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Burr Distribution for X-Band Maritime Surveillance Radar Clutter

Graham V. Weinberg* and Charlie Tran

Abstract—Recent research has shown that the Pareto family of distributions provides suitable intensity
models for high resolution X-band maritime surveillance radar clutter. In particular, the two parameter
Pareto Type II model has been shown to fit the Australian Defence Science and Technology Group’s
medium to high grazing angle clutter returns very well. The Pareto Type II model is a special case
of a Burr distributional model, which is a three parameter power law statistical model. Hence this
paper begins by investigating the fitting of the Burr model to real data. Based upon these results a
detailed study of the development of non-coherent sliding window detectors is justified, for operation
in such clutter. Several different approaches will be applied to construct the decision rules. These
include a transformation approach and direct adaptation of such detectors, designed for operation in
exponentially distributed clutter, to the Burr clutter setting. In addition to this, the fact that the
Burr distribution is invariant with respect to two of its distributional parameters allows specification
of detection processes which have the constant false alarm rate property with respect to these model
parameters. Performance analysis, in simulated clutter, of the derived detectors is then examined. This
includes performance in the presence of interference and false alarm regulation during clutter power
transitions. This is complemented by an application of the decision rules to target detection in real high
resolution X-band maritime surveillance radar clutter.

1. INTRODUCTION

In order to design radar detection processes it is necessary to validate statistical models for the resultant
environmental radar backscattering. In the context of X-band high resolution maritime surveillance
radar, the backscattering in the absence of a target is referred to as clutter. Such clutter is often
described as spiky, and there has been much interest in the determination of appropriate statistical
models for such clutter. The issue faced by radar engineers and scientists is the selection of a model,
which fits into the currently accepted radar clutter model phenomenology and which also allows the
constant false alarm rate (CFAR) property to be achieved in homogeneous clutter settings [1]. In
the case of non-coherent detection this has proven to be a challenging endeavour. However, with the
introduction of the Pareto class of clutter models, it has been possible to address these issues [2].

Validation of the Pareto model for X-band maritime surveillance radar clutter first appeared in [3],
and a second independent validation was provided in [4]. These were both in the case of a low grazing
angle, with a stationary radar. A third validation was provided by [5], which was for the case of an
airborne maritime surveillance radar, operating with a medium to high grazing angle.

This paper reexamines the fit of distributions to maritime surveillance radar clutter. In particular,
since the Pareto Type II distributional model is a special case of a Burr distribution, its fit to real
sea clutter returns is investigated. The Burr distribution is a three parameter power law type model
introduced in [6]. Such a distribution has two shape parameters and one scale parameter. The Pareto
Type II model arises when one of these shape parameters is set to unity. Hence it became of interest
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to investigate whether improved fits could be achieved with the Burr distribution, and whether fitting
of the three parameter model reduced to the Pareto Type II, implying that it is a sufficient fit for
the data under consideration. It will be shown that the Burr model provides a tighter fit to Defence
Science and Technology (DST) Group’s real X-band maritime surveillance radar clutter returns, which
was acquired through the Ingara radar. Ingara is an experimental fully polarimetric X-band imaging
radar [7], and analysis of data acquired by it has been reported in [8–10]. The Pareto fit to this data
has been documented in [5]. Based upon DST Group’s parameter estimates for the Pareto Type II
model it has been possible to apply a Pareto Type I approximation to facilitate the development of
non-coherent detectors [11–16]. These non-coherent decision processes are in the spirit of [17] and [18],
which assess the presence of a target in a cell under test (CUT) based upon a normalised measurement
of the clutter level. Based upon validation of the Burr fit to DST Group’s Ingara radar clutter, this
paper initiates the development of non-coherent sliding window detection processes, for operation in
a Burr-distributed clutter environment. In particular, it is of interest to examine whether the CFAR
property can be achieved with respect to any of the Burr distributional parameters. Several approaches
will be adopted in the construction of the sliding window detection processes. The transformation
approach, introduced in [11] and generalised in [12], will be applied to produce two decision rules. The
fact that the Burr distribution is invariant with respect to two of its distributional parameters allows the
construction of a partial CFAR process, in the spirit of [19]. The direct adaptation approach, examined
in [15], will then be used to also produce two detectors. Performance analysis, in both synthetic and real
clutters, will then be considered. Towards these objectives, the paper is organised as follows. Section 2
introduces the Burr distribution and discusses its relationship to the Pareto models, while Section 3
investigates the fit of the Burr distribution to DST Group’s real X-band clutter. Section 4 then derives
a series of non-coherent decision rules, while Section 5 examines their performance in both synthetic
and real clutter returns.

2. BURR AND PARETO DISTRIBUTIONS

The purpose of this section is to introduce the Burr distribution and discuss its relationship to the
Pareto Type II model, as well as some of its properties useful in the analysis to follow. A non-negative
random variable Z has a Burr distribution if its cumulative distribution function is

FZ(t) = IP(Z ≤ t) = 1 −
(

β

β + tκ

)α

, (1)

where α and κ are non-negative shape parameters; β is a non-negative scale parameter; t ≥ 0. The
corresponding probability density function, obtained by differentiating Equation (1), is given by

fZ(t) =
αβακtκ−1

(β + tκ)α+1 . (2)

It is clear that by setting κ to unity in Equations (1) and (2) one recovers the Pareto Type II distribution
for Z. Thus the Burr model is a three parameter extension of the Pareto Type II distribution, with
κ acting as a second shape parameter. In order to understand the impact that κ is having on the
underlying Pareto Type II model, it is not difficult to show that if X is a random variable with a Pareto
Type II distribution, with cumulative distribution function

FX(t) = 1 −
(

β

β + t

)α

, (3)

then Z = X
1
κ . Hence the additional shape parameter κ acts as a reciprocal power on the Pareto Type

II model, in order to produce the Burr distribution. It is expected that this extra shape parameter will
produce a longer tail in the model and consequently tighter fits to real data.

Recall that a random variable Y with a Pareto Type I distribution has cumulative distribution
function

FY (t) = 1 −
(
β

t

)α

, (4)
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provided t ≥ β, where α > 0 is the shape, and β > 0 is the scale parameter [20]. This model has a
non-negative support starting at β, and it can be shown that Y d= X+β, showing that the Pareto Type
I and II models are linearly associated in distribution. The notation A d= B means that the random
variables A and B, with common support, have the same distribution function. Fits of the Pareto Type
II model to DST Group’s Ingara radar clutter resulted in estimates for β � 1. Based upon this, the
approach in [2] was to develop non-coherent radar detectors under a Pareto Type I clutter environment,
to allow sliding window detectors to be produced with the CFAR property.

Again, with reference to the Burr distribution, if Z is a random variable with distribution function
in Equation (1), then it is not difficult to show that, for any r > 0, the mean of Zr is

IE(Zr) = αβ
r
κB
(
α− r

κ
,
r

κ
+ 1
)
, (5)

where B(·, ·) is the well-known beta function. This result is necessary for the specification of the signal
to clutter ratio (SCR) used in the numerical analysis.

The inverse distribution function technique can be used to derive an expression which facilitates
the simulation of a random variable with a Burr distribution [21]. Noting that the inverse of (1) is

F−1
Z (t) =

(
β
[
[1 − t]−

1
α − 1

]) 1
κ (6)

it follows that

Z
d= F−1

Z (1 −R) =
(
β
[
R− 1

α − 1
]) 1

κ
, (7)

where R has a uniform distribution on the unit interval. Thus, for given α, β and κ, one generates a
random number in the unit interval and applies this in place of R in the right hand side of Equation (7),
to produce a realisation of the corresponding Burr distribution.

The kth order statistic (OS) for a series of Burr distributed random variables is required in the
derivation of probabilities of false alarm (Pfa) of detectors to follow, so is now examined here. It has been

shown in [22] that the kth OS for a random sample from a Pareto Type I distribution is Y(k)
d= βW

− 1
α

k ,
where Wk has a beta distribution with parameters N − k + 1 and k, respectively, where 1 ≤ k ≤ N .
The latter random variable has density

fWk
(t) =

N !
(N − k)!(k − 1)!

tN−k(1 − t)k−1, (8)

for t ∈ [0, 1].
Hence it is not difficult to show that if Z(k) is the kth OS from a random sample from a Burr

distribution then

Z(k)
d=
[
β

(
W

− 1
α

k − 1
)] 1

κ

, (9)

since the Burr distribution is related to the Pareto Type I through a power transformation, and also
due to the linear association between the Pareto Type I and II distributions.

Next the fitting of the Burr distribution to DST Group’s lngara data is examined.

3. BURR DISTRIBUTIONAL FITS TO INGARA DATA

This section now examines the fit of the three parameter Burr model to real data and compares it with
that of the Pareto Type II. In addition to this, the fits of two popular models for X-band radar clutter
are also examined. The first of these is the well-known K-distribution [23]. A random variable K is said
to have a K-distribution, with nonnegative shape and scale parameters ν and c, if its density is

fK(t) =
2c

Γ(ν)

(
ct

2

)ν

Kν−1(ct), (10)
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where Γ is the Gamma function, and Kν is the modified Bessel function of the second kind of order
ν, for t ≥ 0. The K-distribution has been a popular model for X-band maritime surveillance radar
clutter [24, 25].

The second comparison fit is provided by the Weibull distribution [26]. A random variable W has
a Weibull distribution with shape parameter σ and scale parameter λ if its density is

fW(t) =
σ

λ

(
t

λ

)σ−1

e−( t
λ)σ

, (11)

which also supports the non-negative real line. The Weibull distribution has been found to be a suitable
model for some radar data sets [27], including the DST Group’s Ingara radar data. In particular,
vertically polarised high resolution maritime surveillance radar clutter can be well modelled by the
Weibull distribution, as documented in [12].

The data used in the following analysis have been acquired with DST Group’s Ingara radar. This
radar operated in a circular spotlight mode, emulating a typical maritime surveillance radar. The data
used for the purposes of modelling here was acquired during a trial in August 2004. During the data
gathering exercise, the radar surveyed the same ocean patch at different azimuth angles, operating at
10.1 GHz with a 20 µs compressed pulse width, with a range resolution of 0.75 m. The fitting of the
Pareto Type II model to the Ingara data is described in [5]. Here the focus will be restricted to data
acquired with horizonal transmit and receive polarisation, since in this case the data are heavy tailed,
and the Pareto model is most suitable [2].

Two particular data sets will be considered here; they are designated run 34 683 and run 34 690,
which have been investigated extensively. As discussed in the latter, these data sets were collected from
scans of the Southern Ocean, on August 16, 2004, at around 10:52 am local time. These runs consist
of 1024 range compressed samples of between 800 and 900 pulses, in 5◦ azimuth angle increments. Run
34 683 was collected at an incidence angle of 51.3◦, at an altitude of approximately 2314 m. In the case
of run 34 690, the incidence angle was 67.2◦, at an altitude of roughly 1353 m. The wind speed, at the
mid-data collection time on the trial day, was reported to be 7.1 m/s, in a direction of 47◦, with a wave
height of 2.4 m in a direction of 211◦. The upwind direction was 227◦, downwind at 47◦, while the cross
wind directions were 137◦ and 317◦, respectively. Further details of the data and its analysis can be
found in [8–10].

Table 1 shows the resultant parameter estimates, when the Pareto, K, Weibull and Burr
distributions are fitted to the Ingara data. The first nineteen lines in the table show results for fitting
to data set run 34 683, at the given azimuth angles. The final four lines record similar results for run

Table 1. Maximum likelihood parameter estimates of the various statistical models fitted to Ingara
data sets. The first nineteen lines correspond to run 34 683 (azimuth 0◦ to 355◦, while the last four are
based upon run 34 690, at azimuth angles of 45◦, 135◦, 225◦ and 355◦.

Azimuth Pareto α Pareto β K c K ν Weibull λ Weibull σ Burr α Burr β Burr κ

0 5.714507965 0.013092894 84.17569766 4.906478507 0.002626984 0.896229357 5.312139208 0.011143052 1.013252807
5 5.592745076 0.012751119 82.89108337 4.755727574 0.002620449 0.893301844 4.665284084 0.009113872 1.021606413
10 4.20927818 0.010011378 67.19255229 3.496033486 0.002868966 0.858924093 4.050591542 0.009128596 1.008064034
25 5.402808624 0.016447941 70.43332782 4.619707226 0.003520199 0.889518989 4.993181923 0.013985338 1.012853147
45 3.719335324 0.012905678 50.76561664 3.02286036 0.004287094 0.841769643 3.845732515 0.01394197 0.993137715
60 3.16698186 0.01256309 42.24442194 2.535297662 0.005093407 0.817257474 3.392867185 0.01483835 0.984487494
90 4.057710669 0.016251336 49.58529281 3.239367241 0.004844893 0.852622735 4.658816509 0.021765264 0.975355423
100 3.958318927 0.015754377 49.3784454 3.216327863 0.00484964 0.850298184 4.152088657 0.017508719 0.990741085
135 7.198688347 0.02265872 82.58786574 6.225599756 0.003502345 0.916524397 7.076885612 0.022013966 1.00167794
150 4.837311559 0.01146727 73.99748464 4.072468725 0.002788209 0.876988252 4.592057972 0.010229627 1.009266136
180 4.51600883 0.014456084 60.37011068 3.724901897 0.003803936 0.867197408 4.600605146 0.015045765 0.996667402
190 4.903113972 0.02088792 55.42390883 4.094952732 0.0049975 0.875757309 4.675460853 0.018915962 1.008448625
225 4.724046998 0.044630145 35.99470865 3.863402918 0.011124652 0.871609417 5.050578389 0.050665814 0.988772595
255 5.289354607 0.057518708 36.53869103 4.461416571 0.012599969 0.886428038 5.131624329 0.054388258 1.004964803
270 5.999584913 0.060914077 40.73504998 5.04323166 0.011540632 0.899324453 6.177461881 0.064080882 0.995915244
280 6.92006662 0.061043571 48.13933298 5.966405485 0.009861131 0.912912134 6.721505343 0.058097901 1.003795423
325 4.446297104 0.016661269 55.09058417 3.647056579 0.004465652 0.864702358 4.521220238 0.017268376 0.996957545
350 5.071878959 0.011573571 77.78086767 4.282307187 0.002663151 0.882965401 4.731170568 0.01003559 1.01104043
355 5.229213919 0.0125478 77.46161373 4.435467915 0.002787208 0.886140855 4.902818485 0.010933323 1.010854296

45 3.27556654 0.001838552 116.3948754 2.696582369 0.000718704 0.817422628 3.299415698 0.001778496 1.003974284
135 3.719145438 0.001870769 135.2830377 3.118514816 0.00062491 0.83883413 3.762458903 0.001908812 0.999743257
225 2.500088338 0.003433667 60.40378706 2.011799389 0.001910291 0.76475364 2.238755733 0.002387426 1.034561965
355 3.465317914 0.002905296 99.16402142 2.859673879 0.001057063 0.828922105 4.211096162 0.004436571 0.970831225
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34 690, but at azimuth angles in approximately the down wind, cross wind and up wind directions. All
parameter estimates were acquired with Matlab’s inbuilt MLE fit procedure. It is interesting to note
that in the case of the Burr fit to the data, the second shape parameter κ is always close to unity, but
offset by a fraction. In addition to this, one observes that the estimate of parameter β in the Burr
model is always small.

Next examples of the fits of the various models are provided by plotting empirical cumulative
distribution functions (ECDFs) of the data and also the fitted distributional models. These examples
are at azimuth angles of 45◦, 135◦ and 225◦ for run 34 683. In the case of run 34 690, only results at
azimuth angles of 135◦ and 225◦ are provided for brevity. To clarify the resultant fits, the lower and
upper tail regions of the fit will be emphasised.

Figures 1 and 2 show the lower and upper tail fits for the case of 45◦ azimuth, for run 34 683. It
is clear that in this case the K and Weibull distributional fits are not suitable. Here the Pareto and
Burr fits are somewhat similar; there are regions where the Pareto is slightly better, followed by regions
where the Burr fit is an improvement.

Figure 1. Fits in the lower tail region, at azimuth 45◦ for run 34 683.

Next the case of 135◦ azimuth is examined, for run 34 683, with Figure 3 an example of fits in the
lower tail region, and Figure 4 for the upper tail region. As in the previous azimuth case, the Weibull
fit is inappropriate, while the K-distributional fit is not as good as the Pareto and Burr. In these figures
it is evident that the Burr fit can be tighter than the Pareto Type II fit, but there tends to be regions
where this can vary.

As a final example of fits to run 34 683, the azimuth of 225◦ is considered next, which is the
direction closest to upwind, corresponding to the spikiest data available. Figure 5 is for the lower tail
region, while Figure 6 is for the upper tail region. These figures illustrate that the Burr model can give
a much tighter fit than the Pareto Type II, in very spiky clutter.

Next distributional fits to run 34 690 are examined. In the first instance, the case of 135◦ azimuth
is examined, with Figure 7 for the lower tail region and Figure 8 for the upper tail region. In the lower
tail region the Burr model provides a slight improvement, while in the upper tail region, the Pareto
Type II model is slightly better.

To complete the analysis, fits to the case of 225◦ are examined for run 34 690, with Figure 9 showing
distributional fits in the lower tail region. Here the Burr distribution is a better fit. Figure 10 shows
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Figure 2. Fits in the upper tail region, at 45◦ azimuth, for run 34 683.

Figure 3. Lower tail fits in the case of 135◦ azimuth, for run 34 683.

the fits in the upper tail region. The Burr distribution provides a slightly better fit than the Pareto
model.

Based upon these results it is clear that the Burr distribution can provide a better fit to DST Group’s
Ingara radar clutter. Hence there is merit in the examination of non-coherent detection processes for
operation in Burr distributed clutter. This analysis begins in Section 4.
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Figure 4. Upper tail fits in the case of 135◦ azimuth, for run 34 683.

Figure 5. Fits at an azimuth of 225◦ in the lower tail region, for run 34 683.

4. DEVELOPMENT OF NON-COHERENT DETECTORS

The development of non-coherent sliding window detectors, for operation in Burr distributed clutter, is
now examined. A useful guide on such detectors is [1], while some more recent examples of development
of such detectors include [28–37]. These detectors assume the existence of a series of independent
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Figure 6. Upper tail fits at azimuth of 225◦, for run 34 683.

Figure 7. Lower tail fits at 135◦ azimuth, for run 34 690.

and identically distributed clutter measurements, denoted Z1, Z2, . . . , ZN , which are referred to as the
clutter range profile (CRP). A CUT is taken, which is denoted Z0 and is separated from the clutter
measurements using a series of guard cells. These are used to mitigate the effects of a range spread
target [18]. A function f is applied subsequently to the CRP to produce a single measurement of the
clutter level. A multiplicative normalisation constant τ > 0 is then applied to f , in such a way that in
homogeneous clutter returns the Pfa can be set, hopefully independently of the clutter power. As has
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Figure 8. Upper tail fits at 135◦ azimuth, for run 34 690.

Figure 9. Lower tail fits at 225◦ azimuth, for run 34 690.

been discussed in [19], the scale invariance of f will yield detectors with the CFAR property, provided
that the clutter model is also scale invariant. It is also shown in the latter that sliding window detection
processes, with the CFAR property, can be derived in the case where the clutter is modelled by scale
and power invariant distributions.

To formulate this in the language of statistical hypothesis testing, suppose that H0 is the hypothesis
that the CUT does not contain a target, and let H1 be the alternative hypothesis that the CUT contains
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Figure 10. Upper tail fits at 225◦ azimuth, for run 34 690.

a target embedded within clutter. Then the test can be written

Z0

H1
><
H0

τf(Z1, Z2, . . . , ZN ), (12)

where the notation employed in Equation (12) means that H0 is rejected only in the case where
Z0 > τf(Z1, Z2, . . . , ZN ). If a test in the form of Equation (12) can be constructed such that its
Pfa given by

PFA = IP(Z0 > τf(Z1, Z2, . . . , ZN )|H0) (13)

does not vary with the clutter power, then the test of Equation (12) is referred to as having the CFAR
property. This is equivalent to the condition that τ can be determined from Equation (13) in such
a way that it does not depend on an unknown clutter parameter [2]. In the classical case where the
clutter is modelled by exponential random variables it is well known that Equation (12) will achieve
the CFAR property provided that f is a scale-invariant function [18]. When detectors of the form (12)
are applied to the operation in other clutter environments, there is often a loss of the CFAR property.
As an example, in the Weibull clutter case, a detector of the form (12) is only CFAR with respect to
the Weibull scale parameter [12]. This situation is replicated for the Pareto Type I and II cases, as
illustrated in [15] and [38]. Another issue with the application of Equation (12) to non-exponentially
distributed clutter environments is inherent difficulty in determining a closed form expression for the
Pfa as a function of the threshold multiplier τ . To illustrate this, consider the case under investigation
in this paper, where the members of the CRP have Burr distributions. Then with the selection of f as
a sum, producing a cell-averaging detector, it will be necessary to determine the distribution of a sum
of independent and identically distributed Burr random variables, which does not have a closed form.
Although a simulation strategy can be utilised to determine τ , the issue is that this can introduce a
huge computational burden, since very large sample sizes will be required for Pfas of interest.

In order to circumvent these issues and also in an attempt to introduce the full CFAR property
for such detectors operating in modern clutter environments, [11] and [12] introduced a transformation
approach. This technique transforms detectors of the form (12), for operation in non-exponentially
distributed clutter, while preserving Equation (13) for the pre-transformed detector operating in
exponentially distributed clutter. This procedure eliminated the need for a simulation-based approach
for determination of the threshold multiplier. In the Pareto Type I case, the transformation approach



Progress In Electromagnetics Research B, Vol. 81, 2018 193

resulted in the generation of non-coherent detectors with the CFAR property with respect to the
distributional shape parameter. Unfortunately, these transformed decision rules required a priori
knowledge of the Pareto scale parameter.

To introduce the main result from [12] and in the current context, suppose that Z has a Burr
distribution with Equation (1) as its distribution function. Define a transfer function

H(t) = F−1
Z (1 − e−t) =

(
β
(
e

t
α − 1

)) 1
κ (14)

where Equation (6) has been utilised. A direct calculation demonstrates that the inverse of H is

H−1(t) =
1
α

log
(

β

β + tκ

)
. (15)

Then the decision rule
Z0

H1
><
H0

H
(
τf
(
H−1(Z1), . . . ,H−1(ZN )

))
(16)

is a transformed version of Equation (12), for operation in Burr distributed clutter, which has τ set via
Equation (13) for the exponentially distributed clutter case.

To illustrate this, with the selection of f as a sum, Equation (16) is reduced to

Z0

H1
><
H0

⎛
⎝β

⎡
⎣ N∏

j=1

(
1 +

Zκ
j

β

)τ

− 1

⎤
⎦
⎞
⎠

1
κ

, (17)

whose threshold multiplier τ is given by

τ = PFA
− 1

N − 1. (18)
The latter relationship is the Pfa of Equation (12), with f selected to be a sum, when operating in
exponentially distributed clutter. Similarly, when f is selected to be the kth OS of the CRP, the
detector (16) becomes

Z0

H1
><
H0

(
β

[(
1 +

Zκ
(k)

β

)τ

− 1

]) 1
κ

, (19)

with τ set via numerical inversion of

PFA =
N !

(N − k)!
Γ(N − k + τ + 1)

Γ(N + τ + 1)
. (20)

It is important to observe that these transformed detectors are CFAR with respect to the Burr shape
parameter α but require a priori knowledge of the second shape parameter κ and the Burr scale
parameter β.

In view of Equation (7) and with reference to the analysis of invariant decision rules in [19], it
is clear that the Burr distribution falls into the class of scale and power invariant models, when α is
assumed known. Hence it is possible to construct detectors which are CFAR with respect to κ and β.
As a simple example, one can consider the Weber-Haykin detector

Z0

H1
><
H0

Z1−τ
(1) Z

τ
(k), (21)

where the lower OS has been selected to be the minimum to facilitate the derivation of the Pfa as a
function of τ . It is assumed that the index of the second OS in Equation (21) is such that 2 ≤ k ≤ N .
The following lemma provides an expression for its Pfa:
Lemma 4.1 The Pfa of the Weber-Haykin detector (21), operating in Burr distributed clutter, is given
by

PFA = N(k − 1)
(
N − 1
k − 1

)∫ 1

0

∫ 1

0
φN−1(1 − ψ)k−2ψN−k

×
[
1 +

[
φ−α−1 − 1

]1−τ [
(ψφ)−α−1 − 1

]τ]−α

dφdψ. (22)
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The proof of Lemma in Equation 4.1 is now provided. Based upon Equation (7) one may write
Zj = Φ1W

Φ2
j where Φ1 = β

1
κ and Φ2 = 1

κ , which expresses the Burr model in terms of scale and
power transformations. Here Wj has a Pareto Type II distribution, with shape parameter α and scale
parameter equal to unity. Then it is not difficult to show that the Pfa is equivalent to

PFA = IP(W0 < W 1−τ
(1) W τ

(k)) (23)

where W0, which is equivalent to the CUT under H0, also has the same Pareto Type II distribution as
Wj. It is explained in [2] that one may write

Wj
d= eα

−1Xj − 1 (24)
where Xj has an exponential distribution with mean unity. This relationship allows the Pareto Type II
model to be expressed in terms of a transformation of a standard exponential model and is referred to
as the Pareto-Exponential Duality Property. Since this also applies to the CUT statistic W0, the Pfa
in Equation (23) is equivalent to

PFA = IP
(

logW0 > (1 − τ) log(eα
−1X(1) − 1) + τ log(eα

−1X(k) − 1)
)
, (25)

where X(k) is the kth OS of the exponentially distributed random variables Xj. This result follows since
expression (24) extends to the sample order statistics. Noting that the minimum of an exponentially
distributed sample with unit mean also has an exponential distribution, but with parameter N , and it
is followed by conditional probability that

PFA =
∫ ∞

0
Ne−NtIP

[
logW0 > (1 − τ) log

(
eα

−1t − 1
)

+τ log
(
eα

−1X(k) − 1
) ∣∣∣X(1) = t

]
dt. (26)

For brevity, define a random variable Y(k) = X(k)|{X(1) = t}. It is shown in [16] that such a random

variable can be related to exponential random variables. In particular Y(k)
d= Q(k) + t where Q(k) is the

(k− 1)th OS of a series of N − 1 independent and identically distributed exponential random variables
with unity mean. Therefore, it follows that the density of Y(k) is fY(k)

(y) = fQ(k)
(y − t) provided y ≥ t

and zero otherwise. It is shown in [2] that the latter density is

fQ(k)
(w) = (k − 1)

(
N − 1
k − 1

)(
1 − e−w

)k−2
e−w(N−k+1). (27)

Consequently,

PFA =
∫ ∞

0
Ne−Nt

∫ ∞

y=t
IP
[
W0 > e

(1−τ) log
[
eα−1t−1

]
+τ log

[
eα−1t−1

]]
fQ(k)

(y − t)dydt

=
∫ ∞

0
Ne−Nt

∫ ∞

y=t

[
1 +

[
eα

−1t − 1
]1−τ [

eα
−1y − 1

]τ]−α

fQ(k)
(y − t)dydt, (28)

where the fact that the CUT has complementary distribution function IP(W0 > φ) = (φ + 1)−α has
been applied. Finally, by applying Equations (27) to (28), and applying the transformations z = y − t,
followed by φ = e−t and then ψ = e−z, the desired expression for the Pfa is obtained, completing the
proof.

Based upon Lemma 4.1 it is clear that the Weber-Haykin detector (21) is CFAR with respect to κ
and β, but requires a priori knowledge of α.

Although it is reported in [15] that direct adaptation of the decision rule in Equation (12) to non-
exponentially distributed clutter environments is not the most effective technique to produce sliding
window detectors, one can nonetheless derive decision rules based upon this approach. Here only two
OS detectors will be examined. The first results from the selection of f as the kth OS, with decision
rule

Z0

H1
><
H0

τZ(k). (29)

The Pfa, in the Burr distributed clutter case, is given by the following result:
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Lemma 4.2 The Pfa of Equation (29) is

PFA =
N !

(N − k)!(k − 1)!

∫ 1

0
ωN−k(1 − ω)k−1

[
1 + τκ

(
ω− 1

α

)]−α
dω. (30)

In order to prove this result, note that under H0 the CUT has the equivalent distribution

Z0
d=
[
β
(
eα

−1X0 − 1
)] 1

κ
, (31)

where X0 has an exponential distribution with unity mean, and so by applying Equation (31), together
with Equations (8) and (9), one obtains

PFA = IP
(
eα

−1X0 − 1 > τκ

(
W

− 1
α

k − 1
))

=
∫ 1

0
fWk

(w)IP
(
X0 > α log

(
1 + τκ

(
w− 1

α − 1
)))

dw

=
N !

(N − k)!(k − 1)!

∫ 1

0
wN−k(1 − w)k−1

(
1 + τκ

(
w− 1

α − 1
))−α

, (32)

which completes the proof. Observe that Lemma 4.2 implies Equation (29) is CFAR with respect to β
only.

As an alternative to Equation (29), one can examine the effects of raising the OS to the power of
τ , instead of it being a multiplicative factor. Hence one can examine the detector

Z0

H1
><
H0

Zτ
(k). (33)

Its Pfa is given by the following result:
Lemma 4.3 The Pfa of Equation (33), operating in Burr distributed clutter, is

PFA =
N !

(N − k)!(k − 1)!

∫ 1

0
ωN−k(1 − ω)k−1

[
1 + βτ−1

(
ω− 1

α − 1
)τ]−α

dω. (34)

The proof of this result is similar to that of Lemma 4.2 and is thus omitted. Again, note that Lemma 4.3
implies that the detector (33) is CFAR only with respect to κ.

Thus a series of five non-coherent detectors has been introduced, with varying degrees of the CFAR
property. The next section examines the performance of these five decision rules.

5. PERFORMANCE ANALYSIS

Throughout the following the length of the CRP has been set to N = 32 with the Pfa equal to 10−4. All
OS indices have been selected to be k = N−2 = 30. This is so that detectors based upon this OS are able
to manage up to two interfering targets in the CRP. Clutter is simulated through Equation (7), with the
Burr distributional parameters α = 5.050578389, β = 0.050665814 and κ = 0.988772595. These choices
correspond to the fits acquired from run 34 683, at an azimuth angle of 225◦ (see Table 1). If a decision
rule requires a priori knowledge of a particular clutter parameter, then this value is applied directly.
Monte Carlo sampling, with 106 runs, is used to estimate each probability of detection (Pd) for every
SCR. The expression for the latter is facilitated by application of Equation (5). In all cases a Gaussian
target model has been used in the complex domain, together with a complex clutter component, for the
CUT. An upper bound is also provided, which has been produced by construction of a linear threshold
detector. This has a decision rule given by

Z0

H1
><
H0

(
β
[
PFA

− 1
α − 1

]) 1
κ
, (35)

which has been derived through calculation of the corresponding Pfa.
The first performance example to be considered can be found in Figure 11, which shows the

performance of the detectors operating in homogeneous clutter. Throughout the following the
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detector (17) is labelled as TCA (transformed cell averager), Equation (19) referred to as TOS
(transformed OS), and Equation (21) labelled WH (for Weber Haykin). The detector (29) is labelled CD
(for classical detector) while Equation (33) is marked POW (power). As can be observed from Figure 11,
the detector (33) matches the performance of the fixed threshold detector, while the detector (29) is
slightly inferior. The transformed detectors perform slightly worse than Equation (29), while the Weber-
Haykin detector has the worst performance. The latter can be explained by the fact that this detector
is CFAR with respect to two clutter parameters. The best performing detector, namely Equation (33),
requires a priori knowledge of α and β, and is only CFAR with respect to κ. Hence it appears that
detectors with more critical information assumed, in terms of clutter parameters, tend to have better
performance than decision rules which are CFAR.

5 10 15 20 25 30 35 40

SCR (dB)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
d

Detector Performance in Homogeneous Clutter

Fixed
TCA
TOS
WH
CD
POW

Figure 11. Detection performance in homogeneous Burr distributed clutter.

Next the effects of two independent interfering Gaussian targets in the CRP are examined, which
can arise from a range spread target in the CUT [18]. Figure 12 shows the case where the interfering
targets have SCR of 1 dB. Here one can observe a slight change in detection performance of the
five decision rules. Figure 13 illustrates the consequence of increasing the interference to one target
with SCR of 10 dB and a second with SCR of 20 dB. Finally, Figure 14 demonstrates the effect on
performance when both interfering targets have SCR of 30 dB. These results show that the transformed
cell averaging detector (17) suffers the most in the presence of increasing interference. The transformed
OS detector (19) and the Weber-Haykin detector (21) tend to perform similarly in the presence of
increasing interference. The detector with the greatest resilience to interference is Equation (33),
followed by Equation (29).

The next stage of performance analysis involves examining the Pfa of each detector during clutter
power transitions. In this case, the resultant Pfa is estimated, when the CRP is saturated sequentially
by higher powered clutter returns [18]. Such an analysis informs one on the resilience of a detector in
terms of preserving the design Pfa when the clutter is acquired from different regions. To illustrate this,
the resultant Pfa is estimated as a function of the number of higher powered clutter returns. Interpreting
clutter power as mean squared, one can apply Equation (5) with r = 2 to determine a suitable set of
parameters for higher powered clutter at a specified dB level. For simplicity, it is assumed that the Burr
parameters β and κ are fixed. Then for an xdB clutter power increase, it can be shown that one must
determine an α′ via the solution to

α′B
(
α′ − 2

κ
,
2
κ

+ 1
)
− 10α log10(x)B

(
α− 2

κ
,
2
κ

+ 1
)

= 0, (36)
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Figure 12. Performance when the CRP contains two independent interfering targets with SCR of 1 dB.
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Figure 13. Performance in the presence of one 10 dB and one 20 dB interfering target in the CRP.

where B is the beta function, α′ the Burr shape parameter in the higher power clutter, and α the Burr
shape parameter in the lower powered clutter. As is the common practice in such analyses, when the
mid-point of the CRP is saturated with higher powered clutter, the CUT is then assumed to also be
saturated with higher power clutter. Since the threshold multiplier is set in the lower power clutter
region, this results in a jump in the plots of estimated Pfa.

Figure 15 shows the results when the five detectors are subjected to a 2 dB clutter power increase.
As the number of higher power clutter cells is increased, the detector (33) maintains the design Pfa with
less error than the other decision rules, which reduce the resultant Pfa. Once the CUT is saturated
with higher power clutter, the two transformed detectors have the least increase in resultant Pfa.
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Figure 14. Performance in the presence of strong interference in the CRP, provided by two 30 dB
interfering targets.
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Figure 15. Effects of a 2 dB clutter power increase on the resultant Pfa, where the design Pfa is 10−4

and N = 32.

To complete the numerical analysis, the five decision rules were run directly on the Ingara data set
used as a basis for the simulated studies. Each detector was implemented as a sliding window process,
where two guard cells were applied to both sides of the CUT. As in the preceding analysis a Gaussian
target was inserted into the CUT. The data set consisted of 840, 704 measurements and hence with
a CRP of 32 and 4 guard cells which permitted a Monte Carlo sampling size of 840, 667. Figure 16
shows the performance of the decision rules. Compared with Figure 11, one can see that there is a slight
variation in performance. As an example, in Figure 11 the Weber-Haykin detector has a nominal Pd of
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0.5 at roughly 18 dB SCR. In Figure 16, this occurs at around 16 dB. Similar effects can be noted for
the other decision rules. To explain this, the resultant Pfa of each detector, when running on the Ingara
data set, was also calculated. These results are shown in Table 2. As can be observed, each decision
rule experiences a deviation from the design Pfa, explaining the discrepancy between the figures. This
is attributable to the fact that the real data is correlated and inhomogeneous, while the detectors have
been designed for operation in homogeneous independent clutter. It is interesting to note that the
detector (33), which has a very small deviation from the design Pfa, performs comparably to the same
detector running in the independent simulated clutter case.
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Figure 16. Detector performance in the Ingara data set run 34 683, at an azimuth angle of 225◦, with
horizontal transmit and receive polarisation.

Table 2. Resultant Pfa produced by the detectors running on the Ingara data. The absolute error is
the norm of the difference of the estimated Pfa and the design Pfa, which is 10−4.

Detector Estimated Pfa Absolute Error
TCA 1.7724 × 10−4 7.7240 × 10−5

TOS 1.8081 × 10−4 8.8081 × 10−4

WH 1.2252 × 10−4 2.252 × 10−5

CD 1.0944 × 10−4 9.4400 × 10−6

POW 8.8025 × 10−5 1.1975 × 10−5

6. CONCLUSIONS AND FURTHER RESEARCH

This paper examined the Burr distributional fit to DST Group’s Ingara radar clutter and showed that
it can provide improved fits relative to a Pareto Type II model. Based upon this, an examination of
non-coherent detection processes was initiated. A series of five decision rules were derived and shown
to possess varying degrees of the CFAR property. Some of these detectors were excellent at managing
interference and clutter power transitions. Their performance in real data showed promising results.
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This analysis has opened up the opportunity for further development and analysis. Firstly it would
be of interest to validate the Burr distributional fit to other X-band high resolution maritime surveillance
radar clutter sets. Secondly, it is of interest to investigate the existence of a non-coherent detection
process which is CFAR with respect to the three distributional parameters.

In addition to this, it is of relevance to examine whether the Burr distributional model can be
embedded within a compound Gaussian process with a specific texture distribution. This would provide
further credibility for the application of the Burr distributional model to maritime surveillance radar
clutter modelling. Furthermore, this would justify the development of coherent multilook detection
processes with such an intensity model.
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