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Direct Matrix Synthesis for In-Line Diplexers with Transmission
Zeros Generated by Frequency Variant Couplings

Yong-Liang Zhang1, 2, *

Abstract—This paper presents a direct matrix synthesis for in-line diplexers constructed by general
Chebyshev channel filters. The finite transmission zeros of the channel filters are generated and
independently controlled by a set of frequency-variant couplings (FVC) sections. The network
only involves resonators cascaded one by one without any auxiliary elements (such as cross-coupled
or extracted-pole structures), and this paper provides the best synthesis solution in configuration
simplicity for narrowband contiguous diplexers. For the channel filters, considering both the couplings
and capacitances matrices of a traditional low-pass prototype, a generalized transformation on the
admittance matrix is introduced as the basis of the synthesis, which allows more than one cross-coupling
to be annihilated in a single step, while generating an FVC section simultaneously. Two examples of
diplexer are synthesized to show the validation of the method presented in this paper.

1. INTRODUCTION

Microwave diplexers and multiplexers are extensively employed in wireless and satellite communication
systems to combine RF signals of different frequency bands into one channel with specified frequency
selectivity and isolation requirements. A very common and simple way to combine the multiple channel
signals is to directly connect all the channel filters to a star-junction with one common port. Such
a connecting scheme makes the multiplexing network simple while maintaining a good microwave
performance. The most critical issue in synthesizing such a multiplexer is how to take the interaction
among all the channels into account, especially when the frequency bands are spaced close to each other.
An analytical approach to synthesis of such a multiplexer is highly desirable in the industry.

The research efforts to analytically synthesize a multiplexer with a star-junction have never rested
over the past three decades. In the early years, the classical circuit synthesis approach was adopted [1, 2].
To compensate for the interaction among the channel filters, the parameters of separately designed
channel filters are subject to an appropriate adjustment, but the number of channels and coupling
topologies of channel filters are limited and the synthesis result deteriorates as the frequency bands get
closer to each other.

In recent years, a more effective and flexible way to synthesize diplexers is proposed in [3]. The
relationship between the overall diplexer parameters and those of separate channel filters is derived by
circuit analysis first. Suitable polynomials describing the characteristics of the diplexer are evaluated by
insisting on reflection zeroes assigned a priori, and the transfer and reflection functions of each channel
filter are derived accordingly. At last the channel filters are synthesized separately by using a well-
known coupling matrix synthesis approach [4–7]. The nonresonant node (NRN) type of junction and the
resonant node type of junction are analyzed separately and treated differently in the synthesis approach.
In [8], the method for a diplexer with a resonant junction is extended to the synthesis of starjunction
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multiplexers. In such a type of approach, the roots of high-order polynomials need to be identified.
The root-finding process will be a decisive factor that affects the accuracy of the method, and thus the
applicable aggregate number of system poles of a multiplexer system becomes limited. Another existing
approach to the diplexer and multiplexer synthesis is to directly apply the optimization method to obtain
the coupling matrix synthesis of diplexer and multiplexers, such as in [9–11]. Recently, a favorable direct
synthesis method is reported in [12], but is available for a very particular in-line condition where only
one TZ can be realized. Lacking a general direct synthesis approach, whether a selected in-line network
can realize required frequency response is still not predictable.

Figure 1. Ideal prototype for a class of in-line topology diplexers with multiple FVC sections, which
can generate TZs at fz1, fz2, . . . , fz,NZ.

In this paper, a general direct synthesis approach is presented for synthesizing in-line diplexers with
multiple TZs (as shown in Fig. 1). Concerning the capacitance matrix and coupling matrix together,
a new transformation for the admittance matrix is proposed, which presents new possibilities that can
transform a basic triplet section into a FVC section and annihilate more than one cross coupling in
a single step. With a specific procedure of transformations, an in-line topology containing a set of
frequency-variant couplings is ultimately decided from cascaded triplet topology diplexer.

This paper is organized as follows. Basic theory on the admittance matrix transformation process
is detailed in Section 2. Two synthesis examples of diplexer are shown in Section 3. One diplexer is
the type-I junction, and the other is type-II junction. The validation is shown from the two examples.
Section 4 provides the conclusion.

2. BASIC THEORY

The diplexer is a three-port network. The coupling matrix could be used for the analysis of coupled
resonator diplexers. The relation between S-parameters and “N + 3” coupling matrix can be expressed
as [13, 14]

S11 = 1 + 2j
[
A−1

]
P1P1

S21 = −2j
[
A−1

]
P2P1

S31 = −2j
[
A−1

]
P3P1

(1)

where the matrix A is given by
A = M + ω · C − jG (2)

here, M is the coupling matrix, ω the normalized frequency, C the capacitance matrix, C(k, k) = 1
except C(p1p1) = C(p2p2) = C(p3p3) = 0, G the terminal load matrix, and G(k, k) = 0 except
G(p1p1) = G(p2p2) = G(p3p3) = 1. The proposed approach starts with the N + 3 admittance matrix
A for an Nth order low-pass cross-coupled prototype. The start topology of the diplexer is the CT
section, it can be obtained by [3].

To obtain an in-line diplexer configuration constructed by FVC sections, it is known that
transformations on coupling matrix are always required, such as the manipulations discussed in [4]
and [6]. While in [12], the transformation on capacitance matrix are also taken into account. Concluding
both situations, in this paper, a generalized transformation (represented by matrix T ) on admittance
matrix is introduced as

An+1 = T T
n+1AnTn+1

= T T
n+1(Mn + ωCn − jG)Tn+1

= T T
n+1MnTn+1 + ωT T

n+1CnTn+1 − jG

= Mn+1 + ωCn+1 − jG

(3)
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where n = 0, 1, 2, . . . represents the corresponding parameters of the nth transform operation. The
proposed transformation T is discussed in three conditions.

1) Similarity Transformation from CT Section to BOX Section
Similarity transformation where T refers to the rotation matrix R,

R =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 . . . 0 . . . 0 . . . 0
. . . . . . . . . . . . . . . . . . . . .
0 . . . cos θr . . . − sin θr . . . 0
. . . . . . 0 . . . 0 . . . . . .
0 . . . sin θr . . . cos θr . . . 0
. . . . . . . . . . . . . . . . . . . . .
0 . . . 0 . . . 0 . . . 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

N+3,N+3

(4)

Stipulating the rotation pivot as [i, j] (i, j = 1, 2, . . . , N) and the rotation angle as θr, R is observed
to be unity matrix except for the entries Rii = Rjj = cos θr, Rij = − sin θr and Rji = − sin θr.

In this case, the values of the coupling matrix are changed in concordance with the well-known
rotation process given in [13], such as Fig. 1(a) and Fig. 1(b). The formulation of the rotation angle
that transform the CT section to BOX is given as [15]

θr =
1
2

tan−1

[
2Mij

Mjj − Mii

]
+

kπ

2
(5)

where, k is an arbitrary integer. i is the starts resonator of the CT section, j = i + 1.
2) Rescaling the BOX Section
Applying the rescaling transformation, i.e., T = U , to redefine the capacitance element in the basic

triplet section. Taking into account the rescaling factor of resonator i as αi, as Fig. 1(b) shows, the
entry Uii in U can be evaluated by formulation

Uii =
√

αi =

√
−Mn (i − 1, i + 1) Mn (i + 1, i + 2)

Mn (i − 1, i) Mn (i, i + 2)
(6)

The operation thus produce new admittance matrix An+1 by the following:

An+1 = UT
n+1AnUn+1

= UT
n+1(Mn + ωCn − jG)Un+1

= UT
n+1MnUn+1 + ωUT

n+1CnUn+1 − jG

= Mn+1 + ωCn+1 − jG

(7)

thus,

Mn+1 = UT
n+1MnUn+1 (8a)

Cn+1 = UT
n+1CnUn+1 (8b)

Note, the topology of the diplexer in this step is not changed.
3) BOX Section to FVC Section

i-1

i i+1

i+2

i

i+1i-1

i+2

i-1

i i+1

i+2
(a) (b) (c)

Figure 2. The fundamental transformation process. (a) Basic triplet, (b) basic box section, (c) basic
FVC section.
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Implementing a further similarity transformation on the rescaled network, which ultimately realizes
an in-line frequency-variant coupling as Fig. 1(c). The pivot is also [i, j], and the rotation angle θb is
given by

θb = tan−1

(
−Mn (i − 1, i + 1)√

αiMn (i − 1, i)

)
= tan−1

(√
αiMn (i + 1, i + 2)

Mn (i, i + 2)

)
(9)

in this step, the rotation affects the capacitance matrix as formulation (8).
Where the relevant capacitance value in Cn+1 become (k = p1, p2, p3, 1, 2, . . . , N)

Cn+1 (i, k) = cos θbCn (i, k) − sin θbCn (j, k)
Cn+1 (j, k) = sin θbCn (i, k) + cos θbCn (j, k)
Cn+1 (k, i) = cos θbCn (k, i) − sin θbCn (k, j)
Cn+1 (k, j) = sin θbCn (k, i) + cos θbCn (k, j)

Cn+1 (i, i) = cos2 θbCn (i, i) + sin2 θbCn (j, j) − 2 sin θb cos θbCn (i, j)

Cn+1 (j, j) = sin2 θbCn (i, i) + cos2 θbCn (j, j) + 2 sin θb cos θbCn (i, j)

Cn+1 (i, j) = Cn (i, j) (cos2 θb − sin2 θb) + sin θb cos θb(Cn (i, i) − Cn (j, j))

(10)

In this step, a frequency slope Cn+1(i, j) is created. Comparing the resulting in-line topology with the
triplet structure in Fig. 2(a), it is apparent that the number of coupling paths for realizing a TZ is
reduced. This shows exactly the benefits of in-line topologies.

The algorithm translates cascaded triplets to the FVC sections is shown as the following:

M = MCT

for k = 1 : n − 2
if Mk,k+2 ∼= 0
translate the CT to BOX section, annihilates Mi,i+1, generates the elements Mi,i+2, (i, i+1)

as pivot
scaling the node Mi,i, U(i, i) is shown as formulation (7)
(i, i + 1) as pivot, annihilates Mi,i+2, generates the FVC elements C (i, i + 1)
end

end

3. EXPERIMENT RESULTS

For verification of the diplexer synthesis method presented in this paper, two examples are synthesized
in this section.

3.1. Example One (Type-I Junction)

The first synthesized example with type-I junction [3] is carried out in the normalized frequency domain,
and the specifications is shown as following:

RX channel filter: The finite transmission zeros in the normalized frequency domain are −2.5606,
−1.7908, 1.1282, 0.3005. The return loss is 23 dB. the order of the RX channel filter is 10.

TX channel filter: The finite transmission zeros in the normalized frequency domain are −0.6824,
−0.2383, 1.9658. The return loss is 23 dB. the order of the TX channel filter is 9.

First, synthesize the diplexer as the method presented in [3, 6] and obtain the cascaded triplet
sections topology diplexer as shown in Fig. 3. The coupling coefficients of the cascaded triplets diplexer
are also shown in Fig. 3. Then, using the method presented in this paper translates the cascaded triplets
into the in-line topology as shown in Fig. 4. The coupling coefficients of the in-line topology diplexer
are also shown in Fig. 4. The details of the transformations are shown in Table 1. The responses of
the topologies in Fig. 3 and Fig. 4 are shown in Fig. 5. The polynomial response can be calculated by
Eq. (2) in [3]. It is shown that the matrix response agrees with the polynomials response well.
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Figure 3. The cascaded triplet topology of the diplexer for example 1.

Table 1. First example: details of the transformation from CT to FVC.

RX channel filter TX channel filter

step pivot
Angle
(rad)

notes step pivot
Angle
(rad)

notes

1 [2, 3] 2.4044
Triplet 234 to

BOX 1234
13 [14, 15] 3.8372

Triplet 14,15,16 to
BOX 13,14,15,16

2 Rescale U (2,2) 14 Rescale U(14, 14)

3 [2, 3] 0.8382
BOX 1234 to

FVC 23
15 [14, 15] −0.7793

BOX 13,14,15,16 to
FVC 14,15

4 [4, 5] 2.4861
Triplet 456 to

BOX 3456
16 [17, 18] 3.8012

Triplet 17,18,19 to
BOX 16,17,18,19

5 Rescale U(4,4) 17 Rescale U(17, 17)

6 [4, 5] 0.7841
BOX 3456 to

FVC 45
18 [17, 18] −0.7796

BOX 16,17,18,19 to
FVC 17,18

7 [6, 7] 3.8376
Triplet 678 to

BOX 5678
19 [19, 20] 3.8301

Triplet 19,20,21 to
BOX 18,19,20,21

8 Rescale U(6,6) 20 Rescale U(19,19)

9 [6, 7] −0.7887
BOX 5678 to

FVC 67
21 [19, 20] −0.7730

BOX 18,19,20,21 to
FVC 19,20

10 [8, 9] 3.8654
Triplet 89,10 to

BOX 789,10
11 Rescale U(8,8)

12 [8, 9] −0.7801
BOX 789,10 to

FVC 89

Figure 4. The in-line topology of the diplexer for example 1.
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Figure 5. The response of the diplexer for example 1.

3.2. Example Two (Type-II Junction)

The second synthesized example with the type-II junction [3] is carried out in the normalized frequency
domain, and the specifications is shown as following:

RX channel filter: The finite transmission zeros in the normalized frequency domain are 0.3005,
1.1282, −2.5606. The return loss is 20 dB. the order of the RX channel filter is 7.

TX channel filter: The finite transmission zeros in the normalized frequency domain are −0.6824,
−0.2383, 1.9658. The return loss is 20 dB. the order of the TX channel filter is 7.

First, synthesize the diplexer as the method presented in [3, 6] and obtain the cascaded triplet
sections topology diplexer as shown in Fig. 6. The coupling coefficients of the cascaded triplets diplexer
are also shown in Fig. 6. Then, using the method presented in this paper translates the cascaded triplets
into the in-line topology as shown in Fig. 7. The coupling coefficients of the in-line topology diplexer
are also shown in Fig. 7. The details of the transformations are shown in Table 2. The responses of the
topologies in Fig. 6 and Fig. 7 are shown in Fig. 8. It is shown that the matrix response agree with the
polynomials response well.

Figure 6. The cascaded triplet topology of the diplexer for example 2.

Figure 7. The in-line topology of the diplexer for example 2.
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Table 2. Second example: details of the transformation from CT to FVC.

RX channel filter TX channel filter

step pivot
Angle
(rad)

notes step pivot
Angle
(rad)

notes

1 [2, 3] 2.4563
Triplet 234 to

BOX 1234
10 [10, 11] 3.8608

Triplet 10,11,12 to
BOX 1234

2 Rescale U(2,2) 11 Rescale U(10,10)

3 [2, 3] 0.8882
BOX 1234 to

FVC 23
12 [10, 11] −0.8241

BOX 9,10,11,12
to FVC 10,11

4 [4, 5] 2.4344
Triplet 456 to

BOX 3456
13 [12, 13] 3.7967

Triplet 12,13,14
to BOX 11,12,13,14

5 Rescale U(4,4) 14 Rescale U(12,12)

6 [4, 5] 0.7725
BOX 3456 to

FVC 45
15 [12, 13] −0.7793

BOX 11,12,13,14
to FVC 12,13

7 [6, 7] 3.8601
Triplet 678 to

BOX 5678
16 [14, 15] 2.4494

Triplet 14,15,16 to
BOX 13,14,15,16

8 Rescale U(6,6) 17 Rescale U(14,14)

9 [6, 7] −0.7792
BOX 5678 to

FVC 67
18 [14, 15] 0.7766

BOX 13,14,15,16
to FVC 14,15
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Figure 8. The response of the diplexer for example 2.

4. CONCLUSION

A direct matrix synthesis for in-line diplexers constructed by general Chebyshev channel filters is
presented in this paper. The finite transmission zeros of the channel filters are generated and
independently controlled by a set of basic frequency variant couplings (FVC). Two examples are
synthesized by this method. Excellent agreement between the response computed from characteristic
polynomials and the response computed from couplings matrix is obtained from the proposed method.
The star-junction multiplexer can also be synthesized by this method.
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