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A New Adaptive Tracking Algorithm for Near-Space
Hypersonic Target

Xiangke Guo1, *, Changyun Liu2, Qiang Fu2, and Gang Wang2

Abstract—Because of the maneuvering of hypersonic target, the tracking of near space hypersonic
targets is difficult. In this paper, a new adaptive tracking algorithm based on an aerodynamic model
and improved square root cubature Kalman filter is proposed. The adaptive piecewise constant jerk
model gives the acceleration recursive process based on the dynamic model. Considering the nonlinear
characteristic of both the target state model and the observation model, the improved square-root
cubature Kalman filter is applied to estimate the target state. The simulation results under different
maneuvers conditions indicate that the proposed method has a higher degree of accuracy than the
original aerodynamic model. The research provides a feasible solution to the further improvement of
the real time tracking accuracy of near space hypersonic targets.

1. INTRODUCTION

As projects related to near space hypersonic targets (NSHT) [1–3] developed by the U.S. forces
gradually mature, NSHT with characteristics of expansive flight cross-domain, high velocity and complex
aerodynamic parameter variation pose a challenge to the intercept and attack abilities of air defense
and anti-missile systems [4–6]. Many studies have been conducted that deal with the motion modeling
and tracking algorithm of NSHT. At present, the dynamic model based on a gravity turning frame and
aerodynamic pressure is widely used for space targets and ballistic targets [7]. Wu and Chen used the
aerodynamic model to estimate the motion state along with aerodynamic parameters [8]. However, the
model has complex interactions and requires a large computational load. According to the dynamic
characteristics of the air-breathing hypersonic target Li et al. proposed the dynamic hybrid model
set for target tracking [9]. However, the analytical solution structure is difficult to implement for a
linear filter design. To address the shortcomings of the traditional dynamic, Zhai et al. proposed a
new aerodynamic model to realize the trajectory prediction of a hypersonic target. However, since no
aerodynamic acceleration recursive step is given, the model cannot be directly used for filtering [10, 11].

Therefore, on the basis of the aerodynamic model in papers [10] and [11], a piecewise adaptive
jerk tracking model of NSHT is proposed. The square root cubature Kalman filter (SRCKF) is used
to accomplish the filter tracking of a target. This filter has better nonlinear approximation features,
numerical accuracy, small computation and suitability for real-time calculation [12–14]. Finally, the
effectiveness of the new adaptive tracking algorithm is verified by simulation.

2. THE DYNAMIC MODEL OF NSHT

The acceleration model of a maneuvering reentry target can be written as [7]:

d2r

dt2
= a+ g − ωe × (ωe × r)− 2ωe × v (1)
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where r, v, g, ωe and a indicate the earth vector of a target, flight speed of a target, gravity acceleration,
earth rotation angular speed and aerodynamic acceleration. Also, −ωe × (ωe × r) indicates inertial
centripetal acceleration, and −2ωe × v indicates Coriolis acceleration.

The aerodynamic acceleration a is the main factor affecting the maneuver of the target, and its
change determines the maneuvering state of the aircraft. Therefore, the inertial centripetal acceleration
and Coriolis acceleration in the total target acceleration can be ignored. The gravity acceleration g can
be respectively modeled as a flat model, ball model and ellipsoid model. Here, focus on the modeling
of aerodynamic acceleration a.

3. PIECEWISE-CONSTANT JERK MODEL

3.1. The Piecewise-Constant Acceleration Model

According to the concept of piecewise uniform acceleration (Piecewise-Constant Acceleration, or
PCA) [7], under an ENU coordinate system, using aerodynamics parameter αVTC model aerodynamics
acceleration can be stated as [10]:

ẍ = αV P0ẋ− αTP0v
ẏ

vg
− αCP0

ẋż

vg

ÿ = αV P0ẏ + αTP0v
ẋ

vg
αt − αCP0

ẏż

vg

z̈ = −αV P0ż + αCP0vg − g

(2)

where ẍk, ÿk, z̈k are the acceleration components along the three axes in the ENU system; P0 is the
free flow of pressure; v is the target speed; αV TC = [αV , αT , αC ]

T is the aerodynamics parameter. The
relationship between the aerodynamic parameter αV TC and the acceleration of the target in the VTC
coordinate system is aV TC = [aV ; aT ; aC ] = [αV P0v;αTP0v ;αCP0v ].

From Eq. (2), it can be seen that the PCA model does not give a recursive equation for aerodynamic
acceleration. In each filtering cycle, the target acceleration cannot be directly corrected using innovation.
Therefore, if either the target maneuver or the initial state setting is inaccurate, the likelihood of a
system tracking error will increase. When a recursive model of acceleration is established in the state
equation, the state model can rectify the acceleration item recursively, according to the observational
innovation of the sensor in each filtering period. That can improve the estimation accuracy of the system
state. Therefore, in this paper, based on the previous aerodynamic model, the recursive equation of the
target aerodynamic acceleration is established, and a piecewise constant Jerk adaptive tracking model
for tracking hypersonic targets is proposed.

3.2. The Piecewise-Constant Jerk Model

Suppose that the jerk value of the NSHT is uniform in the sampling interval. According to random
model approximate thought [15], taking random error into the acceleration recursion equation, the
acceleration recursion equation is defined by:[

ẍk+1

ÿk+1

z̈k+1

]
=

[
ẍk
ÿk
z̈k

]
+

[ ...
x k...
y k...
z k

]
T +wk (3)

where wk is defined as the acceleration vector at time k and the error which is generated by the random

error of jerk acceleration at time k + 1, wk =
[
˜̈xk +

.̃..
x kT ˜̈yk +

.̃..
y kT ˜̈zk +

.̃..
z kT

]T
.

From Eq. (3), the subsection uniform jerk model state equation under an ENU coordinate system
is generated by

Xk+1 = FCAXk +GJJ(Xk,pk) +WCJ
k (4)

where Xk = (xk, ẋk, ẍk, yk, ẏk, ÿk, zk, żk, z̈k)
T is the target state vector; FCA = blkdiag(F, F, F ) is the

state transition matrix; GJ = blkdiag(Gx,Gy,Gz) is the jerk input matrix, and Gx = Gy = Gz =[
T 3/6, T 2/2, T

]T
; pk is the aerodynamics parameter vector, which has the same meaning as in Eq. (4);
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J(Xk,pk) = [
...
x k

...
y k

...
z k ]

T
is the jerk of the target; WCJ

k is the Gaussian noise of covariance

matrix QCJ
k ; QCJ

k = blkdiag
(
σ2
axqCA, σ

2
ayqCA, σ

2
azqCA

)
, σ2

ax, σ
2
ay and σ2

az are instantaneous variances
of acceleration in the x, y and z directions, respectively. Also, F and qCA are defined as:

F =

 1 T T 2

2
0 1 T
0 0 1

 , qCA =

[
0 0 0
0 0 0
0 0 qaT

]
Where qa is the steady state precision adjust factor, according to Eq. (2), and J(Xk,pk) is computed
by 

...
x = αV P0ẍ− αTP0

(
v̇
ẏ

vg
+ v

ÿ

vg
− v

ẏ

v2g
v̇g

)
− αCP0

( ẍż
vg

+
ẋz̈

vg
− ẋż

v2g
v̇g

)
...
y = αV P0ÿ + αTP0

(
v̇
ẋ

vg
+ v

ẍ

vg
− v

ẋ

v2g
v̇g

)
− αCP0

( ÿż
vg

+
ẏz̈

vg
− ẏż

v2g
v̇g

)
...
z = αV P0z̈ + αCP0v̇g

(5)

where v =
√

ẋ2 + ẏ2 + ż2 is the flight speed of the target, vg =
√

ẋ2 + ẏ2, v̇ = ẋẍ+ẏÿ+żz̈
v , v̇g = ẋẍ+ẏÿ

vg
.

Suppose σ2
ak =

[
σ2
ax σ2

ay σ2
az

]T
, the instantaneous variance of acceleration is generated by

σ2
ak = diag

(
[˜̈xk

˜̈x
T
k ] + T 2[

.̃..
xk

.̃..
x
T
k ] + 2T [˜̈xk

.̃..
x
T
k ]
)

(6)

where ˜̈xk =
[
˜̈xk ˜̈yk ˜̈zk

]T
is the acceleration estimation vector, and

.̃..
xk =

[ .̃..
x k

.̃..
y k

.̃..
z k

]T
is the

jerk estimation error vector. When ignoring the product of the jerk and acceleration error, the variance
expectation of acceleration and jerk are similar to the instantaneous variance. Therefore, Eq. (6) can
be defined by

σ2
ak = diag

(
CaE[˜̈xk

˜̈x
T
k ] + T 2CJE[

.̃..
xk

.̃..
x
T
k ]
)

(7)

where Ca and CJ , respectively, are the acceleration and jerk variance conversion coefficient. The
recursion of aerodynamic parameters in the segmented uniform jerk model can be achieved by separately

calculating E[˜̈xk
˜̈x
T
k ] and E[

.̃..
xk

.̃..
x
T
k ], using different filtering algorithms.

4. IMPROVED SQUARE ROOT CUBATURE KALMAN FILTER

4.1. Square Root Cubature Kalman Filter

Considering the nonlinear characteristics of the target state model and the observation model, the
nonlinear approximation performance and numerical accuracy are better than those of other nonlinear
filtering algorithms. The algorithm has a small computational load and is more suitable for real-
time calculation. The cubature Kalman filter (CKF) has higher filtering precision than the Unscented
Kalman filter (UKF) when the dimensionality of the target state is greater than 3. In the process of
CKF, the error covariance matrices need to be decomposed and inverted. However, it is difficult to
guarantee the positive definite of the error covariance matrix. Therefore, the state-filtering of the target
is avoided by introducing Cholesky decomposition, in order to avoid the square root cubature Kalman
filter (SRCKF), which directly performs the square root operation on the covariance matrix and has
better filtering stability [12–14]. The SRCKF avoids the square root operation of the iterative matrix by
introducing orthogonally triangular decomposition. However, the SRCKF directly calculates the square
root of the covariance matrix. It solves the easy divergence issue of a conventional CKF algorithm and
improves the accuracy and stability of filtering.

To realize the recursive estimation of the hypersonic target aerodynamic parameter p in the adjacent
space, the segment jerk model is extended as a state estimation parameter, and the extended jerk motion
model is shown in Eq. (8), as follows:[

Xk+1

pk+1

]
=

[
FJ 0
0 I

] [
Xk

pk

]
+

[
GJ

0

]
Jk +

[
WJ

k
Wpk

]
(8)
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where Wpk is the parameter of Wiener model process noise, and Qpk is the covariance matrix. Combine
Eq. (8) with the measure equation, and the result is as follows:{

Xa
k = f(Xa

k−1) +Wa
k−1

Zk = h(Xa
k) +Vk

(9)

where Xa
k−1 =

(
XT

k−1,p
T
k−1

)T
; Wa

k−1 = [(WJ
k−1)

T ,WT
p,k−1]

T , h(Xa
k) is a nonlinear function between

the measured value and the state value, and the measurement noise Vk is a zero-mean Gaussian white
noise vector with variance Rk.

Suppose the posterior probability distribution of the known state estimation is p(xa
k−1

|z1:k−1) ∼
N(xa

k−1
; x̂a

k−1
, P a

k−1
), the corresponding covariance is P a

k−1
, and the expanded model progress noise

covariance matrix is Qa
k = blkdiag(QJ

k ,Qpk); then Sa
x,k = chol(Pa

k) is a Cholesky decomposition. The
SRCKF algorithm based on the expanded status model is defined as follows:

(1) Calculate the basic cubature points and the corresponding weights.
The nonlinear filtering problem under Gaussian distribution can be reduced to an integral calculus

problem. The standard Gaussian weighted integral can be calculated by using the third-degree spherical
radial rule and 2nx volume points are needed. The basic cubature point and the corresponding weight
is:

ξi =

√
m

2
[1]i , wi =

1

m
, i = 1, 2, . . . ,m (10)

where the cubature point number is m, m = 2nx, and nx is the dimension of state; [1]i represents the
i-th column of the complete symmetric point set [1].

(2) Time updates
Calculate the m cubature points of the current state (i = 1, 2, . . . m), m = 2n.

Xa
i,k−1|k−1 = Sa

k−1|k−1ξi + x̂ak−1|k−1 (11)

Calculate the predicted value of the volume point through the nonlinear state transfer function.

X
a(∗)
i,k|k−1 = f(Xa

i,k−1|k−1) (12)

Estimate the predicted state (SRCKF uses equal weights) in conjunction with the weights and volume
point predictions.

x̂ak|k−1 =
1

m

m∑
i=1

Xa(∗)
i,k|k−1

(13)

The square root of the estimated covariance matrix:

Sa
k|k−1 = Tria([χi,k|k SQ,k−1]) (14)

where Qa
k−1 = SQ,k−1S

T
Q,k−1, and

χi,k|k =
1√
m

[
Xa(∗)

1,k|k−1
− x̂ak|k−1, X

a(∗)
2,k|k−1

− x̂ak|k−1, . . . , X
a(∗)
m,k|k−1

− x̂ak|k−1

]
.

The algorithm S = Tria(A) means that matrix A is first QR-decomposed, and a normal orthogonal
matrix B and an upper triangular matrix C are obtained. Let S = CT , and the resulting S is an upper
triangular matrix.

(3) Measurement update (k = 1, 2, . . .)
Calculate the updated state cubature points (i = 1, 2, . . . , m).

Xa
i,k|k−1 = Sa

k|k−1ξi + x̂ak|k−1 (15)

Calculate the predicted measurement cubature points.

Zi,k|k−1 = h
(
Xa

i,k|k−1

)
(16)
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Estimate predictive measurements.

ẑk|k−1 =
1

m

m∑
i=1

Zi,k|k−1 (17)

The estimate of the innovation covariance matrix is:

Szz,k|k−1 = Tria([Zk|k−1 SR,k]) (18)

where Rk = SR,kS
T
R,k

, Zk|k−1 =
1√
m
[Z1,k|k−1 − ẑk|k−1, Z2,k|k−1 − ẑk|k−1, . . . , Zm,k|k−1 − ẑk|k−1]. Estimate

the cross-covariance matrix:
Pxz,k|k−1 = χk|k−1Z

T
k|k−1 (19)

Where χk|k−1 =
1√
m
[X1,k|k−1 − x̂k|k−1, X2,k|k−1 − x̂k|k−1, . . . , Xm,k|k−1 − x̂k|k−1].

Estimate the SRCKF filter gain.

Wa
k =

(
Pxz,k|k−1

/
ST
zz,k|k−1

)/
Szz,k|k−1 (20)

Based on the new measurement zk at time k, the system state is updated.

x̂ak|k = x̂ak|k−1 +Wk

(
zk − ẑk|k−1

)
(21)

The square root factor of the error covariance matrix is updated.

Sk|k = Tria([χk|k−1−W kZk|k−1 WkSR,k]) (22)

(4) Calculation of instantaneous variance of acceleration
To achieve the recursion of the aerodynamic parameters in the homogeneous jerk model, the

instantaneous variance of acceleration needs to be calculated. The diag(E[˜̈xk
˜̈x
T
k ]) in Eq. (8) can be

obtained directly from the state covariance matrices associated with the output of the k-time filter.

That is, diag(E[˜̈xk
˜̈x
T
k ]); E[

.̃..
xk

.̃..
x
T
k ] is calculated as follows:

...
x = J(x, ẋ, y, ẏ, z, ż,p) (23)

where
...
x = [

...
x

...
y ...

z ]
T
is jerk vector. Construct the variable xn = [x, ẋ, y, ẏ, z, ż,p]T and the state

covariance matrix Pn. Then,
...
x = J(xn).

The state estimation value x̂n and covariance Pn are known at time k, and the E[
.̃..
xk

.̃..
x
T
k ] calculation

method based on the SRCKF is given by:

E[
.̃..
xk

.̃..
x
T
k ] = E[(J(x̂n + Sn,iξi)− J(x̂n))(J(x̂n + Sn,iξi)− J(x̂n))

T ] (24)

where Sn = chol(Pn) is Cholesky decomposition Pn; Sn,i is the i-th line of Sn; nx is the dimension
number of xn; ξi is the number i basic cubature point. The covariance of the jerk estimation error
vector at time k can be calculated based on Eqs. (10), (13), (15), (18), and (19).

4.2. Model State Error Adaptive Estimation

When the tracking model is more accurate, the state covariance can reflect the state estimation error
more accurately. When the model is mismatched, it will cause the tracking of the hypersonic target in
the near space. Therefore, the state estimation of the target will worsen, or even diverge, resulting in
a deterioration of target tracking performance. Therefore, in piecewise-constant ierk model, the state
error coefficient of the tracking target is estimated by using the model mismatch detection function Dk

in real time. Also, the state error coefficient is transformed into the variance transformation coefficients
Ca and CJ to drive the change of state covariance.

The model mismatch detection function is:

Dk = vT
k S

−1
zz vk (25)

where vk is innovation, and Szz is the innovation covariance of the filter output. As the position
and velocity error covariance related with the jerk error covariance change relatively smoothly during
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the process of updating, the actual change of the jerk error covariance is more intense than that of
the position and velocity error covariance when the target is maneuvering. Therefore, Ca and CJ are
defined by:

Ca =

{
qaDk Dk> 3

qa Dk ≤ 3
, CJ =

{
qJD

2
k Dk> 3

qJ Dk ≤ 3
(26)

where qa and qJ are the designed parameters, which can be obtained from simulation. Therefore,
considering the model mismatch caused by target maneuver, the acceleration variance calculation
method of Eq. (9) is modified as:

σ2
ak =

 diag
(
qaDkE[˜̈xk

˜̈x
T
k ] + T 2qJD

2
kE[

.̃..
xk

.̃..
x
T
k ]
)

Dk > 3

diag
(
qaE[˜̈xk

˜̈x
T
k ] + T 2qJE[

.̃..
xk

.̃..
x
T
k ]
)

Dk ≤ 3
(27)

After the above derivation and correction, the state covariance, covariance of the process noise and
model mismatch detection function are correlated. When the target aerodynamic parameter estimation
is accurate, the covariance of the process noise will decrease due to filter characteristics. The state
covariance is reduced, and the state estimation error caused by the measurement noise is also reduced.
The value of the model mismatch detection function increases, thus leading to an increase of covariance
of the process noise when the target aerodynamic parameter changes cause the model mismatch. Also,
the increase of covariance of the process noise will increase the state covariance. Mutual stimulation
between the state covariance and the covariance of the process noise will greatly increase the gain of
the algorithm filter, which in turn reduces the state estimation error.

5. SIMULATION RESULTS AND ANALYSIS

5.1. The Simulation Scene

A boost-glide hypersonic vehicle has significant differences with the phase of aerodynamics and ballistic
target. This paper takes a boost-glide hypersonic vehicle as the simulation analysis object, in order
to verify the effectiveness of the proposed algorithm in this paper. References [10] and [11] set the
target simulation initial state as s1 = [0 km 0km 40 km 2.4 km/s 0 km/s 0 km/s]T , and the radar
deployment position [500000m 0m 0m]T . We set the radar standard deviation of range and angle
measuring noise to 30m and 0.05◦, respectively, and the sample interval is T = 0.1 s. The tracking
algorithm process noise variance of acceleration is set to σ2

ax,k = σ2
ay,k = σ2

az,k = 52. In order to fully
verify the effectiveness of the proposed algorithm, three typical motion modes of hypersonic targets are
designed:

Table 1. The simulation parameters of three motion modes.

Types of motion modes Attack angle Bank angle

Motion mode 1 Fixed at 10◦ Fixed at 20◦

Motion mode 2

The amplitudes are 6.5◦ and 10.5◦,

respectively, and the period is 100 s

square wave change.

Fixed at 0◦

Motion mode 3 Fixed at 10◦
The amplitude is 20◦,

and the period is

100 s sine wave change.

5.2. The Simulation Results

In order to verify the effectiveness of this algorithm, aerodynamic parameter augmentation model based
on piecewise constant acceleration (abbreviated as PCA in the latter part of the simulation) in paper [10],



Progress In Electromagnetics Research M, Vol. 73, 2018 125

0

2

4

x 10
5

-10

-5

0

x 10
4

3

3.5

4

x 10
4

x/my/m

z/
m

50 100 150 200 250
0

100

200

300

400

500

600

t/s

R
M

S
 o

f 
p

o
si

ti
o

n
/m

 

 

PCA

AIMM

APCJ

50 100 150 200 250
0

20

40

60

80

100

120

140

t/s

R
M

S
 o

f 
v

el
o

ci
ty

/ 
m

/s

 

 

PCA

AIMM

APCJ

50 100 150 200 250
0

5

10

15

20

t/s

R
M

S
 o

f 
ac

ce
le

ra
ti

o
n

/ 
m

/s
2

 

 

PCA

AIMM

APCJ

(b)(a)

(d)(c)

Figure 1. RMS of estimation error in Maneuvering Mode 1 conditions. (a) Motion path. (b) RMS of
position error. (c) RMS of velocity error. (d) RMS of acceleration error.

the adaptive interactive multiple model using 10 model sets (abbreviated as AIMM in the latter part
of the simulation) in paper [11] and modified piecewise constant jerk (abbreviated as APCJ in the later
simulation), as proposed in this article, combined with an improved SRCKF algorithm were simulated
for the previous simulation scenario. In three different maneuvering conditions, the APCJ algorithm,
AIMM algorithm and PCA algorithm were used in 50 Monte Carlo simulations. The position, velocity
and acceleration root mean square (RMS) errors of the three algorithms are shown in Fig. 1, Fig. 2 and
Fig. 3. In the three maneuvering conditions, the tracking performance statistics and calculation time
statistics of the three algorithms are shown in Table 1, Table 2 and Table 3, respectively.

From Fig. 1, Fig. 2, Fig. 3, Table 1, Table 2 and Table 3, it can be seen that in the three different
cases of maneuvering modes, the adaptive tracking method based on the piecewise constant jerk model
(APCJ), adaptive interactive multiple model (AIMM) and piecewise constant acceleration model (PCA)

Table 2. Comparison of algorithm performance in Maneuvering Mode 1.

Types of

algorithm

State Estimation Mean Error in Observation Time calculating

time [s]Position/[m] Velocity/[m·s−1] Acceleration/[m·s−2]

APCJ 182.04 26.50 2.01 1.56

AIMM 184.09 25.58 2.25 3.89

PCA 196.43 27.18 2.41 2.27
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Figure 2. RMS of estimation error in Maneuvering Mode 2 conditions. (a) Motion path. (b) RMS of
position error. (c) RMS of velocity error. (d) RMS of acceleration error.

Table 3. Comparison of algorithm performance in Maneuvering Mode 2.

Types of

algorithm

State Estimation Mean Error in Observation Time Calculating

time [s]Position/[m] Velocity/[m·s−1] Acceleration/[m·s−2]

APCJ 214.73 29.94 3.92 2.01

AIMM 213.62 35.36 4.01 3.79

PCA 232.94 38.35 4.02 2.29

Table 4. Comparison of algorithm performance in Maneuvering Mode 3.

Types of

algorithm

State Estimation Mean Error in Observation Time Calculating

time [s]Position/[m] Velocity/[m·s−1] Acceleration/[m·s−2]

APCJ 207.18 28.31 3.32 1.75

AIMM 219.83 31.96 3.88 3.91

PCA 222.53 34.93 3.53 2.21
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Figure 3. RMS of estimation error in Maneuvering Mode 3 conditions. (a) Motion path. (b) RMS of
position error. (c) RMS of velocity error. (d) RMS of acceleration error.

can track the maneuvering target with a high degree of tracking accuracy. However, the APCJ algorithm
has higher tracking accuracy in terms of position, velocity and acceleration. The calculation time is
equivalent to the PAC algorithm, which is much lower than the AIMM algorithm. This is because the
tracking algorithm of the APCJ model gives the recursive equation of acceleration, and this algorithm
can update the state covariance of the system through measurement. Compared with the tracking
method based on the PCA model, the convergence speed is faster and the degree of tracking accuracy
is higher. However, when comparing Fig. 1 with Fig. 2 and Fig. 3, we found that, when the target is
maneuvering in mode 2 and mode 3, the tracking accuracy is worse than when the target is maneuvering
in mode 1. When the target flies at a fixed bank angle in mode 1, there is lateral maneuvering in its
trajectory. However, the benefit is that the change in acceleration is relatively flat. On the other hand,
the APCJ algorithm can adaptively adjust the gain of the filtering algorithm according to the error of
the jerk dynamic model and can also compensate the acceleration estimation error in real time. As such,
good tracking performance is obtained. When the target is maneuvering in mode 2 and mode 3, the
acceleration of the target changes nonlinearly, which in turn increases the tracking difficulty. Because
the adaptive calculation of process noise in the APCJ algorithm, compared with the PCA algorithm
and AIMM algorithm, the tracking accuracy of the proposed algorithm is improved. However, the
convergence speed and state estimation accuracy of the algorithm are degraded. Overall, among the
three maneuvering modes, the degree of tracking accuracy based on the piecewise constant jerk model
(APCJ) tracking is higher than that based on piecewise constant acceleration tracking (PCA) and the
AIMM. Therefore, for hypersonic targets with high maneuvering characteristics, the tracking method
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based on the segmented uniform jerk model proposed in this paper is effective. It should be noted that,
although the simulation results show that the tracking effect of the APCJ algorithm is better than that
of the AIMM algorithm selected in this paper, this does not mean that the proposed algorithm is better
than the AIMM. The degree of the tracking accuracy of the AIMM is closely related to the selection
of sub-models, the number of sub-models and the parameter settings. The comparison between the
proposed algorithm and the AIMM algorithm only shows that the proposed algorithm has tracking
accuracy that is similar in degree to the AIMM, which greatly reduces the degree of computational
complexity.

6. CONCLUSION

In this paper, the dynamic model of a near pace hypersonic target (NSHT) is modeled, based on the
analysis of the aerodynamic characteristics of NSHT. Thus, the piecewise adaptive jerk tracking model
is established, in order to accomplish the track of the NSHT with the improved square root cubature
Kalman algorithm. The simulation results show that near space target tracking can be finished more
effectively. Also, the proposed method is more precise in hypersonic tracking in near space than the
segmental uniform acceleration model and the AIMM. Moreover, the proposed method increases the
convergence performance and stability of the state tracking, especially when the target has lateral
maneuvers. This algorithm is also effective in different simulation scenarios.
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