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Applying Convolutional Neural Networks for the Source
Reconstruction

He Ming Yao1, Wei E. I. Sha2, and Li Jun Jiang1, *

Abstract—This paper proposes a novel source reconstruction method (SRM) based on the
convolutional neural network algorithm. The conventional SRM method usually requires the scattered
field data oversampled compared to that of target object grids. To achieve higher accuracy, the
conventional SRM numerical system is highly singular. To overcome these difficulties, we model the
equivalent source reconstruction process using the machine learning. The equivalent sources of the
target are constructed by a convolutional neural networks (ConvNets). It allows us to employ less
scattered field samples or radar cross section (RCS) data. And the ill-conditioned numerical system is
effectively avoided. Numerical examples are provided to demonstrate the validity and accuracy of the
proposed approach. Comparison with the traditional NN is also benchmarked. We further expand the
proposed method into the direction of arrival (DOA) estimation to demonstrate the generality of the
proposed procedure.

1. INTRODUCTION

In past two decades, the source reconstruction method (SRM) has been an attractive method to retrieve
equivalent source distributions of target objects from the near or far field measurements [1, 2]. As
a representative electromagnetic inverse scattered problem, SRM can employ integral equations to
implement far field (FF) to near field (NF) transformation [3, 4]. From the scattered field in the
observation domain, the distribution of the sources on an object can be approximated through SRM.
The reconstructed sources can provide many helpful applications, such as source error test, hot-spot
identification, and NF to FF transformations [3–5]. A large number of reconstruction algorithms have
been proposed for SRM and related purposes, such as Born approximation method [6, 7], Bayesian
probability method [8, 9], compressive sensing [10], and other deterministic algorithms [11, 12]. The
source reconstruction method could be implemented through integral equation method and MoM [6–
9]. It can also be carried out through other numerical or experimental processes as long as the needed
training data could be generated. However, all these conventional approaches encounter solving singular
numerical systems, which make SRM a complicated computational challenge [2, 6].

Employing machine learning (ML) in advanced computational electromagnetics and relevant
applications were initiated long time ago [13–16]. Artificial neural networks (ANN) have been proposed
for array synthesis [17], source reconstruction [18], NF to FF transformation [19], etc. Due to the recent
blooming learning technologies, convolutional neural networks (ConvNets) [20, 21] have become one of
the most important new methods in deep learning applications. For example, ConvNet has been widely
used in imaging processes [22, 23].

In this paper, we propose to employ the power of ConvNet for the source reconstruction process.
The advantages of the proposed method are: (1) the proposed ConvNet model allows calculation
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using much fewer field samples than the conventional SRM; (2) without inverse solving, the proposed
method avoids handling a singular numerical system; (3) the proposed ConvNet approach can make
further field information to do reconstruction; (4) the proposed method has satisfactory accuracy and
superior performance over traditional neural networks [17–19]. Compared to traditional neural networks
(NNs) [17–19, 24], ConvNet can more efficiently map the relations between inputs and outputs mainly
by convolutional layer and activation layer [20, 21]. It does not need very large number of neural units to
handle problems such as source reconstruction. To demonstrate this difference, the SRM performance
comparison between ConvNet and traditional NN is provided in Section 3.

The paper is organized as follows. In Section 2, the source reconstruction formulation is briefly
reviewed, followed by a description of the ConvNets structure. Then, the proposed ConvNet method
for solving source reconstruction problems is proposed. In Section 3, numerical examples are provided
to present the validity and precision of the proposed method, which are also compared with the results
obtained by different interpolation methods [25]. Finally, the conclusion is shown in Section 4.

2. THEORY AND FORMULATION

2.1. Problem Formulation

We use a representative 2D equivalent current density reconstruction, as shown in Figure 1, to
demonstrate the procedures of our methodology. Here, we want to emphasize that our work is not
done on non-radiating sources [26]. In Figure 1, Dobj is a dielectric area, denoting the domain of
interest. It is divided into n = 1, 2, . . . N patches. The transverse magnetic (TM) incidence plane wave
is denoted as Ein. The scattered field Es in z direction can be represented by the z direction current
density as:

Es (r) = −jωμ0

∫
g

(
r, r′

)
Js

(
r′

)
dr′ (1)

where g (r, r′) is the scalar Green’s function. For TM wave, it can be defined as g (r, r′) =
− j

4H
(2)
0 (k0 |r− r′|). H

(2)
0 stands for the second-kind Hankel function of zero th order. r = (xy) and

r′ = (x′, y′) are the field and source points, respectively. Js is the equivalent current density on the
target object Dobj.

Figure 1. Schematic of he scattering of TM wave from a dielectric region Dobj.

Based on the Lippmann-Schwinger equation [27], the relationship between the incident electrical
field Ein and equivalent current density distribution Js on Dobj is:

Ein (r) − jωμ0

∫
g(r, r′)Js(r′)dr′ =

Js(r)
jωε0(εr − 1)

(2)

where ε0 and μ0 are the vacuum permittivity and permeability, and εr is the relative permittivity of
Dobj.
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It has been widely accepted that the property of object can be characterized by its equivalent current
density distribution Js. For different incident angles βl of Ein (l = 1 . . . L) and different receivers in the
far field at measurement angles ϕm (m = 1 . . . M), the relationship between the scattered field Es and
equivalent current density Js is:

Es (ϕm, βl) = −jωμ0

N∑
n=1

g
(
ϕm, r′n

)
Jβl

s,nAn (3)

where An is the equivalent area of nth divided Dobj fragment, and Jβl
s,n is the equivalent current density

on the nth piece with the incident field angle βl.
For conventional reconstruction methods, we aim to use Es (ϕm, βl) to obtain Jβl

s,n. However,
in the conventional process, we have to use large number of ϕm to retrieve Jβl

s,n, which could be ill-
conditioned [28]. Hence, the expensive calculation cost and relatively low accuracy are the bothering
problem for SRM. ConvNet provides a possible new approach to solve the problem with smaller M .
According to Eq. (3), we rewrite the process of solving Js matrix vector in a simplified form as Eq. (4):

Js = Γ(Es) (4)

where for each βl, Es = [Es (ϕ1, βl) , . . . , Es (ϕM , βl)] and Js =
[
Jβl

s,1, . . . Jβl
s,n, . . . Jβl

s,N

]
. The mapping

Γ represents the equivalent source reconstruction.

2.2. Integration of ConvNet and Source Reconstruction

A ConvNets [20, 21] consists of four stacked layers: input layers, convolutional layers, pooling layers and
fully-connected layers. In this paper, we utilize these typical layers to form our convolutional neural
network model to reconstruct equivalent source for a process in Equation (4).

The internal architecture of our ConvNet is shown in Figure 2. The inputs are Es of each size 2M×1
with real part M×1 and imagery part M×1, illuminated from L groups of incident field. Here, if we
use RCS value of scattering field as input data, the size of each input becomes M×1. The convolutional
layer and activation layer unit operates to capture features of input. f filters (kernel) in convolutional
layer have size of K×1 due to 1D input. Convolutional layer number, kernel number f , its size K, and
the stride for kernel are adjusted according to a specific application scenario. Then, this convolutional
layer and activation layer unit feeds into a final fully-connected layer, which produces the reconstructed
source Js with size 2N as real and imagery parts or with size N as its modulus. This final output is
the output value of the ConvNet. It is used to compute the mean-squared error between the true label
and the predicted label, referred to as the loss.

Our method is benchmarked in Matlab 2017b with Deep Learning Toolbox [29]. The mean-squared
error loss function is optimized by stochastic gradient descent. The learning rate, chosen as 0.01, is

Figure 2. ConvNet architecture for the source reconstruction.
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the hyper-parameter in our model. We can control training error by declining the learning rate. The
training is done by Full batch. L2 regularization is applied to prevent over-fitting and improve prediction
accuracy [30]. If input Es is smooth, we tend to choose smaller convolutional layer number and kernel
number, and larger kernel size and stride to efficiently capture features of input because less fluctuation
means narrower bandwidth with limited field information and limited critical features. Besides, if
the stride is larger than 1, this convolutional layer acts as reducing layer to compress ‘resolution’ of
‘image’. Moreover, for simplicity, we do not use pooling layers in our ConvNet structure. Moreover,
there is no requirement to manually select features, which makes the proposed ConvNet approach a
featureless-learning one. The computational complexity of our ConvNet is O

(
DMKf2

)
+ O(MN),

where O
(
DMKf2

)
is the computational complexity of all convolutional unit, and O(MN) is the

computational complexity of the last fully-connected regression layer. N (square of grid size) is the
size of output Js, and D is the number of convolutional units [31]. Normally, we control the number
of convolutional units and choose small kernel number and size. Thus, we have N � DKf2 for the
ConvNet, and the computational complexity of the ConvNet is O(MN). According to our experience,
even when we choose small number of receivers, meaning N � M , the ConvNet can still offer satisfactory
result. In this way, the computational complexity of the ConvNet is approximated to O(N).

To be specific, we use the ConvNet F to replace the relation Γ in Eq. (4). We choose Es as the
input of the structure and Js as output of the structure.{ Y = F (X;Θ)

X = Es

Y = Js

(5)

where Es and Js in different incident angles βl act as training data, and we have L groups of input and
output of ConvNet. Θ is the parameters of the ConvNet (weights and biases).

The training of F is done by using known Js under different incident waves and its resultant Es

to form training data set for the ConvNet. Based on the trained ConvNet, we can then reconstruct Js

illuminated by new incident waves with less complexity and more accuracy. The performance of the
ConvNet is discussed in the following sections.

3. NUMERICAL RESULTS

We use several numerical examples and application scenarios to demonstrate the proposed source
reconstruction method.

3.1. Reconstruction on Symmetrical Object

We begin from a 2D dielectric cylinder, which means that Dobj is rotationally symmetric. Using the
measured RCS, we can get Js from the trained ConvNet.

(b)(a)

Figure 3. ConvNet performance. (a) Known accurate current distribution. (b) Current distribution
computed from the ConvNet prediction based on the measured RCS.
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In Figure 3, the wavelength λ of incident TMz wave is 1 meter; the permittivity of dielectric object
εr is 8; and its radius is λ/4. The grid size of current distribution Js is 38 × 38, thus N = 1444. The
RCS data are collected from only M = 12 different angles as input of training data. We just use L = 15
different incident angles (β = 0◦, 24◦, . . ., 336◦) to stimulate the object to get the training data. Then,
we use a new incident angle (β = 36◦) of wave to get different RCSs, which is used as the input of
the trained ConvNet to predict the new distribution of Js. The comparisons of the accurate numerical
results and ConvNet prediction results are shown in Figure 3. The average relative error between them
is less than 3%.

The ConvNet adopted in this model has one convolution and activation unit, 5 kernels with the
size 3× 1 for each of them, and the stride 2. Here we should emphasize that all those parameters might
not ensure the best performance of ConvNet, and they still have potentials to be optimized.

3.2. Reconstruction on Asymmetric Object

In this section, we test the performance of ConvNet for an asymmetric Dobj, a L shape object.
To demonstrate the advantage of ConvNet, we compare its performance with two interpolation
methods [25], the nearest interpolation and spectral interpolation, and with traditional Back
Propagation Neural Network (BPNN) [24].

In this benchmark, the wavelength λ of incident TMz wave is 1 meter. The relative permittivity of
dielectric object εr is 8. Its outer length a is λ/2 with the inner length b equal to 3λ/8 (See Figure 4(a)).
The grid size of current distribution Js is 24 × 24. Here we use both real and imaginary parts of Js to
form a full vector with the length N = 1152. The Es made of real and imaginary parts of scattering
fields are collected from 10 different angles as the input of training data, and M = 20. We only use
6 different incident angles (β = 0◦, 60◦, . . ., 300◦) of Ein to stimulate the object to get training data.
For the spectral interpolation method as a reference, we use two-times zero-padding and fast Fourier
transform to interpolate each grid of the current distribution of the area with 24 × 24 grids. Besides,

(b)(a)

(d)

(c)

(e)

Figure 4. Performance of different approaches on L object for β = 210 degree. (a) Known accurate
numerical current distribution. (b) Current distribution calculated from the ConvNet prediction. (c)
Current distribution calculated from spectral interpolation. (d) Current distribution calculated from
the nearest interpolation. (e) Current distribution calculated from traditional BPNN.
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(b)(a)

Figure 5. (a) Relative error comparison between ConvNet, BPNN, the nearest interpolation and
spectral interpolation on different incident angles. (b) Training loss of ConvNet.

we also use traditional Back Propagation Neural Network (BPNN) to reconstruct the source [24], of
which the training data are also Es as input and Js as output. Traditional NNs usually depend on
neural unit and hidden layer to fit the relationship between input and output, and have to make use of
a large number of neural units to handle source reconstruction problem with the relatively complicated
relationship between input and output [17, 19]. The structure of BPNN has three layers: input, hidden-
layer and output layer. There are 20 hidden-layer units of hyperbolic tangent basis function. This
BPNN is implemented using Matlab 2017b with Deep Learning Toolbox [29].

We use a new incident angle β = 210◦ to obtain a different set of Js and Es from the L shape
object. Then, we utilize Es as the input of the trained ConvNet to predict Js. Figure 4 shows the
prediction result of ConvNet and traditional BPNN and two interpolation results. From Figure 4 and
Figure 5, we can clearly see that the ConvNet and spectral interpolation have comparable precision with
accurate numerical values, while the nearest interpolation has more errors in retrieving the equivalent
source distribution. However, the traditional BPNN nearly fails to predict reconstructed source or
provide meaningful information, shown in Figure 4(e). Meanwhile, the computational complexity of our
ConvNet is O(MN), where M is the size of the input Es, and N is the size of the output Js. For this
example, N � M . Thus, the computational complexity of the ConvNet is O(N), which is the same
as the nearest interpolation method and lower than the spectral interpolation with the complexity of
O(N log N). For the ConvNet in Figure 4(b), though merely one convolution and activation unit are
applied, it still shows surprisingly excellent performance, presented in Figure 4 and Figure 5.

In Figure 5(a), we utilize five incident angles (β = 30◦, 90◦ . . . 330◦) to stimulate the object. The
following relative error function in Eq. (6) is applied to evaluate the accuracy of our ConvNet and two
interpolation approaches:

e =
‖|JS,SRM| − |JS,acc|‖

‖JS,acc‖ (6)

where JS,SRM is the current density computed from source reconstruction methods, and JS,acc is the
accurate current density distribution.

We can see that the ConvNet has the same small error (about 0.2) and thus the same accuracy as
the spectral interpolation, both of which are much better than the nearest interpolation (about 0.5).
Besides, from Figure 5(b), we can see that the training loss of ConvNet rapidly decreases and that our
ConvNet successfully captures the features of Es and maps them to Js. Moreover, in this application
scenario, least square error (LSE) method fails to reconstruct Js, because N � M and Js cannot be
computed by underdetermined situation.

3.3. Direction of Arrival Estimation

To expand the application of our ConvNet model, we use it to do direction of arrival (DOA) estimation
on the angle of incidence wave. Conventional DOA needs complex receiver and analysis tools [32], such
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as complex antenna array, and complicated algorithms, such as MUSIC [33]. By ConvNet model, DOA
estimation could be done by merely a small number of known Es and incidence cases. We firstly choose
one target object Dobj as a medium to map relationship between scattered field Es and incident angle
βl. We still utilize Es as the input of ConvNet, but use the incidence angle of electromagnetic wave βl as
output of ConvNet. By this trained ConvNet, we can also predict the incident angle. The performance
of our model is shown in Figure 6. We here use the L shape in Section B as medium target object Dobj.
Parameters of ConvNet in this example are the same as those in the numerical example above.

(b)(a)

Figure 6. DOA results from ConvNet. (a) Comparison between real incident angles and ConvNet
prediction results. (b) Error of ConvNet prediction results.

From Figure 6, we can see that the ConvNet can accurately predict the incident angle of wave βl,
and in most cases, the error of ConvNet prediction results can be controlled below 1.5%.

4. CONCLUSION

In this paper, we propose a new source reconstruction method using the ConvNets model from machine
learning. The scattered fields due to incident waves from different incident angles are used as the input
training data to the ConvNets. The induced current distributions are used as the output data. After the
training, ConvNets serves as the SRM engine to reconstruct the equivalent sources efficiently. Because
of the merit of ConvNets, the newly proposed approach achieves better performance on the source
reconstruction problem. Symmetric and asymmetric objects are used to demonstrate the feasibility and
accuracy of the retrieved source distribution. We also compare the reconstructed source distribution
from the proposed ConvNet model with that from traditional neural networks, and from spectral
interpolation and the nearest interpolation methods to show the validity and advantages of our model.
The ConvNets model is further extended to solve the direction of arrival estimation. Our work offers a
new way to leverage machine learning approaches for source reconstruction applications.
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