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Scattering Matrix of 2N -Port Hybrid Directional Couplers

Leonardo Zappelli*

Abstract—The derivation of the scattering matrix of hybrid directional couplers with more than four
ports is rather difficult to find in the literature. Some particular cases can be found, but a general form
is not yet discussed. The aim of this contribution is to develop a simple procedure to write the 2N ×2N
S-matrix for hybrid directional couplers with N input and N output ports. This procedure is based
on the separation of the phase of the scattering coefficients in two terms. The first is related to the
presence of transmission lines, or phase shifters, connected to the coupler ports and the second to the
intrinsic nature of the coupler that imposes particular phase relationships to the scattering coefficients
to ensure that the S-matrix is unitary. These relationships are due to the presence of one polyphase
systems of order N or to m polyphase subsystems of order N/m, if N is multiple of m. Finally, it will
be shown that 2N port hybrid directional couplers with phase shift equal to 0 or π are possible only if
N is an integer power of 2.

1. INTRODUCTION

Hybrid directional couplers with N input ports and N output ports have been used since ’50 s to obtain
microwave devices able to feed output ports with proper amplitude and phases. Typical applications can
be found in the Beam Forming Network of antenna arrays [1–5], or in interferometric applications [6,7]
and measurement techniques. The main requirement is that all ports are matched, and the output
ports are excited with the same power. The phase can be adjusted with phase shifters connected to
the output ports to obtain the desired values. While the request on the amplitudes can be “translated”
in the scattering coefficients of the 2N × 2N S-matrix in a very simple way, i.e., |Si,j| = |Sj,i| = 1√

N
,

i = 1, . . . , N , j = N + 1, . . . , 2N , the expressions for the scattering coefficient phases are more involved.
Hence, is there a simple way to write the phase of the S-matrix of a hybrid directional coupler with N
input and N output ports? Many researchers have evaluated the S-matrix of hybrid couplers in some
cases, for example for 3× 3 or 4× 4 cases [2,8,9], but, to the Author’s knowledge, a general formulation
for the generic case has not been proposed. Actually, the S-matrix representing a Butler matrix, used
to design BFN, is strictly related to the scattering matrix of hybrid couplers [10], but this S-matrix
does not yet represent the general case. In fact, typical limitation of the Butler matrix is that N is an
integer power of two.

The aim of this contribution is to define a simple procedure that permits to quickly write the
2N×2N S-matrix (in amplitude and phase) of a hybrid directional coupler with N input and N output
ports, as will be shown in some examples for N = 5 and N = 6.
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2. THEORY

The S-matrix of an ideal hybrid directional coupler with N input and N output matched ports, excited
with the same power, is (ᵀ stands for transpose)

S =

[
0N×N Sio

N×N(
Sio

)ᵀ

N×N 0N×N

]
2N×2N

(1)

where Sio contains the input-to-output scattering coefficients

Sio =
1√
N

⎡
⎢⎢⎣
ejϕ1,N+1 . . . ejϕ1,2N

... ejϕi,N+k
...

ejϕN,N+1 . . . ejϕN,2N

⎤
⎥⎥⎦
N×N

(2)

It should be noted that matrix Sio could be not symmetric. In fact, reciprocity of the coupler requires
only that the block 2, 1 of the S-matrix in Eq. (1) is the transpose of the block 1, 2.

The condition that Eq. (1) must satisfy to be well defined is that the matrix representing the
complex power, CP , is unitary, i.e., CP = S ·S† = I, where † stands for transpose and conjugate. This
condition implies a number of relationships between the scattering coefficient phases, which could be
very complex. In fact, elements i, k of CP must satisfy

CPik =
1
N

N∑
m=1

ej(ϕi,N+m−ϕk,N+m) = 0 if
{

1 ≤ i ≤ N − 1
i+ 1 ≤ k ≤ N

(3)

CPN+i,N+k =
1
N

N∑
m=1

ej(ϕm,N+i−ϕm,N+k) = 0 if
{

1 ≤ i ≤ N − 1
i+ 1 ≤ k ≤ N

(4)

CPii = 1 (5)

Moreover, CPki = CP ∗
ik and the elements i, k of CP not included in Eqs. (3)–(5) are null by construction

of the S-matrix in Eq. (1). Eq. (5) is always satisfied for any i, while Eqs.(3) and (4) can be simplified
if we set

ϕi,N+k = ϕi,2N + ϕN,N+k − ϕN,2N + ψi,N+k if
{

1 ≤ i ≤ N − 1
1 ≤ k ≤ N − 1

(6)

Equation (6) states that the phase of the scattering coefficient Sio
i,N+k of matrix in Eq. (2) is obtained

summing the phases of the scattering coefficients of the i-th element of the last column (i, 2N) to the
k-th element of the last row (N,N + k) minus the last element of the N -th row (N, 2N) and adding an
unknown phase ψi,N+k. From Eq. (6), matrix Sio in Eq. (2) becomes

Sio =

⎡
⎢⎢⎢⎢⎢⎣

[
Sio
ik

]
(N−1)×(N−1)

ejϕ1,2N

√
N
...

ejϕN,N+1

√
N

. . .
ejϕN,2N

√
N

⎤
⎥⎥⎥⎥⎥⎦
N×N

(7)

where
[
Sio
ik

]
is (N − 1) × (N − 1) matrix whose generic element i, k is equal to

Sio
ik =

ejϕi,N+k

√
N

=
ej(ϕi,2N+ϕN,N+k−ϕ2N,2N+ψi,N+k)

√
N

with
{

1 ≤ i ≤ N − 1
1 ≤ k ≤ N − 1

(8)

The phase of Eq. (8) can be obtained from the knowledge of the phase of the last row and column of
matrix Sio. Hence, the last row and column of Sio contain 2N − 1 independent phases that can be
properly chosen in order to impose desired values to the phases of the scattering coefficients. These
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independent phases are related to transmission lines, or to phase shifters, connected to the coupler
ports, as will be discussed further on. From Eq. (6), Eqs. (3) and (4) split in:

CPik =
N∑
m=1

ej(ϕi,N+m−ϕk,N+m) =

= ej(ϕi,2N−ϕk,2N) +
N−1∑
m=1

ej[ϕi,2N +ϕN,N+m−ϕN,2N +ψi,N+m−(ϕk,2N+ϕN,N+m−ϕN,2N+ψk,N+m)]

= ej(ϕi,2N−ϕk,2N)
{

1 +
N−1∑
m=1

ej(ψi,N+m−ψk,N+m)
}

= 0 if
{

1 ≤ i ≤ N − 1
i+ 1 ≤ k ≤ N − 1

(9)

CPiN =
N∑
m=1

ej(ϕi,N+m−ϕN,N+m)

= ej(ϕi,2N−ϕN,2N) +
N−1∑
m=1

ej(ϕi,2N+ϕN,N+m−ϕN,2N+ψi,N+m−ϕN,N+m)

= ej(ϕi,2N−ϕN,2N)
{

1 +
N−1∑
m=1

ejψi,N+m

}
= 0 if

{
1 ≤ i ≤ N − 1
k = N

(10)

CPN+i,N+k =
N∑
m=1

ej(ϕm,N+i−ϕm,N+k) =

= ej(ϕN,N+i−ϕN,N+k)
{

1 +
N−1∑
m=1

ej(ψm,N+i−ψm,N+k)
}

= 0 if
{

1 ≤ i ≤ N − 1
i+ 1 ≤ k ≤ N − 1

(11)

CPN+i,2N =
N∑
m=1

ej(ϕm,N+i−ϕm,2N) =

= ej(ϕN,N+i−ϕN,2N)
{

1 +
N−1∑
m=1

ejψm,N+i

}
= 0 if

{
1 ≤ i ≤ N − 1
k = N

(12)

Hence, from Eqs. (10) and (12), the conditions that the unknown phases ψ must satisfy are:
N∑
m=1

ejψi,N+m = 0 ∀i with ψi,2N = 0 (13)

N∑
m=1

ejψm,N+i = 0 ∀i with ψN,N+i = 0 (14)

Equations (13) and (14) assert that the two phase systems constituted by ψi,N+m, m = 1, 2, . . . , N
and ψm,N+i, m = 1, 2, . . . , N form two polyphase systems of order N . A polyphase system of order N
is a set of complex number with unit amplitude and equispaced phases with interval equal to 2π/N .

If we define the N ×N matrix Ψ containing the phases ψi,N+k of Eqs. (13) and (14)

Ψ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ψ1,N+1 . . . ψ1,2N

...
...

...

. . . ψi,N+k . . .
...

...
...

ψN,N+1 . . . ψN,2N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
N×N

(15)
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and put ψi,2N = 0 and ψN,N+i = 0 in Eq. (15) as defined in Eqs. (13) and (14), matrix Ψ becomes

Ψ =

⎡
⎢⎢⎢⎢⎢⎣

ψ1,N+1 . . . ψ1,2N−1 0
... ψi,N+k

... 0

ψN−1,N+1 . . . ψN−1,2N−1 0

0 . . . 0 0

⎤
⎥⎥⎥⎥⎥⎦
N×N

(16)

From Eq. (16), conditions Eqs. (13) and (14) imply that any row or column of Ψ represents the phases
of a polyphase system of order N . With similar considerations on Eqs. (9) and (11), we can state that:

• from Eqs. (13) and (14), any column or any row of Ψ represents the phases of N -order polyphase
system

• from Eq. (9), the difference between two rows of Ψ represents the phases of N -order polyphase
system

• from Eq. (11), the difference between two columns of Ψ represents the phases of N -order polyphase
system

Application of these conditions gives the correct numerical values of Ψ for the coupler under
investigation. Moreover, we can define a matrix Φ of order N ×N related to Eq. (6)

Φ =

⎡
⎢⎣ [Φi,k](N−1)×(N−1)

ϕ1,2N

ϕi,2N

ϕN,N+1 . . . ϕN,N+k . . . ϕN,2N

⎤
⎥⎦
N×N

(17)

where [Φi,k] is (N − 1) × (N − 1) matrix with the generic element i, k equal to

Φi,k = ϕi,2N + ϕN,N+k − ϕN,2N with
{

1 ≤ i ≤ N − 1
1 ≤ k ≤ N − 1

(18)

Hence, the generic element Φi,k of Eq. (17) is obtained summing the i-th element of the last column
(i, 2N) of Eq. (17) to the k-th element of the last row (N,N + k) minus the last element of the N -th
row (N, 2N), and Eq. (6) can be written as

ϕi,N+k = Φi,k + ψi,N+k with
{

1 ≤ i ≤ N − 1
1 ≤ k ≤ N − 1

(19)

From Eqs. (6), (16) and (17), there are 2N−1 “free” phases of the scattering coefficients, corresponding
to the elements of the last row and the last column of the matrix Φ, defined in Eq. (17). The other
phases ϕi,N+k in Eq. (19) are related to these values and to the values of ψi,k that must be part of a
polyphase system of order N as previously discussed.

The matrix Φ can be related to the presence of 2N transmission lines, or phase shifters, connected
to the input and output ports of the coupler. In fact, if θp is the electrical length of a transmission
line connected to port p of the 2N -port coupler, with p = 1, 2, . . . , 2N , from Eq. (17) the following
relationships hold:

ϕi,2N = − (θi + θ2N ) (20)
ϕN,N+k = − (θN + θN+k) (21)
ϕN,2N = − (θN + θ2N ) (22)

Φi,k = ϕN,N+k + ϕi,2N − ϕN,2N = − (θi + θN+k) (23)

Hence, the phase Φi,k, which is a part of the overall phase of the scattering coefficient Si,k, is equal to
the phase due to two lines connected to ports i and k of lengths θi and θN+k.

On the contrary, the matrix Ψ is related to the particular device we are discussing, i.e., the 2N port
hybrid directional coupler, and it represents the coupler “kernel” that imposes particular relationships
to the phases of the scattering coefficients to ensure that S-matrix is unitary.
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3. EXAMPLES

For a hybrid directional coupler with 5 input and 5 output ports (N = 5), the polyphase system of
order 5 that satisfies Eqs. (9), (11), (13) and (14) and defines the matrix Ψ in Eq. (16) is constituted
by the following phases: 0, 2π

5 , 4π
5 , −4π

5 , −2π
5 . These phases must be placed in each column and in each

row of the matrix Ψ and must satisfy the conditions previously discussed, i.e., that any row, column,
difference of rows and difference of columns must form a polyphase system of order 5. The 0 phases are
put by definition in the last row and in the last column of the matrix Ψ, shown in Eq. (16). Hence, we
can try the following starting configuration:

Ψ5 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2π
5

4π
5

−4π
5

−2π
5

0

4π
5

. . . . . . . . . 0

−4π
5

. . . . . . . . . 0

−2π
5

. . . . . . . . . 0

0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

trial

(24)

The second column begins with 4π
5 , and the remaining three elements must be chosen among 2π

5 ,
−4π

5 , −2π
5 in a proper order to ensure that the difference between the second column and the first

column must be a polyphase system of order 5: a possible choice is −2π
5 , 2π

5 , −4π
5 :

Ψ5 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2π
5

4π
5

−4π
5

−2π
5

0

4π
5

−2π
5

2π
5

−4π
5

0

−4π
5

2π
5

−2π
5

4π
5

0

−2π
5

−4π
5

4π
5

2π
5

0

0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

final

(25)

In fact, the difference between the first and second columns is 2π
5 , 4π

5 , −4π
5 , −2π

5 , 0, that satisfy
the previous condition. Analogously, for the rows 2, 3, 4 of the third and fourth columns, a choice
could be 2π

5 , −2π
5 , 4π

5 (third column) and −4π
5 , 4π

5 , 2π
5 (fourth column). The obtained matrix is shown

in Eq. (25). It can be verified that the conditions on the rows and columns and their differences are
satisfied.

The overall Sio matrix corresponding to matrix Ψ in Eq. (25) can be obtained from Eq. (7)

Sio =
1√
5

⎡
⎢⎢⎢⎢⎢⎣

ej(ϕ51+ϕ15−ϕ55+ 2π
5

) ej(ϕ52+ϕ15−ϕ55+ 4π
5

) ej(ϕ53+ϕ15−ϕ55− 4π
5

) ej(ϕ54+ϕ15−ϕ55− 2π
5

) ejϕ15

ej(ϕ51+ϕ25−ϕ55+ 4π
5

) ej(ϕ52+ϕ25−ϕ55− 2π
5

) ej(ϕ53+ϕ25−ϕ55+ 2π
5

) ej(ϕ54+ϕ25−ϕ55− 4π
5

) ejϕ25

ej(ϕ51+ϕ35−ϕ55− 4π
5

) ej(ϕ52+ϕ35−ϕ55+ 2π
5

) ej(ϕ53+ϕ35−ϕ55− 2π
5

) ej(ϕ54+ϕ35−ϕ55+ 4π
5

) ejϕ35

ej(ϕ51+ϕ45−ϕ55− 2π
5

) ej(ϕ52+ϕ45−ϕ55− 4π
5

) ej(ϕ53+ϕ45−ϕ55+ 4π
5

) ej(ϕ54+ϕ45−ϕ55+ 2π
5

) ejϕ45

ejϕ51 ejϕ52 ejϕ53 ejϕ54 ejϕ55

⎤
⎥⎥⎥⎥⎥⎦

(26)

and matrix in Eq. (26) satisfies S · S† = I with S as in Eq. (1). Hence, Eq. (26) is the Sio matrix for
hybrid directional coupler with 5 input and 5 output ports.

Some remarks must be done. There are many other matrices Ψ that solve the problem. In fact,
it is easy to verify that another possible S-matrix is obtained changing the sign to Ψ. Similarly, we
can exchange the first 4 columns (or the first 4 rows) to obtain other Ψ matrices satisfying the problem
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(last column and last row must be zero). Another solution is obtained exchanging columns i and k
and rows i and k that corresponds to the exchange of port i and port k. It should be noted that some
combinations could be redundant.

The choice of the phases ϕ51, ϕ52, ϕ53, ϕ54, ϕ55, ϕ15, ϕ25, ϕ35, ϕ45 is free and related to the
transmission lines, or phase shifters, connected to the 10 ports, as previously discussed in Eqs. (20)–
(23).

From Eq. (26), it is clear that S-matrix with real scattering coefficients (or phases equal to 0 or π)
cannot exist for a 10-port hybrid coupler (5 input and 5 output ports) whichever is the choice for the
lines connected to the ten ports, and such consideration can be applied to any odd value of N .

Particular solutions can be found for N even. In fact, for these cases, the polyphase system of
order N contains the phase π, and the solutions of Eqs. (13) and (14) could be formed with a subset
of the polyphase system of order N , made with N

2 couples (0, π). With this choice, Eqs. (13), (14) are
satisfied, while Eqs. (9), (11) could be satisfied with similar couples of phases, but this occurs only when
N is a power of 2.

In fact, if N = 2 and N = 4, matrix Ψ can be written as

Ψ2 =
[
π 0
0 0

]
Ψ4 =

⎡
⎢⎣

0 π π 0
π 0 π 0
π π 0 0
0 0 0 0

⎤
⎥⎦ (27)

and it can be verified that Eq. (27) produces unitary S-matrices.
On the contrary, for N = 6 the solution based only on couples (0, π) cannot exist. In fact, let’s

suppose that the first row is
Row 1: [π π π 0 0 0] (28)

The second row must contain three couples (0, π) and must satisfy Eq. (9), which implies that the
difference between the second and first rows must be made by three couples of (0, π). If we try to write
the second row changing the position of only one π

Row 2: [π π 0 π 0 0] (29)
the difference between the second and first rows is

Row 1 − Row 2: [0 0 − π π 0 0] (30)
and we have simultaneously introduced two values equal to π at places three and four of Eq. (30).
Hence, any change of 0 in π, or vice versa, in the values of the second row introduces two π values in
Eq. (30). Therefore, we can never meet the requirement of the presence of exactly three π and three 0
in the difference between the first and second rows, shown in Eq. (30). Hence, a coupler with N = 6, or
integer multiples, can never be obtained with a matrix Ψ made only by couples of (0, π). With similar
considerations, it can be shown that a matrix Ψ made by N

2 couples of (0, π) can be obtained only if N
is an integer power of 2. For these cases, the S-matrix could be real, if the matrix Φ has the last row
and column made by 0 or π. The couples (0, π) can be recognized as a polyphase system of order 2.

As a consequence of this brief discussion about the couples of solutions (0, π) when N is even, it can
be shown that the solutions of Eqs. (9), (11), (13), (14) could be obtained by m polyphase subsystems
of order N

m , if N is multiple of m, with m integer. For example, for N = 6, we could obtain solutions
based on one polyphase full system of order 6, or two polyphase subsystem of order 3 or three polyphase
subsystem of order 2. In fact, one possible matrix Ψ is

Ψ6 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
2π
3

2π
3

−2π
3

−2π
3

0

0 −2π
3

−2π
3

2π
3

2π
3

0

π 0 π 0 π 0

π
2π
3

−π
3

−2π
3

π

3
0

π −2π
3

π

3
2π
3

−π
3

0

0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(31)
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and the corresponding Sio matrix is

Sio =
1√
6
·⎡

⎢⎢⎢⎢⎢⎢⎢⎣

ej(ϕ61+ϕ16−ϕ66) ej(ϕ62+ϕ16−ϕ66+ 2π
3

) ej(ϕ63+ϕ16−ϕ66+ 2π
3

) ej(ϕ64+ϕ16−ϕ66− 2π
3

) ej(ϕ65+ϕ16−ϕ66− 2π
3

) ejϕ16

ej(ϕ61+ϕ26−ϕ66) ej(ϕ62+ϕ26−ϕ66− 2π
3

) ej(ϕ63+ϕ26−ϕ66− 2π
3

) ej(ϕ64+ϕ26−ϕ66+ 2π
3

) ej(ϕ65+ϕ26−ϕ66+ 2π
3

) ejϕ26

−ej(ϕ61+ϕ36−ϕ66) ej(ϕ62+ϕ36−ϕ66) −ej(ϕ63+ϕ36−ϕ66) ej(ϕ64+ϕ36−ϕ66) −ej(ϕ65+ϕ36−ϕ66) ejϕ36

−ej(ϕ61+ϕ46−ϕ66) ej(ϕ62+ϕ46−ϕ66+ 2π
3

) ej(ϕ63+ϕ46−ϕ66−π
3
) ej(ϕ64+ϕ46−ϕ66− 2π

3
) ej(ϕ65+ϕ46−ϕ66+ π

3
) ejϕ46

−ej(ϕ61+ϕ56−ϕ66) ej(ϕ62+ϕ56−ϕ66− 2π
3

) ej(ϕ63+ϕ56−ϕ66+ π
3
) ej(ϕ64+ϕ56−ϕ66+ 2π

3
) ej(ϕ65+ϕ56−ϕ66−π

3
) ejϕ56

ejϕ61 ejϕ62 ejϕ63 ejϕ64 ejϕ65 ejϕ66

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(32)

The difference between the columns of Ψ, reported in the first row of Eq. (33), is

ΔΨcol =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 − 1 3 − 1 4 − 1 5 − 1 3 − 2 4 − 2 5 − 2 4 − 3 5 − 3 5 − 4
2π
3

2π
3

−2π
3

−2π
3

0
2π
3

2π
3

2π
3

2π
3

0

−2π
3

−2π
3

2π
3

2π
3

0 −2π
3

−2π
3

−2π
3

−2π
3

0

−π 0 −π 0 π 0 π −π 0 π

−π
3

2π
3

π

3
−2π

3
−π 2π

3
−π

3
−π

3
2π
3

π

π

3
−2π

3
−π

3
2π
3

π −2π
3

π

3
π

3
−2π

3
−π

0 0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(33)

while the difference between the rows, reported in the first column of Eq. (34), is

ΔΨrows =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2-1 0
2π
3

2π
3

−2π
3

−2π
3

0

3-1 π −2π
3

π

3
2π
3

−π
3

0

4-1 π 0 −π 0 π 0

5-1 π
2π
3

−π
3

−2π
3

π

3
0

3-2 π
2π
3

−π
3

−2π
3

π

3
0

4-2 π −2π
3

π

3
2π
3

−π
3

0

5-2 π 0 π 0 −π 0

4-3 0
2π
3

2π
3

−2π
3

−2π
3

0

5-3 0 −2π
3

−2π
3

2π
3

2π
3

0

5-4 0
2π
3

2π
3

−2π
3

v − 2π
3

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(34)

As predicted, in Eqs. (31)–(34) we can recognize exactly:
• one polyphase full system of order 6 at rows 4, 5 and at columns 3, 5 of (31), at columns 2-1, 4-1,

5-2, 4-3 of (33) and at rows 3-1, 5-1, 3-2 and 4-2 of (34).
• two polyphase subsystems of order 3 at rows 1, 2 and at columns 2, 4 of (31), at columns 3-1, 5-1,

4-2, 5-3 of(33) and at rows 2-1, 4-3, 5-3 and 5-4 of (34).
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• three polyphase subsystems of order 2 at row 3 and at column 1 of (31), at columns 3-2 and 5-4 of
(33) and at rows 4-1, and 5-2 of (34).

As previously discussed, many other Ψ matrices can be found from Eq. (31), changing sign, or the
position of some columns or rows or exchanging the port order.

A very simple code with a few lines can be implemented to obtain all possible Ψ matrices describing
the correct relationships between the phases of the S-matrix of hybrid couplers.

4. NUMERICAL RESULTS

To verify the relationships between the elements of the matrix Ψ, representing the device “kernel” that
imposes particular relationships to the phases of the scattering coefficients to ensure that S-matrix is
unitary, two numerical simulations have been implemented. In fact, the 4-port and 6-port couplers
shown in Figs. 1 and 3 have been designed as discussed in [9], and their S-matrices have been evaluated
with CST.

Figure 1. The 4-port coupler discussed in [9].
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Figure 2. Amplitudes |Sij| (a) and phases ϕij (b) of the scattering coefficients of the 4-port coupler
shown in Fig. 1. Elements ψij of the matrix Ψ are shown in (b).
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Figure 3. The 6-port coupler discussed in [9].

Amplitudes |Sij | and phases ϕij of the scattering coefficients of the 4-port coupler are shown in
Figs. 2(a) and 2(b). The bandwidth is obtained in the hypothesis of |S11| < −25 dB, |S12| < −25 dB,
and |S13| , |S14| are equal to −3.01 ± 0.25 dB, as shown in Fig. 2(a) with cyan areas.

As previously discussed, matrix Ψ can be easily evaluated from Eq. (6). Hence, from the knowledge
of the overall 4-port coupler phases ϕij , shown in Fig. 2(b) with black continuous and dashed lines, we
can evaluate the value of ψ13

ψ13 = ϕ13 − (ϕ14 + ϕ23 − ϕ24) (35)

that is shown in Fig. 2(b) with red line with crosses. It is evident that ψ13 is very close to 180� in the
whole band of the coupler. The other values of Ψ are equal to zero by definition. Hence, it is verified
by this simulation that matrix Ψ2 is equal to Eq. (16) or (27).

Similar approach can be used for the 6-port coupler shown in Fig. 4. Amplitudes |Sij| and phases
ϕij of the scattering coefficients are shown in Fig. 4(a) and in Fig. 4(b), together with the band of the
coupler (|S11| , |S12| , |S13| < −25 dB and |S14| , |S15| , |S16| = −4.77 ± 0.25 dB, highlighted with cyan
areas).
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Figure 4. Amplitudes |Sij| (a) and phases ϕij (b) of the scattering coefficients of the 6-port coupler
shown in Fig. 4. Elements ψij of the matrix Ψ are shown in (b).
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The elements of the Ψ matrix are obtained from Eq. (6), similar to the 4-port case,
ψ14 = ϕ14 − (ϕ16 + ϕ34 − ϕ36) (36)
ψ15 = ϕ15 − (ϕ16 + ϕ35 − ϕ36) (37)
ψ24 = ϕ24 − (ϕ26 + ϕ34 − ϕ36) (38)
ψ25 = ϕ25 − (ϕ26 + ϕ35 − ϕ36) (39)

(40)

that are equal to ψ14 = ψ25 = 240� = 4π
3 , ψ15 = ψ24 = 120� = 2π

3 at 10 GHz, maintaining almost
constant in the band of the coupler. Hence, the Ψ matrix is

Ψ3 =

⎡
⎢⎢⎢⎢⎣

4π
3

2π
3

0

2π
3

4π
3

0

0 0 0

⎤
⎥⎥⎥⎥⎦ (41)

and exactly satisfies the conditions previously discussed. It is also easy to verify that the differences
between rows or columns of Eq. (41) give the phases of 3-order polyphase system.

5. CONCLUSIONS

A simple procedure to write the scattering matrix of hybrid coupler with N input ports and N output
ports has been discussed. The phase of the scattering coefficients can be related to the presence of
transmission lines, or phase shifters, connected to the ports and to the presence of polyphase systems of
order N that impose the correct relationships between the phases of the scattering coefficients in order
to ensure that the S-matrix is unitary. Many solutions can be found, but it is sufficient to write only
one correct S-matrix to obtain all the others, changing the sign of the polyphase systems, the order of
the rows/columns of Ψ or the order of the ports.
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