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Fast Root-MUSIC Algorithm Based on Nyström Method
and Spectral Factorization

Xiaoyu Liu*, Junli Chen, and Lveqiu Xu

Abstract—A fast Root-MUSIC algorithm based on Nyström method and spectral factorization is
proposed. By using Nyström method, only two sub-matrices of the sample covariance matrix are
calculated, which avoids complete calculation and has the advantage of low computational complexity.
At the same time, the polynomial coefficients of the Root-MUSIC based on the Nyström method
are conjugated, and the order of the polynomial is reduced by half when using iterative operations.
Finally, the root algorithm is used to estimate the DOA. The performance of the proposed algorithm is
demonstrated by simulation results.

1. INTRODUCTION

Direction-of-arrival (DOA) estimation is an important part of array signal processing. Due to the
demand for real-time processing of signals, fast DOA estimation has been a hot topic for DOA
estimation. Multiple signal classification (MUSIC) algorithm [1] is one of the classical algorithms.
This algorithm obtains a covariance matrix from the received signal, which uses the orthogonal nature
of subspace to perform eigenvalue decomposition on the covariance matrix, then it can obtain the
signal subspace and noise subspace, because they are orthogonal to each other. The DOA estimation is
achieved by a needle-like spatial spectrum search. Later, the Root-MUSIC algorithm [2] was proposed.
This algorithm replaces the peak search in the MUSIC algorithm with finding the roots of a polynomial,
which reduces the computational complexity. However, when dealing with large arrays or large samples,
the computational complexity is still large because they involve the process of sample covariance matrices
and eigenvalue decomposition. For this reason, new algorithms that can guarantee the accuracy of
algorithms and reduce the computational complexity are still being developed.

In order to achieve rapid DOA estimation, researchers have proposed a series of improvements. For
example, by introducing a unitary matrix [3], the information of DOA estimation is transformed from
the complex field to the real domain, which accelerates the operation of the algorithm. There are other
algorithms that can reduce the computational complexity such as Fast Root-MUSIC [4] and Fourier
domain Root-MUSIC (FD-Root-MUSIC) [5]. Although these algorithms accelerate the operation of
the algorithm, they also sacrifice a certain degree of estimation accuracy. With the developments of
these algorithms, subspace-based algorithms are also developing rapidly. In the 1990s [6], it had been
proposed to use the propagation method (PM) to find the noise subspace, and then use the MUSIC
algorithm to perform DOA estimation. This algorithm has no eigenvalue decomposition, but its essence
still depends on the calculation of the sample covariance matrix. When the array number or the sample
number is large, the performance of the algorithm will become worse. Later, Nyström method was
proposed, which was first exploited by Williams and Seeger [9] for sparsifying kernel matrices through
approximating their entries. It was developed for spectral methods such as grouping problems [10].
Recently, the Nyström method has been widely used in electromagnetic scattering [7] and acceleration
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algorithms [8]. The Nyström method already has a preliminary model for DOA estimation in [11].
It can avoid calculating the sample covariance matrix and its eigenvalue decomposition. The ESPRIT
algorithm based on the Nyström method [12] and MUSIC algorithm based on the Nyström method were
proposed [13]. In [14], a way is mentioned to reduce the order of polynomials by using the conjugate
of the root. This method is based on the Laurent polynomial structure [15]. Recently, a spectral
factorization [16] algorithm has been proposed, which accelerates the running time of the algorithm
while keeping the accuracy of the algorithm almost unchanged.

This paper proposes a fast Root-MUSIC algorithm based on Nyström method and spectral
factorization. First, we find the approximate noise subspace through the Nyström method. Then
by using the the approximate noise subspace, we can get the polynomial of the Root-MUSIC algorithm
based on the Nyström method. Finally, spectral factorization is used to reduce the polynomial order of
the Root-MUSIC algorithm based on the Nyström method. The computational complexity is reduced
compared to the original algorithm, and the accuracy of the algorithm does not decrease. Computer
simulation results prove the effectiveness of the algorithm.

2. PROBLEM FORMULATION

We consider P narrowband signals incident on a uniform linear array (ULA). The ULA is composed of
M sensors, and array elements are independent of each other. Let the signal DOA be θ1, θ2 . . . , θp. The
number of snapshots is N , and the distance between adjacent array elements is d. The received signal
from array element can be expressed as:

X(t) = A(θ)S(t) + N(t), t = 1, . . . , N (1)

where X(t) is a M × 1 array observation vector, S(t) a P × 1 signal vector, N(t) a M × 1 Gaussian
white noise vector, and A(θ) a M × P steering matrix, it can expressed as:

A(θ) = [a(θ1), a(θ2), . . ., a(θP )] (2)

The steering vector a(θi) is defined as:

a(θP ) =
[
1, ej2π sin θP d/λ, . . . , ej2π(M−1) sin θP d/λ

]T
(3)

The covariance matrix of X(t) is defined as:

R = E
[
X(t)X(t)H

]
= ARSAH + σ2

nIM (4)

where RS is the sources covariance matrix, σ2
n the noise power, IM the M × M identity matrix, and d

is λ/2.

3. THE PROPOSED ALGORITHM

3.1. Root-MUSIC Algorithm Based on Nyström Method

In order to use the Nyström method for DOA estimation, we need to decompose the received signal
matrix X into the following form:

X =
[

X1

X2

]
(5)

where X1 is a K × N matrix, and X2 is a (M − K) × N matrix. They represent the information
received by the first K sensors and the remaining (M − K) sensors. Here we define the range of K as
(1, 2, . . . ,M) and then define:

R11 = E
[
X1XH

1

]
= A1RSAH

1 + σ2
nIK (6)

R21 = E
[
X2XH

1

]
= A2RSAH

1 (7)
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where A1 = A(1 : K, :), represents the first K row vectors of the matrix A. A2 = A(K + 1 : M, :),
represents the last (M − K) row vector of the matrix A. We must ensure that R11 is of full-rank and
K must satisfy the following relationship:

P ≤ K ≤ min(M,N) (8)

In the algorithm, the choice of K does not need to be too large. When the number of M increases,
we only need to select a relatively small K value to ensure the estimation accuracy if the SNR is large.
This helps to reduce the time complexity of the algorithm, and here are the main steps of the algorithm.

R11 = U11Λ11UH
11 (9)

where U11Λ11UH
11 is the eigenvalue decomposition of matrix R11, and Λ11 is the corresponding diagonal

matrix with eigenvalue in descending order. In addition, R21, U11 and Λ11 satisfy the following
relationship:

R21U11 = U21Λ11 (10)

It can be further expressed as:
R21 = U21U11Λ−1

11 (11)

where U21 is the corresponding eigenvector matrix of R21. Construct a new matrix based on formula
(11):

U =
[

U11

U21

]
(12)

The following steps are taken to avoid the process of eigenvalue decomposition of the received signal
covariance, and the noise subspace required by the MUSIC algorithm will be obtained.

G = UΛ1/2
11 (13)

GHG = Q (14)

UGΛGUH
G = Q (15)

F = GUG (16)

Ũn = F (:, P + 1 : K) (17)

In formula (15), UGΛGUH
G is the eigenvalue decomposition of Q, where UG represents the

eigenvector matrix, and ΛG is the corresponding diagonal matrix with eigenvalues in descending order.
Ũn is the approximate noise subspace of Nyström algorithm.

The MUSIC algorithm needs spatial traversal peak search. When using Root-MUSIC algorithm,
the spatial traversal peak search is replaced by finding roots of the polynomial, which reduces the
computational complexity. For ULA, the polynomial of Nyström algorithm can be expressed as:

f1 (z) = aH (z) ŨnŨ
H
n a (z) (18)

where a(z) = [1, z, . . . , zM−1]T and z = ej2π sin θP d/λ. DOA can be estimated by finding the roots of
polynomial f1(z). Because f1(z) contains z∗ terms, it can be expressed to this form:

f2 (z) = aT
(
z−1

)
ŨnŨ

H
n a (z) (19)

where f2(z) is a 2(M −1) order polynomial, and there are (M −1) pairs of conjugated roots. The DOA
estimation information can be obtained by the following formula:

θi = arcsin
(

1
2πd

arg {zi}
)

, i = 1, 2, . . . , P (20)
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3.2. Spectral Factorization Algorithm

Because there are (M − 1) pairs of conjugate roots in f1(z), it can be defined that it has (M − 1)
independent roots. By using the conclusion, we can reduce its computational complexity again.

Let f1(z) be expressed in the following formula:

f1 (z) =
∑(M−1)

−(M−1)
biz

i, bi = b∗−i (21)

In formula (21), bi is the coefficient of zi, and b−i is the coefficient of z−i. Because of the Hermite
matrix properties of ŨnŨ

H
n , bi and b−i are conjugated. According to the literature [15], f1(z) can be

represented as:

f1 (z) = Lb (z) rbL
∗
bz

−∗ (22)

Lb (z) =
∏(M−1)

i=1
(1−aiz

−1) (23)

rb =
b(M−1)

(−1)(M−1)
∏(M−1)

i=1
ai

(24)

If z1 is a root of f1(z) then using the conjugate relationship of the root, we know that z−∗
1 is also

a root of f1(z). These two roots are conjugate symmetrical about the unit circle. It can be explained
that when there are (M − 1) roots in the unit circle or on the unit circle, the other (M − 1) roots exist
on the outside of the unit circle or on the unit circle. We only need to calculate the root in the unit
circle to know all DOA information.

Complete the spectral factorization according to the following steps:

(1) A (M × 2) matrix B0 is established, the elements in B0 are the coefficients of the formula (21) and
bi is a coefficient of zi

B0 =
(

b0 −b−1 . . . b−(M−2) b−(M−1)

b−1 b−2 . . . b−(M−1) 0

)T

(25)

(2) The following steps make ‖b̃1,k − b̃1,k−1‖ converge. b̃1,k is defined as the first column of Bk and
b̃1,k−1 is the first column of Bk−1.

I: BkBk−1, and Uk satisfy the following relationship:

Bk = Bk−1Uk (26)

Uk =
1√

1 − �γ�2

(
1 −γ

−γ∗ 1

)
(27)

Uk is a (2× 2) matrix, γ = [Bk−1]1,2 / [Bk−1]1,1, γ is the ratio of two elements in the first row
of matrix Bk−1.

II: The first column of the matrix Bk calculated in step (1) remains unchanged, and the second
column shifts one element up.

III: Set the threshold. Check the convergence of ‖b̃1,k− b̃1,k−1‖, when ‖b̃1,k− b̃1,k−1‖ < threshold, it
satisfies the convergence condition. If not, return to step (1) until ‖b̃1,k − b̃1,k−1‖ < threshold.
The (M −1) order polynomial can be obtained by iterative calculation. fp(z) = p0 +p−1z

−1 +
. . . + p−(M−2)z

−(M−2) + p−(M−1)z
−(M−1). Its coefficient is the first column element b̃1,k of Bk.

(3) Using the root calculation of Root-MUSIC, (M − 1) roots in the unit circle or on the unit circle
can be obtained, and the signal DOA can be obtained when using the formula (20).
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3.3. Computational Complexity

In the traditional Root-MUISC algorithmthe estimated array covariance matrix (EACM) [17]
computation requires O(M2N) flops, EVD/SVD requires O(M3) flops. Here, flops stands for complex-
valued floating point operations. The purposed algorithm only needs to compute R11 and R21 which
require O(K2N) flops and O(MNK−K2N) flops, respectively. In the purposed algorithm, we need
O(MK2) flops to construct noise subspace, therefore, before polynomial rooting, the traditional Root-
MUISC algorithm needs O(M3+M2N) flops. The purposed algorithm needs O(MK2+MNK) flops.
It can be obtained by formula 8 that the purposed algorithm requires O(MK2+MNK) flops, which
is less than O(M3+M2N) flops. Then the spectral factorization is used to reduce the 2(M − 1) order
polynomial to the (M − 1) order polynomial, in the traditional Root-MUISC algorithm, polynomial
rooting requires 4 × O(M3) [17], but in the spectral factorization it only needs O(M3), and it can be
obtained from the above analysis that the computational complexity of the purposed algorithm is less
than traditional Root-MUISC algorithm.

4. SIMULATION

All the following experiments are running on MATLAB. This experiment is used to compare the root
mean square error (RMSE) between the proposed algorithm and the traditional Root-MUSIC algorithm.
In this simulation, the experiment uses a ULA structure. The distance between adjacent array elements
is d = λ/2, and two narrow-band Gaussian signals are assumed to impinge upon the ULA from directions
θ1 = 40◦ and θ2 = 60◦. The added noise is zero-mean Gaussian white noise. The SNR is defined as
the ratio of the power of the source signals to that of the additive noise. The number of Monte
Carlo experiments is 500, and the root mean squared error (RMSE) of signal DOA estimation by each
algorithm is defined as:

RMSE =

√√√√ 1
500

500∑
1

(θ̂i − θ)
2

(28)

where θ̂i is the ith estimation of θ.
In the simulation experiment of Figure 1, we explore the influence of the spectral factorization

threshold on the RMSE of the proposed algorithm. Assume that the K value is M/2 (the specific K
value will be further determined in the following experiment). The results in Figure 1 show that the
threshold will have an impact on the RMSE of the proposed algorithm. When the threshold is larger,
the RMSE is also larger. When the threshold is 0.01, its RMSE is almost equal to 0.005, indicating
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Figure 1. RMSE of the DOA estimation varies
with Iterative threshold.

Sensor number

R
un

ni
ng

 ti
m

e 
(s

ec
on

d)

40 45 50 55 60 65 70

2.4

2.2

2

1.8

1.6

1.4

1.2

1

0.8

Figure 2. Running time of the DOA estimation
varies with Iterative threshold.
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Figure 3. RMSE of the DOA estimation varies
with SNR (M = 20).

Figure 4. RMSE of the DOA estimation varies
with SNR (M = 30).

that when the threshold reaches a certain value, it is almost meaningless to select a smaller threshold.
This result can be proved by the simulation experiment in Figure 2.

In the simulation experiment of Figure 2, we explore the effect of the spectral factorization threshold
on the running time of the algorithm as the number of array elements changes. The results in Figure 2
show that when the threshold is larger, the algorithm needs less time to run Combined with the results
of Figure 1, we can determine that when the selection of threshold is 0.01, the algorithm’s running
time is relatively short, and the RMSE is also almost minimal. Therefore, in the following simulation
experiments, the spectral factorization threshold was selected as 0.01.

In the simulation experiment of Figure 3, we set the number of array elements M to 20 and the
value of SNR to be −14 dB to 12 dB. The choices of K of the Nyström method are 12, 13 and 14. K is set
to 14 in the proposed algorithm. From Figure 2, we can see that with the increase of K, the performance
of the algorithm becomes better. However, when K increases to a certain degree, the performance of
the Nyström algorithm and the traditional Root-MUSIC algorithm is almost the same under a larger
SNR. The performance of the algorithm based on Nyström method and spectral factorization proposed
in this paper has almost the same accuracy as that of the Root-MUSIC.

In the simulation experiment in Figure 4, we set the number of array elements M to 30 and SNR
values to be −14 dB to 12 dB. The choice of K of the Nyström method is 16, 17 and 18. K is set to 18
in the proposed algorithm. As can be seen from Figure 3, with the number of elements M increasing,
K also needs to be increased to achieve better estimation accuracy. When K is 18, it can be seen that
under the larger SNR, the estimation accuracy of the Nyström method is almost the same as Root-
MUSIC algorithm. In this paper the spectral factorization algorithm K based on the Nyström method
proposed is chosen as 18, and its performance is almost the same as that of Root-MUSIC.

In the simulation experiment of Figure 5, we get the result that the running time of each algorithm
varies with the increasing of K value. Running time is the average time for 500 experiments. The choice
of K in the Nyström algorithm is 20 and 25. The K chosen for the proposed algorithm is 25. It can
be seen from Figure 4 that the smaller the value of K is, the faster the algorithm runs. The reasonable
choice of K value in DOA estimation is to reduce the algorithm running time while ensuring higher
estimation accuracy. The proposed algorithm greatly reduces the algorithm’s computation time while
ensuring the accuracy. When the number of array elements is large, the proposed algorithm is more
effective.

In the actual situation of signal estimation, multiple signals are incident on the large array
(M = 100). For this reason, the following simulation experiments are based on the structure. The
SNR is 10 dB, and the number of snapshots is 1000. The number of Monte Carlo experiments are still
500. The directions of impinging signals are randomly chosen from −90

◦
to 90

◦
.
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In the simulation experiment in Figure 6, with the increase of the signal source based on the large
array (M = 100), we explore the variation of the RMSE of the proposed algorithm and the traditional
Root-MUSIC algorithm. It can be seen from the results in Figure 6 that as the signal sources continue
to increase, the purposed algorithm still runs with high precision, which proves its effectiveness in the
actual situation.

In the simulation experiment in Figure 7, with the increase of the signal source, in order to explore
the change of the running time of the proposed algorithm compared with the traditional algorithm, the
reduced running time of Monte Carlo simulations (denoted by Tr) is involved and defined as:

Tr =
Ttrad−Tprop

Tprop
×100% (29)

where Ttrad and Tprop respectively represent the averaged Monte Carlo simulations time of the traditional
method and the proposed algorithm. It can be seen from the results in Figure 7 that the reduced
simulation time decreases as the signal source continues to increase, but it still stays at a high value,
and the decreasing trend is gradually slower. The results show the effectiveness and superiority of the
proposed algorithm in practical applications.
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Figure 5. Running time of the DOA estimation
varies with sensor number.
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5. CONCLUSION

In this paper, a fast Root-MUSIC algorithm based on Nyström method and spectral factorization
is proposed. This algorithm uses the Nyström Root-MUSIC algorithm on the basis of maintaining
accuracy, and then using spectral factorization, the algorithm time is optimized again compared to
the traditional Root-MUSIC algorithm. Through multiple experiments, it is concluded that the K
value should be between (M/2 − M), and the threshold should be between (0.005–0.1). Simulation
experiments show that this algorithm requires reasonable selections of threshold and K value, which
ensures the algorithm not only guaranteeing the estimation accuracy under higher SNR, but also making
the algorithm run faster.
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