies that the received
data contain direct, reflected and refracted of the desired signal. Meanwhile interference on the same
frequency is the other main source of the coherent interferences. To eliminate the signal cancellation,
varieties of beamforming techniques are proposed, most of which regard the multipath signals as
interferences to be suppressed, such as spatial smoothing [5, 6], Toeplitz matrix reconstruction [7],
and Duvall algorithm [8, 9]. However from another perspective, multipath signals all contain useful
information of the desired signal to be exploited [10]. So theoretically, an effective receiver should
combine the desired signals from different paths to maximize the output signal to interference plus
noise ratio (SINR) [11]. Related studies have been developed in recent years that are summarized
below.

So far most of the multipath beamforming algorithms assume that the incident directions of signals
from each path are obtained as prior information. A linearly constrained minimum variance (LCMV)
beamforming technique based on complex vector estimation has been proposed in [12]. In this algorithm
the complex envelope vector is computed with the directions of arrival (DOA) of multipath signals which
have been estimated already. Then the optimum beamforming is performed with the LCMV principle.
In [13], a main-lobe-amplitude-constraint based adaptive beamforming algorithm has been introduced.
Using the DOAs of multipath signals, this technique optimizes the received data covariance matrix
with uncertainty set and the main lobe amplitude constraint is applied in the computation of the
optimal weight vector. Both of these algorithms rely on the DOA prior information of the multipath
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signals, making them sensitive to the angle error. In engineering, the exact incident directions of
all the multipath signals are generally unavailable, which limits the application of these techniques.
Different from the former ones, the algorithm in [14] estimates the DOAs of multipath signals through
the maximum likelihood technique with DOA of the desired signal. The iterative quadratic maximum
likelihood (IQML) algorithm is utilized to deduce the orthogonal projection matrix of all incident signals.
On this basis, the estimation values of DOAs of multipath signals are drawn, after which the optimal
weight vector is computed via the minimum mean square error (MMSE) beamformer. However, this
method suffers from high computational complexity and fails in the presence of coherent interferences.

On the other hand, a three stage blind beamforming method for receiving multipath signal has
been developed in [15]. Firstly the covariance matrix of the coherent signals is constructed with the
received signals. Then the composite steering vector of the coherent signals is estimated based on the
theorem that the composite steering vector of the multipath signal is orthogonal to its noise subspace.
Finally the optimum beamforming is performed through the minimum variance distortionless response
(MVDR) principle. This method does not require the DOAs of multipath signals, but the output SINR
is low, which is caused by the low accuracy in the estimation of composite steering vector. In [16]
the scholars proposed an eigenspace based multipath signal beamforming method. Assuming that the
DOA of direct signal is known, the algorithm estimates the direct wave of the desired signal by spatial
smoothing technique. Then the cross-correlation between it and the received signals is computed, with
which the MMSE beamformer is applied to obtain the optimum weight vector. This method needs
less prior information of incident directions but its robustness is low. Moreover, the algorithms above
cannot suppress the coherent interferences.

To solve the problems in the existing methods, a new beamformer for multipath signal reception
based on high order angle constraint is proposed in this paper. In general, it is more difficult and
computationally expensive to estimate the incident directions of coherent signals than the uncorrelated
signals which can be realized by conventional methods [17]. So in this technique the DOAs of the
interferences are assumed to be obtained in advance. In order to form wide nulls in the incident
directions of interferences, firstly a transform matrix is constructed based on high order angle constraint
with the principle that the interferences are suppressed with low distortion of the multipath signals.
In an ideal case the transformed signals only consist of multipath signals and Gaussian noise. So
through eigen-decomposition of its covariance matrix, the composite steering vector of the multipath
signal is estimated as the eigenvector corresponding to the maximum eigenvalue. Finally the optimum
beamforming is performed by MVDR beamformer with the estimated composite steering vector. The
new method is improved in robustness of angle error and is able to suppress coherent interferences.

2. DATA MODELING AND MVDR BEAMFORMING

Consider a uniform linear array composed of M identical sensors, on which P narrowband coherent
signals and Q narrowband uncorrelated plane waves impinge at the tth time instant. Despite the array
error caused by element coupling and channel uncertainty, the output of the beamformer can be written
as

y(t) = wHx(t) (1)

where {·}H represents the complex conjugate transpose, and w = [w1, w1, . . . , wM ]T is the array weight
vector. y(t) denotes the output signal of the array, while x(t) is the M × 1 received signal vector. In
addition, x(t) can be expressed as the superposition of the signals

x(t) =
P∑

p=1

βpa(θp)sd(t) +
Q∑

q=1

a(ϕp)sq(t) + n(t) (2)

where sd(t), sq(t), q = 1, 2, . . . , Q and n(t) indicate the direct wave of the desired signal, the qth
uncorrelated interference and white Gaussian noise, respectively. Moreover, βp, p = 1, 2, . . . , P is the
complex coefficient of the pth coherent signal. θp, p = 1, 2, . . . , P and ϕq, q = 1, 2, . . . , Q represent the
DOAs of coherent signals and uncorrelated interferences respectively. a(θ) = [1, 2, . . . , exp(−j2π(M −
1)ρ sin θ)]T is used to illustrate the steering vector of signal from incident direction θ with ρ = d

λ , in
which d is the element spacing and λ is the wavelength.
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For simplification, β = [β1, β2, . . . , βP ]T is used to denote the matrix of the complex coefficient
vectors of multipath signals, resulting in

x(t) = Adsd(t)β + AIsI(t) + n(t) (3)

where sI(t) = [s1(t), s2(t), . . . , sQ(t)]T is the matrix of data vectors of the uncorrelated interferences.
Ad = [a(θ1), a(θ2), . . . , a(θP )] and AI = [a(ϕ1), a(ϕ2), . . . , a(ϕQ)] indicate the matrices of steering
vectors of the multipath signals and interferences respectively.

Rx(t) = E[x(t)xH(t)] = σ2
dAdββHAH

d + AIRIA
H
I + σ2

nIM (4)

is the covariance matrix of x(t) with RI = E[sI(t)sH
I (t)] the covariance matrix of uncorrelated

interferences. In addition, σ2
d = E[sd(t)sH

d (t)] is the power of the direct wave of the desired signal,
σ2

n the power of Gaussian white noises, and IM the M×M identity matrix. Using RI+n to denote the
covariance matrix of interference plus noise, it can be written as

RI+n = E[x(t)xH(t)] = AIRIA
H
I + σ2

nIM (5)

Inspired by this, the output synthetic signal of multipath signals to interference plus noise ratio is

SINR =
wHσ2

dAdββHAH
d w

wHRI+nw
(6)

The problem of maximizing the output SINR is equivalent to the constraint model below

min wHRI+nw s.t. wHas = 1 (7)

where as is the composite steering vector of multipath signal. With the MVDR beamforming technique,
the optimal weight vector is obtained as

w =
R−1

x as

aH
s R−1

x as

(8)

In practical engineering, the covariance matrix Rx can be estimated as follows with data of L
snapshots

R̂x =
1
L

L∑

t=1

x(t)xH(t) (9)

According to Eq. (8), the optimal weight vector is

w =
R̂−1

x as

aH
s R̂−1

x as

(10)

3. PROPOSED APPROACH

3.1. The New Algorithm

In the absence of coherent interferences, the estimated value of the incident direction of the qth
uncorrelated interference is denoted as ϕ̂q, q = 1, 2, . . . , Q. The corresponding steering vector is a(ϕ̂q),
making ÂI = [a(ϕ̂1), a(ϕ̂2), . . . , a(ϕ̂Q)] the matrix of steering vectors of the uncorrelated interferences.

Denote the transformation matrix as T . To suppress the interferences in the received signal and
reduce the distortion of multipath signals in the meantime, the construction of T can be transformed
into the following optimization problem based on angle constraint

minE[‖Tx(t) − x(t)‖2] s.t. T ÂI = 0 (11)

where ‖ · ‖ represents the Euclid norm of the vector, and 0 is a M × Q zero matrix. To suppress the
interference with low estimation accuracy of ϕ̂q effectively, the derivative constraint could be applied to
widen the nulls. So the new constraint matrix is written as

BI = [ÂI , dÂI ] (12)
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where dÂI = [da(ϕ̂1)
dϕ̂1

, da(ϕ̂2)
dϕ̂2

, . . . ,
da(ϕ̂Q)

dϕ̂Q
]. Inspired by this, the angle constraint model in Eq. (11) changes

into
min E[‖Tx(t) − x(t)‖2] s.t. TBI = 0 (13)

With analysis of the objective function, the following formula is derived

E[‖Tx(t) − x(t)‖2] = σ2
d‖Tas − as‖2 + σ2

ntr[(T − IM )(T − IM )T ] + tr[AIsI(t)AH
I ] (14)

Since tr[AIsI(t)AH
I ] does not involve the transformation matrix T , the objective function is

transformed into
min σ2

d‖Tas − as‖2 + σ2
ntr[(T − IM )(T − IM )T ] (15)

Using the Lagrange multiplier method to solve the optimization problem, the following conclusion
is drawn

T = IM − BI(BH
I R−1

x BI)−1BH
I R−1

x (16)

With estimation of the sample covariance matrix in Eq. (9), T is written as

T = IM − BI(BH
I R̂−1

x BI)−1BH
I R̂−1

x (17)

The covariance matrix of the transformed signal is

Rxt = E[Tx(t)xH(t)TH ] = TE[x(t)xH(t)]TH = TRxTH (18)

In the presence of coherent interferences, the algorithm above is still effective in multipath
signal beamforming if the rough estimation of the incident directions of the coherent interferences
is available. It is assumed that there exist K multipath signals in the P coherent signals, and the
remaining P − K ones are coherent interferences. θ̂p, p = K + 1, . . . , P − K denotes the estimated
DOAs of the coherent interferences, so the matrix of steering vector of the interferences is written as
ÂII = [a(θ̂K+1), . . . , a(θ̂P ), a(ϕ̂1), . . . , a(ϕ̂Q)]. Construct the new constraint matrix

BII = [ÂII , dÂII ] (19)

and solve the new optimization problem with Lagrange multiplier method similarly.

T = IM − BII(BH
IIR̂

−1
x BII)−1BH

IIR̂
−1
x (20)

is obtained, with which the coherent interferences and the uncorrelated interferences are suppressed.
The study above proves that the transformation can achieve an effective blocking of the

interferences. As a result, the processed signals mainly consist of the multipath signals and white
Gaussian noise. So if eigen-decomposition is adopted to the covariance matrix of the transformed
signals, the eigenvector that corresponds to the largest eigenvalue could be regarded as the principal
eigenvector of the signal subspace, which means it can be used as an estimation of composite steering
vector of multipath signal.

Eigen-decompose the covariance matrix Rxt

Rxt =
M∑

i=1

λiuiU
H
i (21)

where λi, i = 1, 2, . . . ,M is the ith eigenvalue of Rxt, and λ1 > λ2 ≥ . . . = λM = σ2
n. ui denotes the ith

eigenvector corresponding to λi. So the composite steering vector is estimated as âs = u1. Substitute
âs into Eq. (10) and the optimal weight vector is

wopt =
R̂−1

x âs

âH
s R̂−1

x âs

(22)

To conclude, the procedure of the algorithm is as follows:

(1) Compute the sample covariance matrix R̂x with the received signal data.
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(2) i) In the absence of coherent interferences, use the DOAs of uncorrelated interference signals to
construct the matrix of steering vectors BI , and calculate the transformation matrix T . ii) If the
received signal contains coherent interference, then construct the matrix of steering vectors BII ,
and calculate the transformation matrix T .

(3) Preprocess the received signal with the transformation matrix, and compute the covariance matrix
Rxt that only consists of multipath signals and noises.

(4) Eigen-decompose the matrix Rxt, and estimate the composite steering vector âs as the eigenvector
u1 corresponding to the largest eigenvalue λ1.

(5) Calculate the optimal weight vector wopt with the sampling covariance matrix R̂x and the estimation
of composite steering vector âs.

3.2. Computational Complexity Analysis

According to the theoretical derivation, the proposed method could be divided into three parts:
transformation matrix construction, composite steering vector estimation and the MVDR beamforming.
In this section, the computational complexity is measured by the amount of complex multiply (CM).
Firstly the computational complexity in calculating the sample matrix is O(LM2), where L and M
denote the number of snapshots and array elements. The computational complexity in transformation
matrix construction is O((M + P + Q)3), where P and Q denote the number of coherent interferences
and uncorrelated interferences respectively. As for the estimation of composite steering vector, as it is
completed by eigen-decomposition, the computational complexity is O(M3). And the computational
complexity of MVDR beamforming is O(3M3+M2+M). Therefore the total computational complexity
of the proposed method is O(4M3 + (3P + 3Q + L + 1)M2 + (3(P + Q)2 + 1)M + (P + Q)3). Table 1
demonstrates the computational complexity of the three algorithms, where m denotes the number of
sub-arrays in the eigen-based beamformer.

Table 1. Computational complexity of the algorithms.

Algorithm Computational Complexity in CM
LCMV O(2(M)3 + (P + Q)M2 + (P + P 2)M + P 3)

Eigen-based O((m + 1)(M)3 + (P + Q + m + 1)M2 + (m2 − m3)M + 3m3 + m2 + m)
Proposed O(4M3 + (3P + 3Q + L + 1)M2 + (3(P + Q)2 + 1)M + (P + Q)3)

With the table above, it is known that the LCMV beamformer is not computationally expensive at
the cost of lower beamforming performance. Since the eigen-based beamformer is realized with sub-array
technique, it is deduced from the forward and backward spatial smoothing that m > 3(P + Q + 1)/2.
As a result the computational burden of the proposed method falls in between those of the two former
beamformers.

4. SIMULATION RESULTS

Simulations are proposed in this section to evaluate and contrast the beamforming performance with the
LCMV algorithm in [12] and eigen-based algorithm in [16]. Consider a uniform linear array composed
of 16 sensors (M = 16). One desired signal, two coherent signals and two uncorrelated interferences
are presented at [10◦,−30◦, 40◦,−50◦, 60◦] respectively. The complex correlation coefficient vector is
β = [1, 1, 1]T . In addition, the interference-to-noise ratios (SNR) of all coherent signals are fixed at 5 dB
and SNRs of the uncorrelated interferences are fixed at 10 dB unless noted otherwise. The noise is white
Gaussian noise. The LCMV algorithm and eigen-based algorithm (in which the spatial smoothing is
realized with five twelve-element sub-arrays) are taken for comparison. Generally the SNR of the
desired signal is set at 10 dB while data of 300 snapshots are used for simulation. The output SINR of
the simulations are obtained through 100 Monte-Carlo simulations.
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Example 1: In this example the beam pattern of the three algorithms under different interference
circumstances is simulated. Firstly regard the two coherent signals as multipath signals, and the
simulated beam pattern is shown in Fig. 1; then regard the coherent signal at −30◦ as multipath
signal while the coherent signal at 40◦ as coherent interference, and the simulated beam pattern is
shown in Fig. 2. In addition, the null depth of all interferences on different conditions is summarized in
Table 2 and Table 3 to compare the effectiveness of algorithms in interferences suppression.
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Figure 1. Beam pattern in the absence of coherent interference.
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Figure 2. Beam pattern in the presence of coherent interference.

Figure 1 indicates that when the received signal contains no coherent interferences, all the three
algorithms can achieve effective beamforming. LCMV algorithm forms nulls at the directions of
uncorrelated interferences, but its main lobe shifts resulting in low gain of the direct wave signal.
Eigen-based algorithm is able to form gain peaks at the DOAs of multipath signals, but its gain of side
lobe is relatively high. For the proposed technique, the main lobe is at the direction of the direct wave
and it has higher gains of the multipath signals with lower gain of the side lobe.

In Fig. 2 it is obvious that in the presence of coherent interferences, LCMV algorithm and eigen-
based algorithm are still able to enhance the multipath signals, but they fail to suppress the coherent
interferences, which means they are invalid. Compared with the two beamformers, the proposed
technique can still keep its effectiveness, forming a wide null at the DOA of coherent interference,
which verifies its effectiveness in suppressing coherent interferences.

Both Fig. 1 and Fig. 2 demonstrate that the new algorithm presents wider and deeper nulls at the
DOAs of interferences as predicted, which is further elaborated in Table 2 and Table 3. It is concluded
that in most of the cases the null depth of the eigen-based beamformer is lower than the LCMV
beamformer, while the new algorithm has the lowest null depth (usually 200 dB lower compared with
the former two algorithms), which is also the widest. The results validate the interference suppression
capability of the new beamformer. So the inference that the new beamformer is more robust to DOA
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Table 2. Null depth of the interferences in the absence of coherent interference.

DOA Null depth of LCMV Null depth of Eigen-based Null depth of the proposed
−50◦ −33.89 dB −47.22 dB −253.20 dB
60◦ −44.40 dB −43.36 dB −251.30 dB

Table 3. Null depth of the interferences in the presence of coherent interference.

DOA Null depth of LCMV Null depth of Eigen-based Null depth of the proposed
−50◦ −32.16 dB −35.17 dB −251.40 dB
40◦ −17.54 dB −14.53 dB −214.80 dB
60◦ −33.65 dB −38.34 dB −239.10 dB

error can be drawn, which is further simulated in Example 3.
Example 2: This example considers the influence of different SNRs of the multipath signals. In

Fig. 3, we set SNR of the direct wave signal at 10 dB, and SNR of the other multipath signals at 5 dB.
Then change the SNR of the direct wave to 5 dB, and SNR of the multipath signal impinging from −30◦
to 10 dB. And the beam pattern is obtained in Fig. 4.
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Figure 3. Beam pattern with strong direct wave signal.
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Figure 4. Beam pattern with strong multipath signal.
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Ignoring the LCMV beamformer whose main lobe still shifts, with the comparison of Fig. 3
and Fig. 4 it is noticed that the main lobe of the eigen-based beamformer is always at the DOA of
direct wave signal while the main lobe of the proposed beamformer is at the incident direction of the
multipath signal with the highest input SNR. This is because the beamforming in eigen-based algorithm
is completed with the steering vector of the direct wave signal. However, for the proposed method, the
new beamformer utilizes the estimated composite steering vector of the multipath signals obtained by
eigen-decomposition. The higher SNR, the more the multipath signal contributes to the composite
steering vector. So the gain of the stronger multipath signal is higher than that of the direct wave. And
this characteristic could be made use of to improve the output performance when there exists strong
multipath signals caused by reflection to achieve higher output SINR.

Example 3: In this example the performance of the proposed algorithm is investigated with
different DOA errors. For the proposed technique, vary the DOA error of interferences from 0◦ to
3◦; for the other two algorithms, vary the DOA error of the direct wave signal from 0◦ to 3◦ without
changing other simulation conditions.
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Figure 5. Output SINR versus the error of DOA.

Figure 5 shows that the output SINRs of LCMV and eigen-based beamformer are lower than that
of the proposed technique and decrease rapidly as the DOA error increases. However, for the presented
algorithm, when the DOA error is small the output SINR remains nearly constant. With increase of
the estimation error, the decrease of SINR of the proposed method is small confirming its improved
robustness to DOA error. The conclusion is identical to the theoretical analysis and the simulation
result in Example 1.

Example 4: In this example the performance of the proposed algorithm is investigated with
different input SNRs. Set the estimation error of DOA at 0◦ with the two coherent signals as multipath
signals and vary the SNR of the desired signal from 5 dB to −15 dB without changing other simulation
conditions.

In Fig. 6, the consequence indicates that the output SINR of LCMV beamformer is the lowest and
almost stays constant with the increase of input SNR. For eigen-based beamformer, the output SINR
increases with the increase of input SNR, and barely changes after the SNR is above 12 dB. Differently,
the proposed technique could keep high output SINR because the beamformer forms higher gains at
the directions of reflection and refraction of the direct wave when the SNR of the desired signal is low.
Moreover when the SNR is above 5 dB, the output SINR increases. The result confirms the conclusion
in Example 3 that the output performance of the presented method is better as its output SINR is
higher on the most conditions.

Example 5: In this example the performance of the proposed algorithm is investigated with
different numbers of snapshots. Set the estimation error of DOA at 0◦ with the two coherent signals as
multipath signal. Vary the number of snapshots from 1 to 2 × 105 without changing other simulation
conditions.

Figure 7 shows the convergence speed of the algorithms. It can be seen that the convergence of
LCMV beamformer and eigen-based algorithm is relatively poor. By contrast, the output SINR of the
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Figure 6. Output SINR versus input SNR of the desired signal.
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Figure 7. Output SINR versus the number of snapshots.

proposed beamformer is lower than that of the eigen-based method under scenario of small snapshots
as the estimation accuracy of the sample covariance matrix is low under scenario of small snapshots.
However, as the number of snapshots increases, the SINR curve of the new method has fast convergence
and larger steady value. The eigen decomposition in the proposed algorithm improves its convergence.

5. CONCLUSION

In engineering, multipath propagation is an inevitable problem for array signal processing. In order
to make full use of the signal source related information from different paths, a robust beamforming
method for multipath signal reception is proposed in this paper. Based on the knowledge that the
incident directions of the uncorrelated signals are easier to obtain, the proposed approach constructs a
high order angle constraint model to form wide nulls at the direction of interferences, which improves the
robustness to DOA estimation error. In addition this method achieves a significant improvement over the
existing algorithms in its ability of suppressing coherent interferences with better output performance.
Simulation results have demonstrated the effectiveness of the new method.
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