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Phased Array Calibration by Binary Compressed Sensing

Galina Baburs1, *, Diego Caratelli2, 3, and Arman Mirmanov4

Abstract—This paper presents a calibration technique for phased array radars. The real embedded
patterns of the array elements are measured independently in operating mode, while taking antenna
coupling and other parasitic effects into account. The proposed technique does not affect the operation
of the antenna array. The use of suitable switches integrated in the beamforming network of the array
allows introducing sparsity into the measured summed signal. This enables the extraction of the angular
dependent calibration coefficients by means of a dedicated compressed sensing approach.

1. INTRODUCTION

Coupling phenomena occur, to some extent, in all antenna arrays, and can significantly affect their
operation [1–6]. Accurate calibration is key to preserve and control the main beam direction and shape,
as well as the sidelobe levels of a radar antenna [7–9]. In practice, the beamforming network of an
antenna array is often affected by electronic drift, as well as temperature and environmental conditions;
thus, calibration of a fielded radar system is required [10]. In this context, it is beneficial to have the
capability of performing calibration while the system is in operating mode.

In this work we present a technique for the calibration of phase and amplitude errors introduced
at antenna element level in phased array radars with beamforming on receive. The technique is
implemented in the operating mode of the radar. In this way, the measured patterns include the effect
of mutual antenna coupling and other parasitic effects. No separate measurements of the embedded
radiation patterns or coupling level between array elements are required.

We consider a radar system consisting of an array of identical antennas under the assumption of a
narrowband sounding signal. We assume that the rest of the hardware operates in ideal manner. The
signal processing relies on pulse compression of the processed signals.

As known, the calibration of a phased array antenna while the device is in service can be a complex
and time-consuming procedure which limits the use or imposes an unacceptable overhead on the system
[11]. On the other hand, the proposed technique is directly implemented in operating mode and,
therefore, does not have the aforementioned drawbacks thanks to the adoption of a suitable signal
processing procedure in combination with controlled time delays in the receiver channels.

During the calibration process, the extracted antenna correction coefficients are evaluated for all
the array channels and for each specified angular direction. The number of measurements is minimized
by using a compressed sensing (CS) approach. Sparsity is introduced into the aggregated received
signals according to assigned binary delay vectors which specify the position of switches integrated in
the beamforming network of the array. The sparsity property allows reconstructing the real (non-ideal)
embedded patterns of the individual array elements in a computationally effective way by means of a
l2-minimization. Once the real patterns in operating mode are evaluated, the received signals along the
various radar channels can be corrected (calibrated).
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The paper is organized as follows. Section 2 describes the received signal model. The calibration
technique is presented in Section 3. Considerations on the application of the proposed calibration
technique are reported in Section 4. The numerical results which demonstrate the effectiveness of the
presented calibration technique are discussed in Section 5. The concluding remarks can be found in
Section 6. Section 7 contains the conclusions.

2. RECEIVED SIGNAL MODEL

A phased array is a structure consisting of multiple antennas whose effective (summed) radiation pattern
can be controlled by phasing the signals of the individual elements. In the case of a linear phased array,
the ideal received signal can be written as:

sR,0(t, θ) =
N∑

n=1

P0(θ) · e−j �k(θ)·�x(n) · s(t), (1)

where s(t) is the complex envelope of a sounding signal suitable for pulse compression; N is the number
of receiving elements; k̄ is the wavevector; x̄(n) denotes the position vector of the nth receiving element
for n ∈ [1, . . . , N ]; θ is the angular position of a hypothetic target. In our work, we assume a linear
frequency modulated (LFM) waveform for the sounding signal.

In real-life scenarios, the array elements display non-ideal embedded patterns Pn(θ) for n =
1, 2, . . . , N . As a matter of fact, the signal received by each array element can be affected by multiple
transmissions between antennas due to spurious mutual coupling processes [2, 6, 12]. Furthermore, the
embedded radiation patterns can be distorted by non-idealities in the phase shifters embedded in the
beamforming network, edge diffraction phenomena, as well as by impedance mismatches, and structural
variations in elements themselves. Our calibration technique takes all of these effects into account since
it is implemented in the operating mode of the radar under test.

The coupling between the elements of the considered N × 1 phased array can be modeled as a

symmetric N × N coupling matrix R [6, 7] with entries R(n,m) =
{

1 n = m
rn,m n �= m

. The beamforming

of the array is performed along the angular direction θ0 which is assumed to identify the location of a
known point target used for calibration, that is θ = θ0. Obviously, for a given angular direction the
signal described in Eq. (1) becomes a function of time only. So, the actual signal received by the n-th
antenna element can be written, in the absence of noise, as [6]:

sn
R,θ0

(t) =
N∑

m=1

Pm(θ0) · rn,m · e−j �k(θ0)·(�x(m)−�x(n)) · s(t), (2)

where the index m is used for the modeling of coupling effects, while the index n denotes the general
receiving element. As can be noticed, because of the parasitic coupling processes, the signal received by
the n-th array element in Eq. (2) is influenced by the radiation patterns of all the N antennas forming
the array. The exponents e−j �k(θ0)·(�x(m)−�x(n)) (for m = 1, . . . , N) represent the propagation path term
between the n-th antenna and all the array elements including the element itself (one of the values m
is equal to n). The self-coupling coefficient as well as the propagation path term of the n-th antenna
element relative to itself (m = n) are both equal to one. So, Eq. (2) can also be recast as follows:

sn
R,θ0

(t) =

⎛
⎝Pn(θ0) +

∑
m�=n

Pm(θ0) · rn,m · e−j �k(θ0)·(�x(m)−�x(n))

⎞
⎠ · s(t). (3)

The summation term in Eq. (3) measures the impact of the mutual coupling on the individual array
element pattern Pn(θ0). It is apparent that the real radiation pattern of the n-th array element is
described by the expression:

A(n, θ0) =
N∑

m=1

Pm(θ0) · rn,m · e−j �k(θ0)·(�x(m)−�x(n)). (4)
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The finality of the proposed calibration process is to evaluate the coefficients described by Eq. (4) for
n = 1, . . . , N . By using these coefficients, Eq. (2) can be written as:

sn
R,θ0

(t) =
(

A(n, θ0)
P0(θ0)

)
· P0(θ0) · s(t). (5)

As known from the literature, the array pattern characteristics are affected by the errors on phase
and amplitude of the radiated/received signals [13]. The ratio A(n, θ0)/P0(θ0) in (5) quantifies the
relative error introduced on the ideal received signal, see Eq. (1). The original (ideal) pattern P0(θ) is
supposed to be known a priori. Once the coefficients A(n, θ0) are estimated, the received signal sn

R,θ0

can be readily corrected (calibrated).
We note here that our technique does not require a separate estimation of the coupling matrix.

3. CALIBRATION TECHNIQUE

The idea behind the proposed calibration technique is to equip the channels of a phased array radar
with identical time delay lines controlled by suitable switches (see Fig. 1). The time delay δt is inversely
proportional to the sounding signal bandwidth ΔF , that is δt = 1/ΔF , or its multiples. The controlled
time delays are identical and do not depend on the number of radar channels contrary to the calibration
technique in [14], which makes use of an element-wise off-setting in the receiving channels. In the
case of large phased arrays with reduced operating bandwidth, the relative time offsets would result
in too long time delays along the radar channels, that is impractical from an application standpoint.
On the other hand, the here-proposed technique does not impose restrictions on the array size or the
signal bandwidth, because the time delays introduced in the radar channels are the same. This allows
overcoming the main limiting factor in the practical implementation of [14]. In this way, the developed
calibration technique can be applied to small, medium, as well as large phased arrays.

For a waveform s(t) with large BT-product, the offset δt is small compared to the pulse
duration. Though time or frequency offsets introduced into the signals can affect the array radiation
pattern [15, 16], the chosen time delays do not influence the estimated angular-dependent coefficients
A(n, θ0) (real patterns) in Eq. (4) for the reasons detailed hereafter. Before pulse compression, the
phase shift associated with the offset δt, at a given frequency f , can be written as Δϕ = 2 · π · f · δt.
After pulse compression, when the full bandwidth ΔF of the signal is to be accounted for, the actual
phase shift becomes Δϕ = 2 · π · ΔF · δt, which is equal to 2 · π or 0. Therefore, the time offset δt
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selectively applied to the received signal components does not result in any phase difference between
the signals after their pulse compression. It is worth, also, stressing the point that the considered phase
shift does not depend on the observation angle θ0.

We notice here the fact that the time shift δt = 1/ΔF is the minimal time interval which makes
the signals separable after the relevant pulse compression. Since the signals can be separated, it is
apparent that the introduced relative time shift ensures orthogonality between shifted and non-shifted
signals in spite of the fact that they are highly overlapped in time. The orthogonality, as well as the
phase alignment, between shifted and non-shifted signal components is the key property which makes
the implementation of the proposed calibration technique possible.

The state of the switches along the receive channels is specified by a binary delay vector
d = [d(1), d(2), . . . , d(N)], d(n) ∈ (0, 1) for n = 1, 2, . . . , N , where 0 means no time delay, and 1 is
associated with the time delay δt. To build the set of equations useful to the evaluation of the real
pattern coefficients, different delay vectors d are to be considered. Together they form a delay matrix D.

Following the application of the selected time delays to the various received array signal
contributions, the aggregated received signal can be written as follows:

sR,θ0(t) =
N∑

n=1

A(n, θ0) · s(t − d(n) · δt), (6)

where A(n, θ0) denotes the real embedded pattern of the general array element that accounts, also,
for spurious antenna coupling phenomena and other parasitic effects. The knowledge of the actual
embedded element patterns is instrumental in aligning the real array response to the ideal one, which
is known a priori as per Eq. (1).

The matched filter output can be easily written in terms of the offset auto-correlation functions
ACFS of the signal s(t), that is:

χθ0(τ) =
N∑

n=1

A(n, θ0) · ACFS (τ − d(n) · δt). (7)

The auto-correlation function allows the filtering process in time domain in analogy with the discrete
delta function. In this case, the matched filter output can be written in the domain of the discrete time
as:

χθ0(i) =
N∑

n=1

A(n, θ0) · d(n) +
N∑

n=1

A(n, θ0) · (u(n) − d(n)), (8)

where i = 0, 1, u is a unit vector (u(n) = 1, n = 1, ..., N) of the same dimension as d.[
y1

θ0

y2
θ0

]
=

[
χθ0(i = 0)
χθ0(i = 1)

]
. (9)

The summation in Eq. (8) is equivalent to the integration of the products Aθ0(n) · d(n) and
Aθ0(n) · (u(n) − d(n)). The evaluation of the output signal allows the simultaneous measurement of
the two quantities (see Fig. 2). The measured values are given by the two following inner products:[

y1
θ0

y2
θ0

]
=

[ 〈Aθ0 ,d〉
〈Aθ0,d

′〉
]

, (10)

where Aθ0 is a N -valued vector which contains the values of the real embedded patterns of the array
elements along the angular direction θ0, while d and d′ denote the delay vector (the set of binary test
functions) and its complementary version, respectively.

To reconstruct the [N × 1] vector Aθ0 along each angular direction of interest θ0, we make use
of a compressed sensing (CS) approach by performing L measurements, with L < N . This is possible
thanks to the sparsity of the binary delay vectors d and d′. The maximal sparsity of these vectors is
evaluated as K = truncate(N/2). This condition is achieved when the numbers of ones and zeros in d
are equal.
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The coefficients A(n, θ0) (which describe the real embedded patterns affected by the antenna mutual
coupling effects) are estimated by means of a l2-minimization.

We stress here that the real pattern coefficients A(n, θ0) are estimated in the operating mode of the
considered phased array radar. This means that the calibration technique can properly model all the
non-idealities, such as wave diffraction processes, impedance mismatch of the antennas, manufacturing
tolerances, that affect the embedded element patterns Pn(θ0). Therefore, the estimated real patterns
Â(n, θ0) intrinsically include the effect of said undesired phenomena.

Based on Eq. (5), the correction (calibration) coefficient for the beamformed angular direction θ0

and n-th receive channel can be written as

C(n, θ0) =
P0(θ0)

Â(n, θ0)
. (11)

The calibration process of the aggregated received signal in the operational radar mode is described
by the following equation:

scorr
R,θ0

(t) =
N∑

n=1

C(n, θ0) · sn
R(t), (12)

where the superscript ‘corr’ stands for corrected.

4. APPLICATION OF THE PROPOSED CALIBRATION TECHNIQUE TO PHASED
ARRAYS WITH ARBITRARY TOPOLOGY

Though the theory presented in Sections 2–3 describe the signal model and calibration technique for
a linear phased array, here we show that the calibration principle can be extended to other types of
arrays based on different beamforming algorithms. In the general case, the signal received by one array
channel can be written, in analogy with Eq. (2), as:

sn
R,θ0,ϕ0

(t) =
N∑

m=1

Pm(θ0, ϕ0) · rn,m · e−j �k(θ0,ϕ0)·�r(m) · wn · s(t), (13)

where (θ0, ϕ0) is the angular position of a point target used for calibration; �r(m) = (xm, ym, zm) denotes
the position vector of the mth receiving element, m = 1, . . . , N ; w(n) denotes the complex beamforming
coefficient relevant to the nth receiving channel.

In this way, the real radiation pattern of the nth array element along the angular direction (θ0, ϕ0)
can be described by the following time-invariant expression:

A(n, θ0, ϕ0) =
N∑

m=1

Pm(θ0, ϕ0) · rn,m · e−j �k(θ0,ϕ0)·�r(m) · wn. (14)

The introduced time delay d(n) does not influence the estimated angular-dependent coefficients
A(n, θ0, ϕ0) because the phases of the signals s(t) and s(t − d(n)) (shifted and non-shifted signals
in the same nth channel) remain unchanged, as highlighted in Section 3.

Enforcing the proposed delay vectors does not result in an alteration of the array output, since the
introduced delays do not change the signal phase (2π-phase shift is equivalent to no phase shift). On
the other hand, after pulse compression, the signal in Eq. (13) received by the nth channel contributes
to the aggregated signal at the discrete time instant i = 0 or i = 1 depending on whether d(n) = 0 or
d(n) = 1, respectively (see Fig. 2).

The property mentioned above holds true for any 1D, 2D, as well as 3D (conformal) phased arrays.
However, we note that in the most general case of 3D arrays, the discrete time scales for different
array elements/channels might be not aligned. This means that the information embedded in the signal
output is not confined in two instants, as shown in Fig. 2, but distributed over time. This requires the
adaptation of the proposed calibration technique depending on the specified array topology.
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5. MODELING RESULTS

The modeling results relevant to the coefficients Aθ0 used for phased array calibration in receive mode
are presented in this section for two uniform linear and circular array topologies. The carrier frequency
is equal to f0 = 10 GHz. We assume the coupling level to be ρ between adjacent antennas, and 0 between
farther elements of the array. The radiation patterns of the antenna elements are described by cos(θ)
and (1+ cos θ)/2 for the linear and circular array, respectively. The duration of the sounding LFM-signal
and the relevant bandwidth are equal to 250 µs and 40 MHz, respectively. We applied additive Gaussian
noise to the signal s(t) in each receiver channel. No window weighting has been applied.

The first example (Figs. 3–6) is presented for a linear uniformly spaced array of N = 8 antennas
separated by half-wavelength at the carrier frequency. Fig. 3 shows the embedded antenna radiation
patterns when being affected by a parasitic coupling level ρ = 0.2, as well as by random amplitude
and phase distortions of the excitation coefficients. The additive Gaussian noise has 5% variance in
each receiver channel. We note here that the pulse compression by matched filter results in a noise
suppression by a factor equal to the signal BT product, which is 10000 in our example. Furthermore,
during the calibration process, the N antenna signals are divided into two groups (defined by the
assigned delay vector) to be summed coherently in two different range cells (τ = 0 and τ = δt). This
provides additional noise suppression by a factor

√
N/2.

The measurement delay matrix [L×N ] consists of L = 4 binary delay vectors d which specify the
position of the switches in the array frontend for each measurement. For the experiment we used the
following delay matrix:

D =

⎡
⎢⎣

1 1 1 1 0 0 0 0
0 1 1 1 1 0 0 0
0 0 1 1 1 1 0 0
0 0 0 1 1 1 1 0

⎤
⎥⎦ .

For each angular direction θ0, four binary delay vectors (identified by the rows of the matrix) are applied
consequently. Thus, the four signal levels measured consequently at the matched filter output at the
time instant τ = 0 correspond to the delay matrix D, whereas the four signal levels measured at the time
instant τ = δt correspond to the complementary delay matrix D′. The concatenation of the matrices
D and D′ results in the complete [N × N ] delay matrix. Fig. 4 shows the calibration coefficients
C(n, θ0) for the linear array obtained by making use of Eq. (11), for each angular direction and for
each array element. Using the calculated calibration coefficients, we can recover the real embedded
patterns (see Fig. 5) of the array elements for n = 1, . . . , N , by applying l2-minimization. In turn, the

Figure 3. Array elements patterns influenced by
the coupling ρ = 0.2, as well as, by the amplitude
and phase errors.

Figure 4. Calibration coefficients C(n, θ).
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Figure 5. Corrected patterns of the linear array
elements C(n, θ0) · A(n, θ0).

Figure 6. Ideal, non-calibrated and calibrated
patterns of the circular phased array.

Figure 7. Array elements patterns influenced by
the coupling ρ = 0.3, as well as, by the amplitude
and phase errors.

Figure 8. Calibration coefficients C(n, θ).

corrected embedded patterns contribute to the corrected array pattern, which is shown in Fig. 6 and
here compared against the ideal and non-calibrated patterns for θ0 = 0 beamforming direction.

The second example (Figs. 7–10) is related to a circular phased array consisting of N = 8 antennas.
The diameter of the array is selected in such a way that adjacent elements are separated by half-
wavelength at the working frequency. The embedded antenna radiation patterns are affected by a
parasitic coupling level ρ = 0.3, as well as by random amplitude and phase distortions of the excitation
coefficients (Fig. 7). The additive Gaussian noise has 10% variance in each receiver channel. The same
delay matrix D consisting of the binary delay vectors has been applied to control the switches as in the
first example. For each angular direction θ0, four binary delay vectors are applied consequently. The
array calibration coefficients are estimated using Eq. (11) and are shown in Fig. 8 for the individual
array channel. The obtained calibration coefficients are applied to the embedded patterns for their
correction (Fig. 9). In turn, the corrected embedded patterns aggregate into the array pattern, which
is shown in Fig. 10 and here compared against the corresponding ideal and non-calibrated patterns.

Both the considered examples demonstrate the effectiveness of the proposed calibration technique.



68 Babur, Caratelli, and Mirmanov

Figure 9. Corrected patterns of the circular
array elements C(n, θ0) · A(n, θ0).

Figure 10. Ideal, non-calibrated and calibrated
patterns of the circular phased array.

6. REMARKS

• The application of the proposed calibration technique is not limited by the size of the considered
phased array. It can be applied to small, medium, as well as large phased arrays.

• The calibration principle can be applied to phased arrays having different topologies. It can be
applied to 1D, 2D, as well as 3D (conformal) array structures [17–19].

• The proposed calibration technique can be applied to radar systems employing pulse compression,
under the assumption that the time-bandwidth product of the sounding signal is much larger than 1.

• Optimal results are achieved when sounding LFM signals having large BT product are used. Large
values of the BT product reduce the impact of the noise on the measurements. The influence of
the LFM signal range sidelobes on the measured values is negligible.

• The calibration technique is suitable for active, as well as, passive phased array radars.

We note here that the proposed calibration technique does not rely on the application of window
weighting to the processed signals. However, this does not prevent the use of window functions for
sidelobe suppression in the phased array radar system under test. It is known that window weighting
can change the signal bandwidth, especially for the frequency modulated waveforms [20]. The proposed
calibration technique is affected by the bandwidth of the sounding signal, since the time offset δt depends
on it. Variations of the bandwidth during the calibration process can result in changes of the phase
relation between the measured values which, in turn, can impact the accuracy of the process. Therefore,
window weighting during calibration should be applied taking into account the equivalent (weighted)
bandwidth ΔF of the sounding signal for correct calculation of the introduced time offset δt.

7. CONCLUSIONS

A new method for calibration of phased array radars in operating mode has been introduced. The
proposed procedure requires the application of an identical fixed time delay along all the radar channels
by using the suitable switch control. Sparsity is introduced in the aggregated received signals according
to assigned binary delay vectors that specify the position of the switches embedded in the RF front-end
of the array for each measurement carried out during the calibration process. The antenna calibration
coefficients are calculated for each receive channel and each angular direction of interest.

The impact of parasitic antenna coupling and other spurious effects are properly taken into account
during calibration as the measurements are performed in the operating mode of the radar. The proposed
calibration technique does not affect the operation of the antenna array as it can be implemented when
the device is in service. A compressed sensing approach is applied in order to minimize the number of
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measurements useful to the evaluation of the angular dependent coefficients needed for array calibration.
The obtained modeling results have demonstrated the effectiveness of the proposed calibration technique
when applied to phased arrays having different topologies: linear and circular. In practice, the accuracy
of the calibration procedure is limited by the deviations on the performance of the attenuators and phase
shifters integrated along the array channels in order to implement the estimated calibration settings.
The ease of implementation makes the proposed calibration principle suitable for application to phased
antenna arrays of different sizes and different topologies.
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3. Caratelli, D. and M. C. Viganó, “A novel deterministic synthesis technique for constrained sparse

array design problems,” IEEE Transactions on Antennas and Propagation, Vol. 59, 4085–4093,
Nov. 2011.
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