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The Dispersion Characteristics of the Three-Dimensional Function
Photonic Crystals with Woodpile Lattices Composed of Plasma

and Magnetized Plasma Elements

Hai-Feng Zhang1–5, * and Hao Zhang1

Abstract—The dispersion characteristics of woodpile three-dimensional (3D) function photonic crystals
(PCs) composed of the plasma and function dielectric elements are theoretically investigated by a
modified plane wave expansion method, respectively, and the formulas to obtain the dispersion diagrams
are given. Only two cases are considered, which are the presence and absence of the external magnetic
field. The external magnetic field is vertical to the wave vector, which means that only the magneto-
optical Voigt effect is considered. For the proposed PCs, the function dielectric square columns are
inserted into the plasma background with face-centered-tetragonal symmetry according to the woodpile
lattices. The relationships between the parameters of such PCs and the features of the photonic band
gaps (PBGs) for the extraordinary mode and electromagnetic wave are studied under two different cases.
The calculated results show that the dispersion characteristics of the proposed PCs can be tailored by
adjusting those parameters. If the extrinsic magnetic field does not exist, larger PBG can be found in
the present PCs than 3D dielectric-air PCs, 3D function dielectric PCs and 3D plasma-dielectric PCs
with the same lattices. If there is an external magnetic field, a narrower PBG for the extraordinary
mode can be obtained than the 3D function dielectric PCs and 3D plasma-dielectric PCs with the same
lattices. The computed results also show us an approach to realize the reconfigurable devices based on
the PCs.

1. INTRODUCTION

In 1987, photonic crystals (PCs) as a novel idea were firstly reported [1, 2], which have been fully
investigated both theoretically and experimentally in the past few decades. Based on the definition of
PCs, PCs are different kinds of materials arrayed periodically in the space. It means that PCs include
one-dimensional (1D), two-dimensional (2D) and three-dimensional (3D) cases. One of the interesting
features of PCs is the ability to produce photonic band gaps (PBGs) [3]. In the frequency regions of
PBGs, the incident light is forbidden to propagate through the PCs. Numerous amazing devices can
be realized by PCs. In 2004, Hojo and co-workers [4] proposed a new concept called plasma photonic
crystals (PPCs). The interesting characteristic of PPCs is producing “tunable” PBGs. Since then,
PPCs have become a novel research hotspot. Unlike ordinary dielectric PCs, the physical features
for plasma can be adjusted obviously by a lot of external factors [5], such as extrinsic magnetic field,
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extrinsic voltage, and gas pressure. Obviously, realizing reconfigurable applications by PPCs is a good
choice [6–8]. Unlike the conventional PCs with different dielectric constituents, not only the PPCs
have interesting dispersion properties [9–11], but also some useful properties can be obtained, such as
broadened PBG [12], magnetically changed PBG [13] and tailored defect modes [14]. On the other
hand, PPCs also belong to a kind of metamaterials [15] under some specific conditions. Consequently,
PPCs can present some abnormal properties, such as complex magneto-optical effects [16], properties
of nonreciprocal propagation [17] and nonlinear features [18]. Therefore, 3D PPCs and the novel
applications of PPCs became new research fields. Especially, if an extrinsic magnetic field is introduced
into PPCs, magnetized plasma photonic crystals (MPPCs) [19–21] can be realized. If the directions of
extrinsic magnetic field and wave vector remain vertical, magneto-optical Voigt effect can be seen in
MPPCs. Qi hang [22] and Zhang et al. [23] also used the periodical arrangement of extrinsic magnetic
field to plasma block to realize 1D and 2D MPPCs, when Voigt effect is considered. They found
that PBGs can be manipulated by extrinsic magnetic field. Compared with PPCs, more interesting
properties and more complicated EM modes can be found in MPPCs.

3D PCs are more preferred to realize complete PBGs than 1D and 2D cases. In the last few years,
the characteristics of 3D PPCs and MPPCs were systematically reported by Zhang and co-workers [24–
26], and they demonstrated that adjustable PBGs and flatbands region (FBR) can be seen. However,
only some simple theoretical models are considered in their reports. For instance, the embedded fillers for
PPCs are spheres, and the dielectric spheres are inserted into the plasma background (or complementary
structure) with simple-cubic, diamond and face-centered-cubic lattices, respectively. Obviously, those
models can hardly be fabricated in reality, and the regions of obtained PBGs are relatively narrow. In
order to widen the PBG of PCs, Ho et al. [27] present woodpile lattices to broaden the PBGs. Similar
reports can also be seen in [28, 29]. Compared with those conventional lattices as described in the reports
of Zhang et al. [24–26], the PCs with woodpile lattices can produce larger PBGs. As mentioned above,
the PCs with woodpile lattices are more feasible to realize the practical devices. In addition to changing
the lattices of PCs, there are also some other ways to widen the PBGs [30, 31]. PCs with “dispersion” or
“nonlinear ” dielectrics as an element is another method [18]. The “nonlinear ” dielectrics belong to the
“function” dielectrics. For instance, the Kerr nonlinear dielectric is a kind of such “function” dielectrics.
It means that its permittivity can be written as a function of the space ordinates r. The interesting
properties can be achieved in PCs with such “function” dielectrics [32–34]. Recently, the features of
“function” photonic crystals have also been reported by some researchers [35–37]. Obviously, Their
research results illustrated that adjustable PBGs can be achieved when the parameters of “function”
dielectrics are changed. Until now, the dispersion features of 3D woodpile function PCs composed of
plasma (FPPCs) and magnetized plasma elements (FMPPCs) have hardly been investigated. Of course,
in addition to FPPCs and FMPPCs, metallodielectric PCs and plasmonic PCs are also very important
areas of research in recent years [38–44].

As described above, the purpose of this manuscript is to investigate the dispersion features of
woodpile 3D FPPCs and FMPPCs in theory. For the proposed FPPCs and FMPPCs, function dielectric
square columns are inserted into the plasma background with face-centered-tetragonal symmetry
according to the woodpile lattices. The dispersion curves of those woodpile FPPCs and FMPPCs are
calculated by the plane wave expansion (PWE) method. The relative permittivity of function dielectric
square columns can be expressed as a function of the space coordinates and function coefficient. In the
following sections, we consider that angular frequency is ω.

2. THEORETICAL MODEL AND FORMULAS

In Fig. 1, spatial structure diagrams of the proposed 3D FPPCs and FMPPCs, the first irreducible
Brillouin zone (1st BZ) for woodpile lattices and the directions of the extrinsic magnetic field and
wave vector are plotted, respectively. In Figs. 1(a) and (b), gray square columns indicate the function
dielectric, which are surrounded by the plasma. One can see from Figs. 1(a) and (b) that each unit cell
of the present 3D FPPCs and FMPPCs is composed of four function dielectric square columns layers,
and the distance between those four layers is a. For each square columns layer, the inserted columns
are parallel, and the interval between two centers of square columns is also a. In those four layers, each
layer can be achieved by the upper layer, which is rotated by 90◦. It is worth noting that there exists a
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Figure 1. Schematic view of woodpile 3D FPPCs and FMPPCs. (a) Spatial view, (b) side view of
woodpile 3D FPPCs and FMPPCs, (c) 1st BZ for the woodpile lattice, and (d) the directions of the
extrinsic magnetic field and wave vector.

0.5a movement between the second and fourth layers. A similar phenomenon can also be found in the
first and third layers. The details of such a woodpile lattice can be seen in [27–29]. We consider that
the length of unit cell is a; the side length of the square columns is R. εp and εa are the permittivities
of plasma and inserted square columns, respectively. As mentioned in [45], the symmetry points of
woodpile lattices are given in Fig. 1(c). It is well known that if there is no external magnetic field, εp

can be expressed as [5]

εp = 1 − ω2
p

ω2 + jνcω
(1)

In Eq. (1), ωp indicates plasma frequency, and νc represents plasma collision frequency. However, if
extrinsic magnetic field exists, the directions of the extrinsic magnetic field and wave vector remain
vertical at any time as shown in Fig. 1(d). In such a case, the magneto-optical Voigt effect can be
found in the magnetized plasma. Therefore, extraordinary and ordinary modes can be observed in the
magnetized plasma. As we know [5], for the ordinary mode, the expression of εp is the same as Eq. (1).
For the extraordinary mode, εp can be written as [5]

εp =

[
ω(ω + jvc) − ω2

p

]2 − ω2ω2
c

ω2 [(ω + jvc)2 − ω2
c ] − ωω2

p(ω + jvc)
(2)
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In Eq. (2), ωc denotes the plasma cyclotron frequency. Obviously, for the 3D FMPPCs case, we only
investigate the dispersion curves of the extraordinary mode. In order to achieve the band diagrams of
3D FPPCs and FMPPCs, the plane wave expansion (PWE) method can be used to compute, which is
an efficient and accurate method. According to the PWE method, in the reciprocal space, the Maxwell’s
equation can be simplified as [24–26]:

∑
G′, λ′

|k + G| ∣∣k + G′∣∣( �e2 · ε−1
G, G′ · �e2′ −�e2 · ε−1

G, G′ · �e1′

−�e1 · ε−1
G,G′ · �e2′

�e1 · ε−1
G,G′ · �e1′

)
hG′, λ′ =

ω2

c2
hG, λ (3)

In Eq. (3), G is a reciprocal-lattice vector; k is a wave vector in the BZ; and �e1, �e2 are orthogonal unit
vectors. The derivations and definitions of parametric variables for Eq. (3) can be seen in [24–26]. In
Eq. (3), hG,λ can be expressed as [24–26]

hG, λ =
∑
G

C(k|G)ej(k+G)·r (4)

The dielectric distributions of such 3D FPPCs and 3D FMPPCs can be satisfied

ε−1(r) =
{

εa(r)−1 (in the dielectric columns region)
ε−1
p (in the plasma region)

(5a)

ε−1(r) =
{

εa(r)−1 (in the dielectric columns region)
ε−1
p (in the magnetized plasma region)

(5b)

Eq. (5) can be written as
ε(r)−1 = ε−1

p +
(
εa(r)−1 − ε−1

p

) · S(r) (6)

where S(r) =
{

1 (in the inserted dielectric columns)
0 (in the plasma background) . Obviously, if Eq. (5) can be computed, the

PBGs of 3D FPPCs and the band structures of the extraordinary mode for the 3D FMPPCs will be
achieved. In the following investigations, the permittivity of function dielectric can be expressed as
εa = I · r1 + b [35–37]. I and b are function coefficients, and r1 is the distance between space ordinate
r (in the inserted square columns) and the central axes of the inserted square columns, respectively. In
nature, if the intensity of incident light is space-dependent, the polystyrene and SiO2 can be considered
as the “function dielectric”. It is worth noting that if the form of εa is more complicated, Eq. (5) cannot
be calculated directly. For instance, εa = 18 + e(5r8

1)/(r5
1 + 72r3

1 + 20). However, this problem can be
solved by a method as mentioned in [46]. To compute the PBGs of such FPPCs and FMPPCs, Eqs. (4)
and (6) are substituted into Eq. (3). We can obtain(

1
Vcell

∫
Vcell

(
1
εp

+
(

1
εa(r)

− 1
εp

)
· S(r)

)
dr
)
· E1 · E · C(k|G)

+
∑
G′

(
1

Vcell

∫
Vcell

(
1
εp

+
(

1
εa(r)

− 1
εp

)
· S(r)

)
exp(−jG · r)dr

)
·E1 · E · C(k|G)=

ω2

c2
C(k|G)(7)

We consider E =
[

�e2 · �e2′ −�e2 · �e1′

−�e1 · �e2′
�e1 · �e1′

]
and E1 = |k + G| |k + G′|. For the 3D FPPCs, Eq. (7) can

be written as
ζ4

↔
I − ζ3

↔
L − ζ2

↔
A− ζ

↔
S − ↔

D = 0 (8)

In Eq. (8), ζ = ω/c, and
↔
I is a unit matrix. c is the light speed in vacuum. Thus,

↔
L(G|G′) = −j

νc

c
δG·G′ (9a)

↔
A(G|G′) =

{
ω2

p

c2
+

↔
O ·E1 ·E

}
δG·G′ + (εa(r)−1 − 1)

↔
P (9b)

↔
S(G|G′) =

{
j
νc

c
· ↔
O ·E1 ·E

}
δG·G′ + j

νc

c
(εa(r)−1 − 1)

↔
P (9c)
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↔
D(G|G′

) =

{
−ω2

p

c2
fεa(r)−1 ·E1 ·E

}
δG·G′ +

ω2
p

c2
(εa(r)−1)

↔
P (9d)

where
↔
P = E1 ·E · 1

Vcell

∫
Vcell

(
1 +

(
εa(r)−1 − 1

) · S(r)
)
exp(−jG · r)dr and

↔
O =

∫
Vcell

(
1 +

(
εa(r)−1 − 1

) · S(r)
)
dr. In Eq. (9),

↔
L,

↔
A,

↔
S, and

↔
D are N × N matrices. Thus, Eq. (8)

can be written in such a form

↔
Rz = ζz,

↔
R =

⎡
⎢⎢⎢⎢⎣

0
↔
I 0 0

0 0
↔
I 0

0 0 0
↔
I

↔
D

↔
S

↔
A

↔
L

⎤
⎥⎥⎥⎥⎦ (10)

The band structures can be displayed by solving the eigenvalues of Eq. (10). How to calculate ε−1
G,G′

can be seen in [47, 48]. Similarly, for 3D MFPPCs, Eq. (7) can also be expressed as

ζ6I − ζ5L − ζ4A− ζ3S− ζ2D− ζZ − X = 0 (11)

In Eq. (11), ζ, I and c are similar to those in Eq. (9). Thus,

L(G|G′) = −j
2νc

c
δG·G′ , (12a)

A(G|G′
) = j

(
2ω2

p + ω2
c + ν2

c

c2

)
δG·G′ + M + N, (12b)

S(G|G′
) = j

(
2νcω

2
p

c3
+

2νc

c
(M + N)

)
, (12c)

D(G|G′
) = −

(
(M + N)

(
ν2

c + ω2
c

c2

)
+

ω2
p

c2
(2N + M) +

ω4
p

c4
δG·G′

)
, (12d)

Z(G|G′
) = −j

νcω
2
p

c3
(N + M), (12e)

X(G|G′
) =

ω4
p

c4
N, (12f)

where M = (O ·E1 ·E)δG·G′ +(εa(r)−1−1)P, N = ((O−fεa(r)−1) ·E1 ·E)δG·G′ +(2εa(r)−1−1)P, f is
filling factor of dielectric square columns, P = E1 ·E · 1

Vcell

∫
Vcell

(
1 +

(
εa(r)−1 − 1

) · S(r)
)
exp(−jG ·r)dr

and O =
∫
Vcell

(
1 +

(
εa(r)−1 − 1

) · S(r)
)
dr. In Eq. (12), L, A, S, D, X and Z are N × N matrices.

Thus, Eq. (11) can be expressed as in the following form

Rz = ζz, R =

⎡
⎢⎢⎢⎢⎢⎣

0 I 0 0 0 0
0 0 I 0 0 0
0 0 0 I 0 0
0 0 0 0 I 0
0 0 0 0 0 I
X Z D S A L

⎤
⎥⎥⎥⎥⎥⎦ (13)

Obviously, the PBGs for the extraordinary mode of 3D FMPPCs can be obtained by the calculation
results of Eq. (13).

3. NUMERICAL RESULTS AND DISCUSSIONS

To obtain the dispersion diagrams, 2197 plane waves are introduced into the PWE method [48], and
the unit cell is divided into 250 × 250 × 250 cubes [46]. A constant ωp0 = 2πc/a is used to normalize
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the frequency region, ωp and νc. As the initial values, ωp = 0.12ωp0(ωpm) and νc = 0.002ωp(νcm),
respectively. We also assume that I = 35, b = 18 and R = 0.125a, respectively.

In Fig. 2, when R = 0.125a, the PCs dispersion diagrams with different parameters are displayed.
The red regions represent the PBGs. It can be seen from Figs. 2(a) and (b) that when ωp = νc = 0,
the present PCs can be looked as the 3D dielectric-air PCs since εp = 1. As shown in Fig. 2(a) (the
case of I = 0), a PBG can be seen in the dispersion diagram, which runs from 0.331049 to 0.415156
(2πc/a). When I = 35 (see Fig. 2(b)), the frequency region of PBG will move to the lower frequencies,
which covers 0.307608–0.392138 (2πc/a). Compared with Fig. 2(a), enhanced PBG can be obtained
since I increases. As shown in Fig. 2(c), when ωp = ωpm, νc = νcm and εa = 18, the PBG of 3D FPPCs
spans from 0.333706 to 0.421793 (2πc/a), and an FBR can be seen in the band structures, which covers
0–0.12 (2πc/a). As we know [24–26], the FBR stems from the surface plasma wave, which can be
localized around the embedded dielectric square columns. Compared with the results in Fig. 2(a), the
edges of PBG shift to the higher frequencies, and its bandwidth is enlarged by 0.004 (2πc/a). Similar
trend can also be found in [24–26]. One can see from Fig. 2(d) that when I = 35, the PBG of 3D
FPPCs will be located at 0.310147–0.398306 (2πc/a), whose frequency range will be changed to 0.0882
(2πc/a). Compared with Fig. 2(c), the PBG will redshift. The bandwidth of PBG increases obviously
compared with that in Figs. 2(b) and (c). Evidently, the maximum bandwidth of PBG can be seen in

(a) (b)

(c) (d)

Figure 2. The PCs dispersion diagrams with different parameters when R = 0.125a. (a) ωp = νc = 0,
εa = 18, (b) ωp = νc = 0, εa = 35r1 + 18, (c) ωp = ωpm, νc = νcm, εa = 18, (d) ωp = ωpm, νc = νcm,
εa = 35r1 + 18.
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Figure 3. The dispersion diagram for the extraordinary mode of 3D FMPPCs when R = 0.125a,
ωp = ωpm, ωc = ωcm, νc = νcm and εa = 35r1 + 18.

Fig. 2(d) compared with Figs. 2(a)–(c). In Fig. 3, the dispersion diagram for the extraordinary mode
of 3D FMPPCs is plotted, when R = 0.125a, ωp = ωpm, ωc = ωcm, νc = νcm and εa = 35r1 + 18.
As shown in Fig. 3, there exists a PBG, which covers 0.327429–0.387588 (2πc/a). Besides, there are
two FBRs. The first FBR runs from 0 to 0.0893 (2πc/a), and the second FBR spans from 0.1399 to
0.1613 (2πc/a). In magneto-optical Voigt effect, the locations of edges of such two FBRs are determined
by the values of fL, fU and fR [19–21], which are fL = −ω2

c/2 +
√

ω2
c/4 + ω2

p, fU =
√

ω2
c + ω2

p, and

fR = ω2
c/2 +

√
ω2

c/4 + ω2
p, respectively. Obviously, the bandwidth of PBG for the extraordinary mode

is narrowed compared with Fig. 2(d). According to the results in Figs. 2 and 3, we can found that the
smallest PBG can be seen in Fig. 3, whose frequency range is 0.060159 (2πc/a). Compared with the 3D
function dielectric PCs and 3D plasma-dielectric PCs with the same lattices (see Figs. 2(b) and (d)),
narrower PBG for the extraordinary mode can be obtained in the proposed FMPPCs. However, for the
present 3D FPPCs, compared with 3D dielectric-air PCs, 3D function dielectric PCs and 3D plasma-
dielectric PCs with the same topology, wider bandwidth of PBG can be obtained. In the following, the
relationships between the parameters of proposed FPPCs and FMPPCs and the features of the PBGs
for the extraordinary mode and electromagnetic wave will be investigated. For convenience, PBG of
FMPPCs is used to specifically refer to the PBG for the extraordinary mode. We consider that the
relative bandwidth of PBG is δω/ωi and that δω is the frequency range of a PBG, and ωi indicates the
center frequency of a PBG.

3.1. The Effects I on the PBGs for the Proposed FPPCs and FMPPCs

The curves of I vs. PBG and I vs. δω/ωi of the 3D FPPCs and FMPPCs with different I are plotted in
Figs. 4 and 5, respectively, when ωp = ωpm, νc = νcm, ωc = ωcm, R = 0.125a and εa = I ·r1+18. We can
see from Figs. 4(a) and 5(a) that the locations of PBGs can be tailored obviously by altering the value of
I. The edges of PBGs for the 3D FPPCs and FMPPCs will redshift when I increases, whose frequency
regions are increased first and then decreased. As shown in Fig. 4(a), when I = −90,−10, 10 and
90, the PBGs are located at 0.421753–0.484965 (2πc/a), 0.312752–0.394422 (2πc/a), 0.297121–0.378644
(2πc/a) and 0.252601–0.326038 (2πc/a), whose bandwidths are 0.0632 (2πc/a), 0.0817 (2πc/a), 0.0815
(2πc/a) and 0.0734 (2πc/a), respectively. Obviously, the PBG is widened first and then narrowed with
the increasing value of I. The largest PBG can be seen in the case of I = −5, which is 0.08169 (2πc/a).
Compared with the case of I = −90, the frequency region of PBG is enhanced by 0.01849 (2πc/a).
Such a phenomenon can be explained. Increasing I means that the averaged refractive index of FPPCs
increases [3]. Thus, the PBG of the 3D FPPCs can be adjusted by I. A similar trend can also be found



170 Zhang and Zhang

-100 -80 -60 -40 -20 0 20 40 60 80 100

0.24

0.27

0.30

0.33

0.36

0.39

0.42

0.45

0.48

I

F
re

q
u

e
n

c
y
 (

ω
a

/2
π
c
)

-100 -80 -60 -40 -20 0 20 40 60 80 100

0.14

0.16

0.18

0.20

0.22

0.24

0.26

R
e

la
ti
v
e

 B
a

n
d

w
id

th
 (

 δ
ω

/ω
i )

I

(a) (b)

Figure 4. The curves of I vs. PBG and I vs. δω/ωi of the 3D FPPCs, (a) the curve of I vs. PBG;
(b) the curve of I vs. δω/ωi.
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Figure 5. The curves of I vs. PBG and I vs. δω/ωi of the 3D FMPPCs, (a) the curve of I vs. PBG;
(b) the curve of I vs. δω/ωi.

in Fig. 5(a). When I = −100,−60,−20 and 20, the PBGs cover 0.49343–0.52444 (2πc/a), 0.40041–
0.45535 (2πc/a), 0.35213–0.41256 (2πc/a) and 0.32056–0.38037 (2πc/a), whose frequency regions are
0.03101 (2πc/a), 0.05494 (2πc/a), 0.06043 (2πc/a) and 0.05981 (2πc/a), respectively. Obviously, the
PBG will be narrowed as I is changed from −20 to 20. For the 3D FMPPCs, the largest PBG can
be found in the case of I = −10, whose bandwidth is 0.0605 (2πc/a). Larger I may lead to narrower
PBG. However, different trends can be seen in Figs. 4(b) and 5(b). For the 3D FPPCs and FMPPCs,
δω/ωi are proportional to the increasing value of I. The maximum δω/ωi can be obtained in the case
of I = 100 for those two cases, whose values are 0.25413 and 0.17959, respectively. Compared with the
case of I = −100, the increase of 0.1147 and 0.1187 can be achieved in Figs. 4(b) and 5(b), respectively.
It needs to be noticed that the FBRs of 3D FPPCs and FMPPCs will remain unchanged as I is altered.
This is because the locations of FBRs are determined by the values of ωp and ωc [19–21].

3.2. The Effects b on the PBGs for the Proposed FPPCs and FMPPCs

The curves of b vs. PBG and b vs. δω/ωi of the 3D FPPCs and FMPPCs with different b are displayed
in Figs. 6 and 7, respectively, when ωp = ωpm, νc = νcm, ωc = ωcm, R = 0.125a and εa = 35 · r1 + b.
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Figure 6. The curves of b vs. PBG and b vs. δω/ωi, (a) the curve of b vs. PBG; (b) the curve of b vs.
δω/ωi.
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Figure 7. The curves of b vs. PBG and b vs. δω/ωi, (a) the curve of b vs. PBG; (b) the curve of b vs.
δω/ωi.

As shown in Figs. 6(a) and 7(a), the PBGs for the 3D FPPCs and FMPPCs can be tuned when b
increases. The edges of those PBGs shift to the lower frequencies, and their bandwidths increase first
and then decrease. Obviously, the larger b will result in a PBG in the lower frequencies. It can be
seen from Fig. 6(a) that when b is less than 3, such a PBG will not exist. When b = 5, 15, 65 and 95,
the PBGs for the 3D FPPCs cover 0.432263–0.470576 (2πc/a), 0.300977–0.381889 (2πc/a), 0.161387–
0.219828 (2πc/a) and 0.135707–0.185684 (2πc/a), whose bandwidths are 0.038313, 0.080912 (2πc/a),
0.058441 (2πc/a) and 0.049977 (2πc/a), respectively. Evidently, with the increasing value of b, the PBG
is enhanced first and then narrowed. The maximum PBG appears in the case of b = 5. The similar
changing trend can also be seen in Fig. 7(a). For 3D FMPPCs, when b is changed from 35 to 45, the
frequency region of PBG is changed from 0.25173–0.30389 (2πc/a) to 0.23333–0.28052 (2πc/a), which
is decreased by 0.00497 (2πc/a). The largest PBG can also be obtained when b = 15. It can be seen
from Fig. 6(b) that when b increases, the values of δω/ωi of PBGs for 3D FPPCs increase. For 3D
FPPCs, when b = 100, the largest δω/ωi can be gotten, which is 0.31059. When b is altered from 3 to
100, δω/ωi is enhanced by 0.2908. For 3D MFPPCs (see Fig. 7(b)), when b increases, δω/ωi increases
first then decreases. The maximum δω/ωi is 0.18774, which can be seen in the case of b = 35. If b is
changed from 3 to 35, δω/ωi is enhanced by 0.18013. As mentioned above, for those two PBGs, the
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reconfigure frequency regions are every large if b can be tuned obviously. Those two widened PBGs can
be achieved by optimizing the value of b, and larger PBG will appear in the low-b region.

3.3. The Effects ωp on the PBGs for the Proposed FPPCs and FMPPCs

The curves of ωp vs. PBG and ωp vs. δω/ωi of the 3D FPPCs and FMPPCs with different ωp are
given in Figs. 8 and 9, respectively, when νc = νcm, ωc = ωcm, R = 0.125a and εa = 35 · r1 + 18.
As shown in Figs. 8(a) and 9(a), the locations and regions of PBGs for the 3D FPPCs and FMPPCs
can be tailored obviously when ωp is changed. The edges of those PBGs will blueshift. As shown in
Fig. 8(a), for 3D FPPCs, when ωp increases, the bandwidth of PBG will increase first and then decrease.
When ωp/ωp0 increases from 0.1 to 0.26, the largest PBG can be seen in the case of ωp/ωp0 = 0.26,
whose bandwidth is 0.08628 (2πc/a), and the frequency region of PBG is enhanced by 0.0067 (2πc/a).
When ωp/ωp0 = 0.02, 0.1, 0.18 and 0.26, the PBGs are located at 0.278627–0.356294 (2πc/a), 0.279996–
0.359579 (2πc/a), 0.283678–0.367136 (2πc/a) and 0.293031–0.379312 (2πc/a), respectively. Obviously,
the PBG is broadened. If the value of ωp continues to increase, the PBG will be narrowed. For
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Figure 8. The curves of ωp vs. PBG and ωp vs. δω/ωi, (a) the curve of ωp vs. PBG; (b) the curve of
ωp vs. δω/ωi.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
0.27

0.30

0.33

0.36

0.39

0.42

0.45

0.48

0.51

0.54

F
re

q
u

e
n

c
y
 (

ω
a

/2
π
c
)

ω
p
/ω

p0

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
0.00

0.05

0.10

0.15

0.20

ω
p
/ω

p0

R
e

la
ti
v
e

 B
a

n
d

w
id

th
 ( 

δ
ω

/ω
i )

(a) (b)
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instance, when ωp/ωp0 is changed from 0.34 to 0.42, the covered region of PBG is altered from 0.340851–
0.397956 (2πc/a) to 0.420147–0.433736 (2πc/a), and its frequency range is decreased by 0.0435 (2πc/a).
If ωp/ωp0 > 0.5, the PBG will be gradually narrowed. If ωp/ωp0 > 0.6, the PBG will disappear.
The different phenomenon can be seen in Fig. 9(a). Fig. 9(a) shows that the frequency region of
PBG decreases as the edges blueshift. When ωp/ωp0 = 0.025, 0.1, 0.2 and 0.4, the PBGs for the
3D MFPPCs cover 0.28878–0.35578 (2πc/a), 0.30422–0.36577 (2πc/a) , 0.34944–0.39632 (2πc/a), and
0.49321–0.49968 (2πc/a), respectively, and its frequency range is decreased by 0.06053 (2πc/a). When
ωp/ωp0 = 0.025, the maximum PBG can be seen, whose bandwidth is 0.20789 (2πc/a). When ωp/ωp0

increases from 0.025 to 0.425, the bandwidth of PBG is decreased by 0.2044 (2πc/a). If ωp/ωp0 > 0.425,
the PBG will disappear. According to the results in Figs. 8(a) and 9(a), we can know that the
requirement of a larger value of ωp is not necessary to achieve larger PBGs for the 3D FPPCs and
FMPPCs. As shown in Fig. 8(a), for 3D FPPCs, δω/ωi will increase first and then decrease as ωp/ωp0

increases. When ωp/ωp0 is equal to 0.26, the largest δω/ωi can be gotten, which is 0.25666. Compared
with the case of ωp/ωp0 = 0.1, δω/ωi is enhanced by 0.0078. However, the different curve can be seen
in Fig. 9(b). For 3D MFPPCs, δω/ωi will decrease nearly linearly with the increasing value of ωp/ωp0.
When ωp/ωp0 increases to 0.425, the minimum δω/ωi can be achieved, which is 0.00353. Compared with
the case of ωp/ωp0 = 0.125, δω/ωi is decreased by 0.1674. Consequently, the PBGs for those two cases
can be adjusted by ωp, which is an important parameter to enhance the PBGs, and larger PBGs appear
in the low-ωp region. The upper edges of FBRs for those two cases linearly increase as ωp increases.
Thus, the enhanced PBGs of those two cases can be realized by tailoring ωp in a suitable value.

3.4. The Effects R on the PBGs for the Proposed FPPCs and FMPPCs

The curves of R vs. PBG and R vs. δω/ωi of the 3D FPPCs and FMPPCs with different R are present
in Figs. 10 and 11, respectively, when ωp = ωpm, νc = νcm, ωc = ωcm and εa = 35 · r1 + 18. In
both cases, the locations of central axes of each layer of inserted dielectric square columns are never
changed, but only the value of R is changed. As shown in Figs. 10(a) and 11(a), R is a key parameter
to adjust the PBGs. We can see from Fig. 10(a) that when R = 0.11125a, 0.1125a and 0.11375a, the
areas of the PBG are altered to 0.402396–0.439993 (2πc/a), 0.358022–0.429001 (2πc/a) and 0.402655–
0.440035 (2πc/a), respectively. The edges of PBG will redshfit first and then blueshift. The bandwidth
of PBG also is widened first and then decreases. The general trend of the curve is that the edges of
PBG will redshift. For the lower edge of PBG, there exist some trip points, such as R = 0.11125a,
R = 0.11375a and R = 0.11875a. The largest PBG can be found in the case of R = 0.12375a, which
covers 0.32511–0.41823 (2πc/a). If R is varied from 0.10125a to 0.12375a, the region of PBG is enhanced
by 0.0836 (2πc/a). We can see from Fig. 11(a) that the covered region of PBG is downward to the lower
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Figure 10. The curves of R vs. PBG and R vs. δω/ωi, (a) the curve of R vs. PBG; (b) the curve of
R vs. δω/ωi.



174 Zhang and Zhang

0.100 0.105 0.110 0.115 0.120 0.125
0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

F
re

q
u

e
n

c
y
 (

ω
a

/2
π
c
)

R/a

0.100 0.105 0.110 0.115 0.120 0.125
0.00

0.04

0.08

0.12

0.16

0.20

0.24

R
e

la
ti
v
e

 B
a

n
d

w
id

th
 (

 δ
ω

/ω
i )

R/a
(a) (b)

Figure 11. The curves of R vs. PBG and R vs. δω/ωi, (a) the curve of R vs. PBG; (b) the curve of
R vs. δω/ωi.

frequencies when R increases, and its bandwidth also generally increases. The upper edge of PBG will
almost remain unchanged at frequency 0.4(2πc/a). However, for the lower edge of PBG, the different
trend can be seen, in which the obvious redshift can be observed. When R = 0.1033a, 0.1067a, 0.1083a
and 0.1133a, the covered regions of PBGs will be 0.40094–0.40816 (2πc/a), 0.40263–0.41424 (2πc/a),
0.35017–0.40014 (2πc/a) and 0.33014–0.39443 (2πc/a), respectively, whose bandwidth is enhanced by
0.0633 (2πc/a). As shown in Fig. 10(b), for 3D FPPCs, δω/ωi increases when R increases except for
some trip points. When R = 0.12375a, the largest δω/ωi can be gotten, which is 0.25053. If R/a is
varied from 0.10125a to 0.12375a, δω/ωi increases by 0.2292. Obviously, if we want to obtain a larger
PBG, the value of R/a has to be large (in the high-R region). As shown in Fig. 11(b), for 3D MFPPCs,
δω/ωi maintains a general growth trend as R becomes larger. The largest δω/ωi can be found in the
case of R = 0.1233a, which is 0.07041. If R/a is varied from 0.1033a to 0.125, δω/ωi is enhanced by
0.0621. Obviously, if we want to obtain a larger PBG for those two cases, the value of R/a has to be
a large one. This can be explained by that the larger R/a means that the average refractive indices of
those PCs are larger enough to open a larger PBG [2].

3.5. The Effects ωc on the PBG for the Proposed FMPPCs

The curves of ωc vs. PBG and ωc vs. δω/ωi of the 3D FMPPCs with different ωc are plotted in Fig. 12,
respectively, when ωp = ωp1 = ωpm, νc = νcm, R = 0.125a and εa = 35 · r1 + 18. We can see from
Fig. 12(a) that the edges and frequency region of PBG can be manipulated by ωc. When ωc increases,
the blueshift can be observed in the edges of PBG, and the area of PBG decreases slightly. When
ωc/ωp1 is changed from 0.1 to 0.4, the regions of PBGs cover 0.30984–0.36976 (2πc/a), 0.30995–0.36981
(2πc/a) and 0.31042–0.37002 (2πc/a), respectively. Obviously, the frequency region of PBG is enhanced
by 0.00032 (2πc/a). If the value of ωc continues to increase, the bandwidth of PBG will decrease. When
ωc/ωp1 is equal to 0.6, 0.8 and 1, the regions of PBGs cover 0.31123–0.37038 (2πc/a), 0.31245–0.37091
(2πc/a) and 0.31417–0.37164 (2πc/a), respectively, and its bandwidth is decreased by 0.0017 (2πc/a).
Therefore, the bandwidth of PBG becomes smaller than the case of ωc/ωp1 = 0.6. If ωc/ωp1 = 0.1, the
maximum PBG can be obtained, whose frequency area is 0.05993 (2πc/a). When ωc/ωp1 increases from
0.1 to 3.25, the bandwidth of PBG is decreased by 0.0532 (2πc/a). If ωc/ωp1 > 2, the region of PBG
will drastically decrease. If ωc/ωp1 > 3.5, the PBG will not exist. As mentioned above, we can know
that a larger PBG can be achieved with a smaller value of ωc/ωp1. On the other hand, as shown in
Fig. 10(b), if ωc/ωp1 has a larger value, δω/ωi will decrease drastically. If ωc/ωp1 increases from 0.1 to
3.25, the minimum δω/ωi can be obtained in the case of ωc/ωp1 = 3.25, which is 0.01538. Compared
with the maximum value, δω/ωi is decreased by 0.161. Obviously, the PBG can be tailored by altering
the value of ωc, and the larger PBG can be found in the low-ωc region.
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Figure 12. The curves of ωc vs. PBG and ωc vs. δω/ωi, (a) the curve of ωc vs. PBG; (b) the curve of
ωc vs. δω/ωi.

4. CONCLUSIONS

In summary, the dispersion properties of 3D FPPCs and MFPPCs with woodpile lattices are
theoretically studied, respectively. For the case of 3D MFPPCs, only the magneto-optical Voigt effect is
considered, and the PBG properties of the extraordinary mode are investigated. The calculated results
demonstrate that for the presented 3D FPPCs, larger PBG can be achieved than the 3D dielectric-air
PCs, 3D function dielectric PCs and 3D plasma-dielectric PCs with the same lattices. For the proposed
3D MFPPCs, the narrower PBG for the extraordinary mode can be obtained compared with the 3D
function dielectric PCs and 3D PPCs with the same lattices. The computed results also show that the
bandwidths and locations of those PBGs can be adjusted by altering the parameters. For those two
cases, the red shifts can be seen in the edges of PBGs, when the values of the function coefficients of
function dielectric and R are enhanced. On the contrary, the blue shifts can be found in the edges
of PBGs when ωp increases. Larger PBG can be gotten with a larger function coefficient of function
dielectric or R. A larger ωp will lead to a narrow PBG for both cases, and larger PBGs appear in the
low-ωp. However, for 3D FMPPCs, larger PBG can be gotten in the low-ωc region. The computed
results also show us an approach to realize the reconfigurable devices based on the proposed FPPCs
and FMPPCs.
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