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Three Dimensional Electromagnetic Scattering of Two-Layer Rough
Surfaces Using Physical Optics Approximation Algorithm

Ke Li, Lixin Guo*, and Juan Li

Abstract—In this study, the physical optics approximation (POA) algorithm is described for predicting
the electromagnetic (EM) scattering of three dimensional (3D) two-layer rough surfaces. The POA is
initially used to calculate the composite scattering of an object and single layer rough surface under
two dimensional (2D) situations. We extend this method to the case of a rough layer with two rough
interfaces. The multiple coupling interactions between the upper and lower layer are considered based on
an iterative strategy. Because the coupling effect is considered, the 3D model is quite time-consuming.
In order to obtain numerical results rapidly, a parallel technique based on the OpenMP is adopted
to accelerate the coupling iterative calculation. The model is applicable for moderate to large surface
roughness. However, the rough surface should have small to moderate slopes so as to meet the conditions
of POA. In numerical results, the normalized radar cross section of two-layer rough surfaces model under
different polarizations is calculated, and the model is validated by comparison with a numerical reference
method based on the method of moment. In addition, the influence of roughness on the scattering model
is analyzed and discussed.

1. INTRODUCTION

Natural backgrounds, such as rough sea surface covered by insoluble oil, soil with snow on it, forest with
layered vegetables, and all kinds of artificial material surfaces, are regarded as random rough surface
models. Notably, most of the scenarios are layered rough surfaces. The scattering of these dielectric
homogeneous layers is of significance in practical applications, such as surveillance to the soil, target
tracking and navigation communication in complex backgrounds [1–3].

Theoretical simulation methods are always used to examine rough surfaces, and many methods have
been developed to predict the EM scattering from rough surfaces or grating surfaces since the 1950s.
In the open literature, several methods are used to examine the rough surface, such as the extinction
theorem developed to calculate the scattering of rough surface and grating surface [4–6], a generalization
of an integral theory used to calculate the enhanced backscattering from random rough surfaces [7], the
Kirchhoff approximation (KA) [8, 9], the method of moments (MoM) [10], and a comprehensive approach
of the forward-backward method (FBM) with spectral accelerate algorithm (SAA) combined with the
physics-based two-grid (PBTG) method [11] which are investigated to calculate the scattering of rough
surface. Notably, KA is extend to the high-order Kirchhoff scattering to examine the scattering of very
rough 2D surfaces [12–15] and 3D surfaces [16, 17]. However, only a single layer is considered in these
models. Meanwhile, the numerical methods consume a lot of computer resources, which limit their scope
of application. Especially, if the layer rough surface is 3D model, the numerical methods seem insufficient
because of the large calculation burden. Thus, the use of approximate models can be very efficient to
predict the scattered field of 3D model systems. Many efficient approximate methods are investigated
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to calculate these complex models, such as hybrid high-frequency shooting and bouncing rays-physical
optics (SBR-PO) [18], hybrid KA-MoM algorithm [19], stabilized extended boundary condition method
(SEBCM) [20], and modified equivalent current approximation (MECA) [21]. However, these works are
either ineffective or not applied further on actual layered models. To date, several methods have been
used to calculate the properties of layered rough surfaces or to analyze the polarimetric scattering from
two-layer random rough surfaces with and without buried objects, such as rigorous numerical method
multilevel fast multipole algorithm (MLFMA) [22], KA model [23], the steepest descent fast multipole
method (SDFMM) [24], and geometrical optics (GO) models [25, 26]. Obviously, approximate methods
can improve computational efficiency while maintaining the desirable precision.

In this study, a POA algorithm is developed for predicting the EM scattering of 3D two-layer
rough surfaces. The POA is an extension of our previous work of physical optics with physical optics
(PO-PO) [27, 28], and it is initially used to predict the scattering of a composite model which includes
an object and a single rough surface. The aim of this work is to extend the PO-PO to the case of a
two-layer rough surface. An iterative process is considered to calculate the coupling interaction between
the upper and lower layer. The normalized radar cross section (NRCS) of the two-layer rough surfaces is
calculated by using the proposed POA method, and the model is validated by comparing the results with
those obtained from a numerical reference method based on MoM. In this study, the two-layer rough
surface is modeled by using the Monte Carlo method with a Gaussian spectrum [29], and all fields and
currents are assumed to have a time-harmonic dependence in the form e−iωt, which is suppressed in this
study.

2. THE SCATTERING MODEL

The geometry of the problem of interest is shown in Fig. 1. k̂i is the incident wave unit vector, and
k̂s is the scattered wave unit vector. θi and ϕi are the incident elevation and azimuth angles, and θs

and ϕs are the scattered elevation and azimuth angles. The profile of the two-layered rough surface
divides the entire space into three spaces, and they are labeled as Ω0, Ω1, and Ω2. S1 denotes the upper
layer surface with a profile ς1(x, y), and S2 denotes the lower layer with a profile ς2(x, y). S1 and S2

are generated by the Monte Carlo method, and they are uncorrelated. d is the average thick of the S1

layer. d must be sufficiently large to avoid profile spatial overlap. The three spaces are characterized by
relative permittivities εr0, εr1 and εr2, and they are assumed to be non-magnetic (relative permeability
μr0 = μr1 = μr2 = 1).
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Figure 1. Geometry of the problem: A 3D two-layer structure with rough boundaries.

Assume that the wave incident on the two-layer rough surfaces is a plane wave Einc(r) =
êi exp(ik1 ·r), where k1 = kk̂i is the incident wave vector; k = ω

√
μ0μr0ε0εr0; ε0 and μ0 are permittivity

and permeability in free space; êi is the polarization direction of electric field vector.
Assume that the curvature radii of simulated rough surfaces are much larger than the wavelength so

that the reflected and transmitted waves at each point on a rough surface boundary can be approximated
using Snell-Descartes law. It is important to make clear the validity of PO method for the scattering
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of rough surface. In PO method, the fields at any point on the surface are approximated by the fields
that would be present on the tangent plane at that point. Therefore, it is required that every point
on the rough surface has a large radius of curvature relative to the incident wavelength so as to make
PO valid [14]. However, it is always tedious to calculate the curvature radius of every point. For the
scattering of rough surface only, PO method is also known as the KA method [9, 14], and the conditions
of KA method [30] are expressed as

kl ≥ 6, l2 > 2.76δλ (1)

where l is the correlation length, δ the root mean square (RMS) height of rough surface, and λ the
incident wavelength.

On the basis of Huygens’ principle, the field at an observation point r is expressed in terms of the
fields at the boundary surface r′1. Thus, the scattered and transmitted fields at the two sides of S1 are
expressed as

Es(r) =
∫∫

s1

ds1

(
ikη0GG(r, r′1) · n̂× H(r′1) + ∇× GG(r, r′1) · n̂× E(r′1)

)
(2)

Et(r) =
∫∫

s1

ds1

(
ik1η1GG1(r, r′1) · n̂1 × H(r′1) + ∇× GG1(r, r′1) · n̂1 ×E(r′1)

)
(3)

where n̂×E(r′1) and n̂×H(r′1) are the total tangential electric and magnetic fields on S1; E(r) and H(r)
are the total electric and magnetic fields in Ω0; n̂ and n̂1 are the normal vectors to upper and lower
surface of S1, respectively. Notably, n̂1 = −n̂. η0 =

√
μ0μr0/ε0εr0 is the intrinsic impedance in space

Ω0, and η1 =
√

μ0μr1/ε0εr1 is the intrinsic impedance in space Ω1. k1 = ω
√

μ0μr1ε0εr1, GG(r, r′1) and
GG1(r, r′1) are the space dyadic Green’s functions in Ω0 and Ω1, which are given by

GG(r, r′1) =
(

II +
1
k2

∇∇
)

exp (ik |r− r′1|)
4π |r − r′1| (4a)

GG1(r, r′1) =
(

II +
1
k2

1

∇∇
)

exp (ik1 |r − r′1|)
4π |r− r′1| . (4b)

To obtain the NRCS of the model, the accurately predicted total tangential electric and magnetic
fields on S1 should be determined. In our POA method, an iterative process is considered to predict the
scattering fields. Firstly, the primary values of n̂ × E(r′1) |0 and n̂ × H(r′1) |0 are set as the traditional
POA tangential electric and magnetic fields on a plane patch [31], which they are zero in the non-lit
region and are represented in the lit region as follows

n̂ ×E
(
r′1

) |0 =
(
êTE · Einc(r′1)

) (
1 + R01

TE

)
(n̂ × êTE)

− (
êTM ·Einc(r′1)

) (
1 − R01

TM

) (
−n̂ · k̂i

)
êTE (5)

n̂× H
(
r′1

) |0 =
((

êTE ·Einc(r′1)
) (

1 − R01
TE

) (
−n̂ · k̂i

)
êTE

+
(
êTM ·Einc(r′1)

) (
1 + R01

TM

)
(n̂× êTE)

)/
η0 (6)

where R01
TE and R01

TM are the local Fresnel reflection coefficients at S1 for the horizontal and vertical
polarizations, respectively [32]. The number in the lower right corner represents the iterative order
number. The superscript “01” indicates that the wave is incident in Ω0 and refractive in Ω1, and it is an
identity related to the space’s permittivity and permeability. For example, R10

TE indicates that the wave
is incident in Ω1 and refractive in Ω0, and R12

TE indicates that the wave is incident in Ω1 and refractive
in Ω2. The permittivity and permeability appear in a fixed position of (2.1.49a) and (2.1.49b) in [32],
and corresponding exchanges are made based on the identify “01”, “10”, or “12”. The locally defined
unit vectors êTE and êTM to the upper surface of S1 are expressed as

êTE =
k̂i × n̂∣∣∣k̂i × n̂

∣∣∣ êTM = êTE × k̂i. (7)
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The combination of Eqs. (2), (3), (5) and (6) is the primary scattered field of upper layer rough
surface. The shadowing regions must be taken into account based on the POA, and the shadowing
is included in the calculation of POA tangential electric and magnetic fields explicitly by introducing
functions inside Eqs. (5) and (6) in the form of geometric shadow functions:

s1(r′1) =
{

1 k̂i · n̂ < 0 (r′1 is lit by incident wave)
0 k̂i · n̂ ≥ 0 (r′1 is not lit by incident wave)

(8)

Once the tangential fields expressed in Eqs. (5) and (6) are determined, the transmitted fields in
Ω1 can be calculated by using Eq. (3). The tangential electric and magnetic fields on S2 are expressed
as

n̂2 × E
(
r′2

) |1 =
(
ê2

TE · Et(r′2)
) (

1 + R12
TE

) (
n̂2 × ê2

TE

)
− (

ê2
TM · Et(r′2)

) (
1 − R12

TM

)
(−n̂2 · r̂12) ê2

TE (9)

n̂2 × H
(
r′2

) |1 =
((

ê2
TE · Et(r′2)

) (
1 − R12

TE

)
(−n̂2 · r̂12) ê2

TE

+
(
ê2

TM · Et(r′2)
) (

1 + R12
TM

) (
n̂2 × ê2

TE

) )/
η1 (10)

where n̂2 is the normal vector to S2, r̂12 = (r′2 − r′1)/|r′2 − r′1|. The locally defined unit vectors ê2
TE

and ê2
TM to S2 are expressed as ê2

TE = r̂12 × n̂2/|̂r12 × n̂2| and ê2
TM = ê2

TE × r̂12. Substituting Eq. (3)
into Eqs. (9) and (10), the tangential electric and magnetic fields in lit-region on S2 can be written as

n̂2 × E
(
r′2

) |1 =
∫∫

s1

ds1

⎛
⎝ iωμ0μr1

η0

[(
1 + R12

TE

)M +
(
1 − R12

TM

) N
]
· (GG1(r′2, r

′
1) · K)

−
[(

1 + R12
TE

) M +
(
1 − R12

TM

) N
]
· [∇× GG1(r′2, r

′
1) · L]

⎞
⎠

exp(ik1 · r′1) (11)

n̂2 × H
(
r′2

) |1 =
1
η1

∫∫
s1

ds1

⎛
⎝ − iωμ0μr1

η0

[(
1 − R12

TE

) N − (
1 + R12

TM

) M
]
· (GG1(r′2, r′1) · K)

+
[(

1 − R12
TE

) N − (
1 + R12

TM

) M
]
· (∇× GG1(r′2, r

′
1) · L)

⎞
⎠

exp(ik1 · r′1) (12)

where M and N are dyadics, and M, N , K, and L are given by

M =
(
n̂2 × ê2

TE

)
ê2

TE , N = (n̂2 · r̂12) ê2
TE ê2

TM (13)

K = (êTE · êi) (n̂ · r̂12) êTE

(
1 − R01

TE

) − (êTM · êi) (n̂× êTE)
(
1 + R01

TM

)
L = (êTE · êi) (n̂× êTE)

(
1 + R01

TE

)
+ (êTM · êi) (n̂ · r̂12) êTE

(
1 − R01

TM

)
.

(14)

As Eq. (8), the shadowing of tangential electric and magnetic fields on S2 is also calculated by
introducing functions inside Eqs. (9) and (10) in the form of geometric shadow functions:

s2(r′2) =
{

1 r̂12 · n̂2 < 0 (r′2 is lit by scattered wave)
0 r̂12 · n̂2 ≥ 0 (r′2 is not lit by scattered wave) (15)

On the basis of Eqs. (7)–(14), the tangential electric n̂1×E(r′1) |1 and magnetic fields n̂1×H(r′1) |1
in lit-region on the lower surface of S1 radiated from S2 can be obtained in an analogous manner. The
expressions are given directly by

n̂1 ×E
(
r′1

) |1 =
(
ê1

TE · E) (
1 + R10

TE

) (
n̂1 × ê1

TE

) − (
ê1

TM · E) (
1 − R10

TM

) (−ê1
TE · r̂21

)
ê1

TE (16)

n̂1 × H
(
r′1

) |1 =
((

ê1
TE · E) (

1 − R10
TE

)
(−n̂1 · r̂21) ê1

TE +
(
ê1

TM · E) (
1 + R10

TM

) (
n̂1 × ê1

TE

))
/η1(17)

E =
∫∫

s2

ds2

(
ikη1GG1(r′1, r′2) · n̂2×H

(
r′2

) |1 +∇×GG1(r′1, r′2)·n̂2×E
(
r′2

) |1 )
(18)

where r̂21 = (r′1 − r′2)/|r′1 − r′2|. The locally defined unit vectors ê1
TE and ê1

TM to the lower surface of
S1 are expressed as ê1

TE = r̂21 × n̂1/|̂r21 × n̂1| and ê1
TM = ê1

TE × r̂21.
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As Eq. (8), the shadowing of tangential electric and magnetic fields on the lower boundary of S1

is also calculated by introducing functions inside Eqs. (16) and (17) in the form of geometric shadow
functions:

s3(r′1) =
{

1 r̂21 · n̂1 < 0 (r′1 is lit by scattered wave)
0 r̂21 · n̂1 ≥ 0 (r′1 is not lit by scattered wave) (19)

Thus, the newly updated tangential fields are expressed as

n̂× E
(
r′1

) |1 = n̂× E
(
r′1

) |0 + n̂1 ×E
(
r′1

) |1 (20)

n̂× H
(
r′1

) |1 = n̂× H
(
r′1

) |0 + n̂1 × H
(
r′1

) |1 . (21)

Then, n̂×E (r′1) |1 and n̂×H (r′1) |1 are regarded as the primary tangential fields to calculate the
secondary tangential fields on S2. At the same time, the secondary tangential fields on S1 are updated
by the scattering fields from S2. The total tangential fields on S1 are summations of all the high-order
fields.

n̂ ×E
(
r′1

)
=

m∑
1

n̂× E
(
r′1

) |n (22)

n̂× H
(
r′1

)
=

m∑
1

n̂× H
(
r′1

) |n . (23)

Finally, the far filed NRCS can be obtained from Eq. (2) with the expression

σ
(
k̂s, k̂i

)
=

1
4πA

∣∣∣∣
∫

s
kη0 exp

(
−ikk̂s · r′1

)
·
(
n̂ × H

(
r′1

)

−k̂s

(
k̂s · n̂× H

(
r′1

))
+ k̂s ×

(
n̂ ×E

(
r′1

))
/η0

)
ds1

∣∣∣∣
2

(24)

where m is the iterative steps. In our simulations we find that the total tangential fields on S1 are
convergent after several steps, which in our simulation are set as 6. A is the projection area of rough
surface on xoy plane in Descartes coordinate system.

3. NUMERICAL RESULTS

In the following numerical simulations, the EM scattering of two-layer rough surfaces is calculated and
analyzed in detail by using the proposed POA method. All the simulations are obtained on a computer
with a 3.4 GHz processor (Intel(R) Core(TM) i3-4130 CPU), 8 GB memory, and Intel Fortran compiler
XE 13.0.

Numerical scattering results in incident plane under HH and V V polarizations are compared in
Fig. 2. The relative permittivities of upper and lower layers are εr1 = 3.0 and εr2 = i∞ (PEC). The
sizes of generated rough surfaces are 24λ×24λ. The root mean square (RMS) height and the correlation
length in the numerical implementation are set to δ1 = δ2 = 0.1875λ and l1 = l2 = 1.768λ, respectively.
The average thickness of the upper layer rough surface is d = 2.41λ. The incident angles are set as
θi = 0◦ and ϕi = 0◦ for comparison to a numerical reference method based on MoM [25]. It is easily
observed that the NRCS calculated by our POA method is in good agreement with that obtained by
using the numerical reference method over the most angular range.

The model to be simulated below is described as follows. The relative permittivities of upper and
lower layers are εr1 = 3.0 and εr2 = i∞ (PEC). The average thickness of the upper layer rough surface
is d = 5λ. Surface sizes of 24λ × 24λ are simulated. The profiles of rough surface are generated as
realizations of a Gaussian stochastic process with an isotropic Gaussian correlation function, and the
correlation lengths l = lx = ly are the same in x and y directions. The results are averaged by 50 Monte
Carlo realizations and observed in the scattering plane with θs = −90◦ ∼ 0◦ and ϕs = 15◦.

The effects of the correlation lengths on the NRCS of two-layer rough surfaces are depicted in Fig. 3.
The incident angles are θi = 30◦ and ϕi = 0◦ for the HH polarization (Fig. 3(a)), θi = 15◦ and ϕi = 0◦
for V V polarization (Fig. 3(b)), respectively. The RMS heights are δ1 = δ2 = 0.2λ in Fig. 3(a) and
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Figure 2. Comparison of NRCS of two-layer rough surfaces under different polarizations (a) HH, (b)
V V .

-90 -60 -30 0 30 60 90
-40

-30

-20

-10

0

10

N
R

C
S

(d
B

)

θ
s
(degree)

 l
1
=l

2
=1.0λ

 l
1
=l

2
=1.5λ

 l
1
=l

2
=2.0λ

δ
1
=δ

2
=0.2λ

HH

θ
i
=30

o

-90 -60 -30 0 30 60 90
-40

-30

-20

-10

0

10

θ
i
=15

o

VV

δ
1
=δ

2
=0.1λ

N
R

C
S

(d
B

)

θ
s
(degree)

 l
1
=l

2
=1.0λ

 l
1
=l

2
=1.5λ

 l
1
=l

2
=2.0λ

(a) (b)

Figure 3. NRCS of two-layer rough surfaces for different correlation lengths under different
polarizations (a) HH, (b) V V .

δ1 = δ2 = 0.1λ in Fig. 3(b) for both layers. The correlation lengths are set as l1 = l2 = 1.0λ, 1.5λ, 2.0λ.
It can be seen that the NRCS increases with the increase of correlation lengths for different polarizations
in the specular directions. The reason is that a large correlation length results in small RMS slope with
the same RMS height. Thus, strong incoherent scattering can be observed as shown by the short dot
line in Fig. 3. The scattering result in Fig. 3(b) varies more obvious than that in Fig. 3(b) in the
directions far away from the specular directions, which indicates that the values of the scattering peaks
are more sensitive to the variation in RMS length.

The effects of the RMS heights on the NRCS of two-layer rough surfaces are depicted in Fig. 4.
The incident wave is the same as in Fig. 3. The correlation lengths are l1 = l2 = 1.5λ in Fig. 4(a) and
l1 = l2 = 2.0λ in Fig. 4(b) for both layers. The RMS heights are set as δ1 = δ2 = 0.05λ, 0.1λ, 0.2λ. It is
observed that the NRCS increases with the increase of RMS heights for different polarizations over the
most angular range except for in the specular directions. It is due mainly to the fact that the two-layer
rough surface becomes rough for the large value of RMS height; therefore, more energy is diffused to
the directions far away from the specular directions, and because the energy is conserved, the scattering
fields in specular directions become weak.
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Figure 4. NRCS of two-layer rough surfaces for different RMS heights under different polarizations
(a) HH, (b) V V .
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Figure 5. Graphical representation of the example explaining the general working principle of OpenMP.

Being an approximate method in evaluating EM scattering, the POA algorithm is valuable in actual
applications, mainly benefited from its simple physical model, convenient mathematical formulation and
computational efficiency, especially with the scenes of scattering from complex model. However, in this
study POA is characterized by an iterative process for the two-layer rough surface, and the time-
consuming computation effort still needs to be reduced. In order to obtain numerical results rapidly, a
parallel technique based on the OpenMP [33] is adopted to accelerate the coupling iterative calculation.

OpenMP is a new industry standard that has been created with the aim to serve as a good basis
for the development of parallel programs on shared-memory machines. In our simulations, the graphical
representation of the execution of OpenMP is represented in Fig. 5. The discretized unit dimension is
λ/8, thus the two layer simulated rough surfaces are all discretized into 72962 little triangle patches. The
exterior loop of coupling calculation between the upper and lower layers is paralleled by the “!$OMP
DO/!$OMP ENDDO” directive-pair. In fact, the execution manner of openMP is unknown, so Fig. 5
does not represent the real execution manner but is a graphical representation of the execution principle.

The time-consuming of a two-layer rough surface for different CPUs thread by the POA method
for one realization in Fig. 3 is represented in Table 1. It shows that the computation time decreases
significantly as the number of parallel threads increases. Because our computer has only 4 threads, it
limits our testing of more threads.
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Table 1. The time-consuming of a two-layer rough surface for different CPU thread by the POA
method for one realization in Fig. 3.

1 thread 2 threads 3 threads 4 threads
HH 1837.6 s 1120.8 s 848.2 s 727.9 s
V V 1855.2 s 1266.1 s 865.7 s 733.5 s

4. CONCLUSIONS

In this study, we extend POA to the case of a rough layer with two rough interfaces. The multiple
coupling interactions between the upper and lower layers are considered based on an iterative strategy.
The validation with a numerical reference method based on MoM shows that our method is effective.
In numerical results, the EM scattering of two-layer rough surfaces model under different polarizations
is calculated for different roughnesses of rough surface. The results indicate that the roughness of rough
surface affects the scattering of two-layer rough surfaces remarkably. The study of 3D two-layer rough
surface has engineering significance and practical value, and our method is effective for 3D problems;
therefore, our method can provide theoretical reference for engineering applications.
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