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Numerical Analysis of Radar Response to Snow Using Multiple
Backscattering Measurements for Snow Depth Retrieval
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Abstract—Study of snow is an important domain of research in hydrology and meteorology. It has
been demonstrated that snow physical properties can be retrieved using active microwave sensors. This
requires an understanding of the interaction between electromagnetic (EM) waves with natural media.
The objective of this work is two-fold: to study numerically all physical forward models concerning the
EM wave interaction with snow and to develop an inverse scattering algorithm to estimate snow depth
based on radar backscattering measurements at different frequencies and incidence angles. For the first
part, the goal is to solve the scattering calculations by means of the well-known electromagnetic simulator
Ansoft High Frequency Structure Simulator (HFSS). The numerical simulations include: the effective
permittivity of snow, surface scattering phenomena in layered homogeneous media (air-snow-ground)
with rough interfaces, and volume scattering phenomena when treating snow as a dense random media.
For the second part, the study is extended to develop a retrieval method to estimate snow thickness over
ground from backscattering observations at L- and X-band using multiple incidence angles. The return
signal from snow over ground is influenced by: surface scattering, volume scattering, and the noise
effects of the radar system. So, the backscattering coefficient from the medium is modelled statistically
by including a white Gaussian noise into the simulation. This inversion algorithm estimates first the
snow density using L-band co-polarized backscattering coefficient at normal incidence and then retrieves
the snow depth from X-band co-polarized backscattering coefficients using dual incidence angles.

1. INTRODUCTION

Seasonal snow has a great impact on the Earth’s climate system due to its high albedo. It can reflect 80
to 90 percent of the incident solar radiation back into space; thus, regulating the Earth’s energy balance.
Moreover, one-sixth of the total population of the world depends on snowmelt runoff to meet their fresh
water needs [1, 2] and for agricultural irrigation requirements [2]. In some drainage basins, rapid spring
snowmelt may also cause flooding and thus predicting the runoff resulting from snowmelt which is an
important part of the flood control system [2, 3]. That’s why there is a demand for an estimation of the
snow depth as well as the snow water equivalent (SWE) in an accurate manner. In the last few decades,
active microwave sensors have proven to be valuable tools in retrieving snow characteristics.

Remote sensing requires some electromagnetic theory study to obtain useful information from the
sensor. To understand how microwave sensors operate and how electromagnetic quantities they measure
are transformed into geophysical information, it is necessary to understand how EM waves interact
with natural media [4]. Such interaction is called: scattering, absorption, transmission, and emission.
The scattered electromagnetic energy from snow-covered ground measured by a radar depends on the
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properties of snow as well as the properties of the radar itself such as: frequency f , incidence angle θi,
and the polarization of the incident beam (H or V ).

The study of snow depth retrieval has a long history. Many studies regarding snow physical
properties retrieval methods are based on radar backscattering observations at different frequencies and
polarizations. For example, an inversion algorithm of SWE using multi-frequency (L, C, X bands)
and multi-polarization (V V and HH) microwave backscattering coefficients is represented by Shi and
Dozier (2000) [3]. This inversion algorithm uses co- and cross-polarized channels for the separation of
surface and volume scattering contributions and needs five measurements to estimate SWE. However,
sensitivity analysis showed that backscattering signals at X-band or higher frequency bands is more
sensitive to snow parameters than that at C-band. Hence, retrieving snow physical parameters at
higher bands is more efficient. High frequency Synthetic Aperture Radar (SAR) (X and Ku band)
with multi-polarization is proposed by the snow observation programs: the European space agency
CoReH2O space borne synthetic aperture radar, and Snow and Cold Land Processes (SCLP) of NASA.
SWE inversion algorithm under this configuration is done by [5, 6]. Ku-band is more sensitive to shallow
snow only. So, the frequency choice is a compromise between how much it is capable to penetrate a deep
snow layer meeting our requirements and how much it is sensitive to snow parameters. That’s why an
operating frequency of 10 GHz was chosen in our retrieval method where a typical value of penetration
depth into dry snow is around 8 m at such wavelength.

The main objective of this paper is the development of a snow depth inversion algorithm based
on several backscattering observations. This requires an implementation of a MIMO (multiple input
multiple output) radar which has the potential to operate at two frequencies and can scan multiple
incidence angles simultaneously. The design of this high accurate sensor is left for future work. So,
calculations were performed using Monte Carlo Simulations in MATLAB where the addition of a
gaussian noise was just to reflect a similar data collected from a real radar. That’s why we use the
statistical distribution of the backscattering coefficient under various snow depths, snow densities, and
incident frequencies to retrieve snow depth.

The proposed algorithm requires some forward models for scattering from a ground layer and models
regarding the snow density. Ansoft’s High Frequency Structure Simulator [7] (HFSS) was just a key to
understand how electromagnetic waves are scattered by media and to choose the best fit forward model
with the numerical results to use it in the snow depth retrieval algorithm. The study is then extended
to develop a retrieval method to estimate snow density and thickness over ground from backscattering
observations at L- and X-band using multi-incidence angles. This inverse scattering problem involves two
steps. The first is the estimation of snow density using L-band co-polarized backscattering measurement
at normal incidence. The second is the recovery of the snow depth from X-band radar backscattering
coefficients using two incidence angles.

2. PROPAGATION PROPERTIES OF SNOW

Snow depth (d) and density (ρs) are two important parameters used to find out the snow water equivalent
(SWE). The snow water equivalent is a measure of the amount of water contained in a snowpack. This
term is used in hydrology studies to predict snowmelt run-off. It is defined as:

SWE = d
ρs

ρw
(1)

where d is the snow depth (m); ρs is the snow density (kg/m3); ρw is the density of water (kg/m3) which
is constant for a specific temperature. As illustrated in Figure 1, the total backscatter σ0

total received
from snow above ground includes four scattering components:

σ0
total = σ0

as + σ0
v + σ0

gv + σ0
g (2)

where σ0
as is the surface scattering component by the air/snow interface; σ0

v is the snow volume scattering
due to ice inclusions; σ0

gv is the multiple scattering component involving both surface and volume
scattering mechanisms; σ0

g is the surface scattering by the snow/soil interface. The backscattering
coefficient is affected by: volumetric liquid water content in snow mv%, snow depth d, snow density ρs,
snow temperature T ◦C, snow grain size r, and surface roughness (air-snow and snow-soil boundary).



Progress In Electromagnetics Research B, Vol. 81, 2018 65

Figure 1. Scattering contributions for air-snow-ground multi-layered structure with rough interfaces
and heterogeneous snow mixture.

The volume backscattering coefficient obeys the Rayleigh approximation for layers with small dielectric
constant.

2.1. Single-Scattering Radiative Transfer Model with Rayleigh Particles (S2RT/R)

The total derived backscattering coefficient (σ◦
total) for a layer with a distinct upper boundary at

polarization pq is given by Equation (3). This formulation which is known as the S2RT/R [4] model will
be used to simulate the surface and the volume backscattering coefficients of snow over ground (soil).
Volume scattering is created by ice grains at the wavelengths comparable to the grain size.

σ0
total,pq = T 2

pq(θi)[Υ2
pqσ

0
g,pq(θr) + 0.75a cos θr(1−Υ2

pq)(1 + Γ2
g(θr)Υ2

pq) + 6κsdΓg(θr)Υ2
pq] + σ0

as,pq(θi) (3)

where Tpq is the transmission from air to snow across the air-snow boundary; Υpq is the transmissivity
throughout the snow volume; a is the albedo; θi is the incidence angle; θr is the refraction angle; Γg is
the ground surface reflectivity; κs is the scattering losses; d is the snow depth. The transmissivity of
the snow layer can be expressed as:

Υpq = exp
(
− κed

cos θr

)
(4)

where κe is the extinction coefficient of the snow volume. The extinction coefficient accounts for
absorption and scattering losses within the snow as seen in Equation (5).

κe = κa + κs (5)

The scattering albedo is defined as:
a = κs/κe (6)

The volume absorption coefficient κa is defined in terms of the effective permittivity εeff of the medium
and the wave number k0 (k0 = 2π/λ) as shown in Equation (7). In the case where the size of inclusions
is much smaller than the wavelength λ, κs is much smaller than κa (κe = κa).

κa = −2k0Im
{√

εeff

}
=

2πε
′′
ds

λ
√

ε′ds

(7)

where ε′ds and ε′′ds are the real and imaginary parts of the complex dielectric constant of snow, and
quantify the electromagnetic energy stored and energy loss in the medium respectively.

2.2. Scattering Models

Many scattering models are available to simulate the ground surface backscattering coefficients under
snow cover. Scattering models of terrain are, at best, good approximations of the true scattering process
experienced by a real radar observing a real terrain surface or volume [4]. They serve as guides to explain
experimental observations and as predictors of how the radar scattering coefficient σ0 is likely to behave
as a function of a particular terrain parameter of interest [4]. Some models are known as I2EM, PRISM,
and SMART models.



66 Mazeh et al.

2.2.1. Polarimetric Radar Inversion for Soil Moisture (PRISM) Model

An empirical model was developed to measure the dielectric constant and moisture content of the soil
medium by the University of Michigan team by Oh et al. (1992) [8] who developed the following empirical
model:

p = σ0
hh/σ0

vv =
[
1 −

(
2θi

π

)α

e−k0s

]2

(8)

α =
1
Γ0

(9)

with s being the rms height of the surface and Γ0 representing the surface Fresnel reflectivity at normal
incidence:

Γ0 =
∣∣∣∣1 −√

εsoil

1 +
√

εsoil

∣∣∣∣
2

(10)

where εsoil is the permittivity of the soil layer. The cross-polarized ratio is defined as:

q = σ0
hv/σ

0
vv = 0.23Γ1/2

0

[
1 − e−k0s

]
(11)

Using the empirical models developed for p and q, the following models were developed for σ0
vv , σ0

hh,
and σ0

hv:

σ0
vv = 0.7

[
1 − e−0.65(k0s)1.8

] cos3 θi√
p

[Γv(θi) + Γh(θi)] (12a)

σ0
hh = pσ0

vv (12b)
σ0

hv = qσ0
vv (12c)

2.2.2. Soil Moisture Assessment Radar Technique (SMART) Model

Dubois et al. (1995) [9] developed a semi-empirical approach for modelling σ0
vv and σ0

hh named Soil
Moisture Assessment Radar Technique (SMART) for soil moisture inversion. The algorithm is optimized
for bare soils with k0s ≤ 2.5, soil moisture ms ≤ 35% and θi ≥ 30◦.

σ0
hh = 10−2.75 · cos1.5 θi

sin5 θi
· 100.028ε′soil tan θi(k0s sin θi)1.4λ0.7 (13a)

σ0
vv = 10−2.35 · cos3 θi

sin3 θi
· 100.046ε′soil tan θi(k0s sin θi)1.1λ0.7 (13b)

where ε′soil is the real part of the soil dielectric constant.

2.2.3. Improved Integral Equation Model (I2EM)

The I2EM is applicable on a wide range of surfaces, from smooth to rough where k0s < 3 for a certain
radar wavenumber. The co-polarized backscattering coefficient equation according to [4, 10, 11]:

σ0
pp(θi) =

k2
0

4π
e−2k2

0s2 cos2 θi

∞∑
n=1

∣∣In
pp

∣∣2 W (n)(2k0 sin θi, 0)
n!

(14)

where
In
pp = (2k0s cos θi)fpp exp(−k2

0s
2 cos2 θi) + (k0s cos θi)nFpp (15)

and pp is either the hh or vv polarizations, and W (n) is the Fourier transform of nth power of the
autocorrelation function (ACF) of the rough surface [10]. fhh, fvv, Fhh, and Fvv are approximated by
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the following equations:

fhh =
−2Rh

cos θi
(16a)

fvv =
2Rv

cos θi
(16b)

Fhh = 2
sin2 θi

cos θi

[
4Rh −

(
1 − 1

εsoil

)
(1 + Rh)2

]
(16c)

Fvv = 2
sin2 θi

cos θi

[(
1 − εsoil cos2 θi

εsoil − sin2 θi

)
(1 − Rv)2 −

(
1 − 1

εsoil

)
(1 + Rv)2

]
(16d)

where the horizontally and vertically polarized Fresnel reflection coefficients, Rh and Rv, are given by:

Rh =
cos θi −

√
εsoil − sin2 θi

cos θi +
√

εsoil − sin2 θi

(17a)

Rv =
εsoil cos θi −

√
εsoil − sin2 θi

εsoil cos θi +
√

εsoil − sin2 θi

(17b)

Note that the expressions of these models assumes backscattering from an air/soil random rough surface.
However, in our work, the ground is covered by a snow layer. That’s why εsoil/εds should be used instead
of εsoil and θr should be used instead of θi when calculating the snow/soil interface backscattering
coefficient (σ0

g).

2.3. Wetness and Frequency

Penetration is a very important parameter for the remote sensing of snow. The possibility of information
retrieval from the backscattered measures waves is dependent on how the EM wave is capable to
penetrate a snow layer. It depends on the frequency of the incident EM wave as well as the dielectric
constant of snow; that’s the liquid water content in snow. The more the liquid water content, the higher
the dielectric constant, and therefore bigger absorption which means less penetration. That’s why wet
snow attenuates the microwaves in a very short distance. The penetration depth (δp) is defined as [12]:

δp = 1/κe (18)

Figure 2. Penetration depth changes with the amount of liquid water content at 4 GHz, 10 GHz, and
30 GHz.
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The extinction coefficient is computed using MIE solution [4]. Figure 2 shows the variation of
the penetration depth (δp) for a snow layer as function of liquid water content (mv) for frequencies in
the microwave range. Snow physical parameters inversion algorithm at higher bands is more efficient,
but higher bands means less penetration. The volume absorption coefficient increases as water content
in snow increases, thereby no power is reflected, and hence the snow layer is not resolvable. This is
illustrated well in Figure 2 which shows that a wet snow pack prevents reflection at higher frequencies.

2.4. Backscattering Behavior of Dry Snow

It is useful to study the backscattering behavior of dry snow before the snow depth estimation. The
surface roughness of dry snow has almost no effect on the total backscattering coefficient due to the small
dielectric contrast between air and dry snow (εair = 1 and εds = 1.9 for a density of 0.45 g/cm3). That’s
why σ◦

as could be neglected in the formulation given in Equation (3). This is in contrast to the wet snow
case because of the high dielectric losses of liquid water. Furthermore, it is necessary to study the angular
dependence of the total backscattering coefficient because the presented retrieval algorithm is based on
the variation of the incidence angle. As it can be seen from Figure 3, the backscattering coefficient
decreases with increasing incidence angle. This is due to the decreasing backscatter from the ground
under snow. For small incidence angles, surface scattering is the dominating contribution. For higher
incidence angles, volume scattering contribution becomes more significant. This is illustrated in Figure 4
where the total co-polarized backscattering coefficient is equal to the ground backscattering coefficient
at angles less than 15◦. As incidence angle increases, the ground backscattering coefficient decreases
and the total backscatter reflects the volume contributions. The plots are done for a 0.476 g/cm3 snow
density which will be used in the application of the snow depth inversion algorithm because the median
seasonal snow density in Lebanon over the 2-year period (2014–2016) was 0.476 g/cm3 [13].

Figure 3. The calculated backscattering
coefficient as a function of the incidence angle
at H-polarization.

Figure 4. Computations of the co-polarized
volume, soil, and total backscattering coefficient
separately.

3. SNOW PERMITTIVITY AND SNOW DENSITY ESTIMATION

A reflected signal is obtained when there is a dielectric contrast between two media. The three materials
of interest in this work are air, snow, and ground (soil). The permittivity of air is close to one under
all conditions. For the case of snow and ground, it is more complex. Dry snow behaves as a mixture
of air and ice resulting in a permittivity that can vary from εair = 1 to εice = 3.185. Since ice is a low



Progress In Electromagnetics Research B, Vol. 81, 2018 69

loss dielectric, its imaginary part is much smaller than the real part (on the order of 10−4) which can
be neglected in the forward scattering calculations with no significant effect on the results. As snow
wetness increases, the real and imaginary part of the dielectric constant of snow increases. In the snow
density and snow depth retrieval method, we consider dry snow only.

3.1. Effective Permittivity Forward Models of Dry Snow

In remote sensing applications, geophysical materials are often inhomogeneous and complicated in
structure such as snow. The concept of the effective dielectric constant is an important tool in treating
the interaction problem between electromagnetic waves and such complex material. An accurate
estimation of the effective permittivity of snow is important in recovering the snow depth from the
reflected signal toward the radar. The idea of the effective medium of an inhomogeneous material is
to have an equivalent dielectric constant εeff such that the mixture responds to an electromagnetic
excitation as if it is homogeneous. The mixing rules are often derived using static and quasi-static
arguments assuming that the size of inclusions in the mixture is small compared to the wavelength of
the incident electromagnetic field.

Dry snow is a two-phase mixture consisting of ice particles embedded in an air background. The ice
inclusions in natural snow usually have a diameter of 0.1–2 mm [14], so the quasi-static assumption can be
valid throughout the microwave range of dry snow. The dielectric constant of dry snow (εds = ε′ds−jε′′ds)
depends on the permittivity of air (εair), the permittivity of ice (εice = ε′ice − jε′′ice), and the volume
fraction of ice vi. The volume fraction of ice vi in snow is related to the snow density by:

vi =
ρs

0.9167
(19)

where 0.9167 g/cm3 is the density of ice. The real part of the permittivity of ice ε′ice is independent of
frequency from 10 MHz to 300 GHz, and it exhibits a slight temperature dependence of the form [15]:

ε′ice = 3.1884 + 9.1 × 10−4T (−40◦C ≤ T ≤ 0) (20)

where T is the temperature in ◦C. The temperature sensitivity to ε′ice is very small and can be neglected;
hence, the dielectric constant of dry snow ε′ds is also independent of temperature and frequency in the
microwave region. Applying Polder-Van Santen (PVS) model to dry snow where air is the background
medium and ice spheres are in the inclusions give:

εds − 1
3εds

=
vi(εi − 1)
(εi + 2εds)

(PVS) (21)

Since ε′′ice/ε
′
ice � 1, the imaginary parts of εds and εi may be neglected when seeking an expression

for ε′ds. Another mixing formula for ice spheres in an air background is the Tinga-Voss-Blossey (TVB)
two-phase formula which provides a good fit to the experimental data shown in [16].

εds = 1 +
3vi(εi − 1)

(2 + εi) − vi(εi − 1)
(TVB) (22)

Moreover, an equally good fit to the data is provided by the empirical expression (Looyenga’s
model) [3, 17]:

εds = 1 + 1.5995ρs+1.861ρ3
s (Looyenga) (23)

3.2. Numerical Physical Modelling of Dry Snow

This section is intended to solve the direct problem in the effective permittivity calculations of snow by
means of the well-known electromagnetic simulator (Ansoft HFSS). This FEM solver is able to calculate
the S-parameters of the simulated structure from which we can calculate the effective permittivity. The
simulation setup of dry snow can be seen in Figure 5. It is a cubic background of air of length a = 100 mm
and permittivity 1 (εe = 1) where spherical ice inclusions (ε′ice = 3.185 and dielectric loss tangent = 0)
are embedded in random positions occupying a volume fraction vi. Periodic boundary conditions were
chosen because infinitely random mixtures cannot be modelled. PEC (Perfect Electric Conductor)
boundary conditions are assigned to the upper and lower surfaces of the structure in the z-direction
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(a) (b)

Figure 5. Schematics of the simulation setup. (a) The simulation model of dry snow with perfect
electric boundary conditions. (b) The simulation model of dry snow with perfect magnetic boundary
conditions.

as shown in Figure 5(a) while PMC (Perfect Magnetic Conductor) boundaries are assigned to the side
faces in the y-direction as shown in Figure 5(b). The simulated fraction volume vi of ice varies from
0.01 to 0.5 because the density of dry snow is mostly below 0.5 g/cm3.

This setup is done for about 100 simulations of dry snow structure. In every simulation, the fraction
volume and the positioning of inclusions were randomly chosen. Simulation is done for overlapped and
non-overlapped spherical inclusions with a non-uniform size distribution respecting the quasi-static
limit. Allowing spherical inclusions to overlap means that complex geometries can be formed. The
geometry is then terminated and excited by two wave ports which compute the S-parameters. For
permittivity simulations and snow density estimation, an operating frequency is chosen in the L-band
spectrum (f = 2 GHz) so that snow grains are small compared to the incident L-band wavelength. This
means that snow medium can act as a homogeneous dielectric layer with an effective permittivity.

For a plane wave normally incident on a homogeneous slab with thickness d, the S21 parameter for
a non-magnetic dielectric mixture can be expressed as follows [18]:

S21 =
(1 − R2)e−j

√
εeff k0d

1 − R2e−j2
√

εeff k0d
(24)

R = (1 −√
εeff )/(1 +

√
εeff ) (25)

Note that Equation (24) is just a function containing one variable εeff . Once the S parameters are
computed, the effective permittivity can be calculated by solving the non-linear complex Equation (24).

Figure 6. The calculated effective permittivity of dry snow compared with general theoretical mixing
models.
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Figure 6 shows the effective permittivities achieved from 100 simulations from the FEM simulator
for different volume fractions and positioning of inclusions. Each mixture has its own effective
permittivity which may differ from another mixture having the same volume fraction of ice because
of their different microstructure. The calculated permittivity distribution is also compared with the
theoretical mixing models. It is shown that Looyenga’s model best fits the FEM simulated results in
both cases: overlapped and non-overlapped inclusions. That’s why Looyenga’s model will be used in
the snow density estimation method.

3.3. Numerical Simulation of Surface Scattering Effect in Layered Media with Rough
Interfaces

Numerical simulation of electromagnetic scattering from a randomly rough surface has been a topic of
successive study for many years because of its broad applications such as terrain remote sensing, radar
surveillance over oceanic surface and so on [19, 20]. Numerical methods can calculate the exact scattered
field by solving Maxwell’s equations so that the bistatic scattering coefficient can be determined.

3.3.1. Random Rough Surface Generation

The ability to generate a random rough surface to build a complex multilayered structure such as (air-
snow-ground) with non-planar surfaces can improve our understanding of how electromagnetic waves
are scattered by targets. A random rough surface is characterized by its: rms height (h), correlation
length (cL), and auto correlation function (ACF ). Electromagnetic models for scattering by random
rough surfaces involve the use of the two most common forms for the correlation function: Exponential
Correlation Function (ECF) and Gaussian Correlation Function (GCF). The two-dimensional random
rough surface generation is solved in MATLAB and then imported into a CAD software to create the
volume to be studied in an electromagnetic simulator. This procedure was developed because it is more
flexible to use MATLAB generation instead of HFSS.

3.3.2. Procedure

For a rough surface being illuminated by a plane wave, the bistatic scattering coefficient for a single
surface is defined as [21]:

γ0
pq(θs, φs; θi, φi) = lim

r→∞
4πr2

∣∣Es
p

∣∣2∣∣Ei
q

∣∣2 A cos θi

(26)

In the backscattering direction θs = θi and φs = π + φi, the monostatic backscattering coefficient is
defined as:

σ0
pq(θi, φi) = cos θiγ

0
pq(θs = θi, φs = π + φi; θi, φi) (27)

It is impossible to model an infinite rough surface numerically, so a procedure to do that is
summarized in [22] where the bistatic scattering coefficient is averaged over N different rough surfaces
with the same length L and the same roughness conditions. The scattered electric field by each rough
surface is calculated in the far field region at a range Rr from the surface as a function of the scattering
angle. This is done for N different rough surfaces with the same rms height and correlation length.
Then, the bistatic scattering coefficient is averaged over the N surfaces for incident polarization p and
scattered polarization q:

σ0
pq =

4πR2
r

A
∣∣Ei

q

∣∣2
1
N

N∑
j=1

∣∣Es
p,j

∣∣2 (28)

where A is the effective area of the rough surface. For a gaussian incident beam, the effective area is
πg2/2 cos2 θ [23].

In the averaging procedure, the choice of the surface length L is an important consideration in the
numerical calculation. It is limited by conditions based on the wavelength λ and the correlation length
cL. In [24], it was found that a surface size of 8λ is sufficient. Moreover, L should be larger than several
correlation lengths of the rough surface and also be limited to make computation efficiency.
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For a finite surface, the plane incident wave leads to an edge effect on the circumference of the
calculation area so that the calculated scattered field accuracy is reduced. That’s why tapered incident
waves are applied in order to avoid artificial reflections from the edges of the illuminated finite surface
by having a zero amplitude at the edges. A summary for the considerations regarding the choice of g
and L are summarized in [20]. In most literatures, a value of g = L/4 is the most chosen choice in the
averaging process. Calculations were done for 25 different surfaces (N = 25).

The HH-pol backscattering coefficient of a three-layered media is calculated where snow-soil
interface is rough as shown in Figure 7. PML boundary conditions were used at the sides of the
calculation area to prevent reflections. The air-snow interface was chosen to be planar because the
backscattering coefficient at the air-dry snow interface is neglected with respect to the total backscatter.
Moreover, the snow layer was chosen to be homogeneous because volume scattering contributions have no
significant effect on the total received signal at L-band frequencies. The simulated results are compared
with the most famous theoretical scattering models.

Figure 8 shows the results obtained of the co-polarized backscattering coefficient using the averaging
process for a soil layer of permittivity εsoil = 11.3 − j1.5 where the incident beam is H-polarized and
roughness conditions are as those found in Table 1. The co-polarized backscattering coefficient calculated
using the FEM is compared with I2EM, PRSIM and SMART models. Results are in a good agreement
with the I2EM model so that it can be applicable in our snow depth retrieval algorithm for the calculation
of the backscattering contribution due the ground layer.

Figure 7. Three-layered structure setup in HFSS with the snow-ground interface being rough.

Table 1. Parameter values used in the HFSS simulation for a three-layered structure with a rough
snow-ground interface.

Parameter Value
Operating frequency f 2 GHz

Incidence angle θi 0◦, 10◦, 20◦, 30◦, 40◦

Surface size L 8λ
Polarization HH

Soil Permittivity εsoil = 11.3 − j1.5
RMS height s 1.12 cm

Correlation length cL 8.4 cm
Correlation function ECF

Snow depth 0.4 m
Snow density 0.476 g/cm3
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Figure 8. The backscattering coefficient as function of the incidence angle for the parameter values
shown in Table 1 with a comparison with theoretical models.

3.4. Snow Density Estimation

The microwave response of snow covered ground is highly related to the snow grain size. At L-band,
volume scattering contributions have no significant effect on the total received signal. That’s why snow
is considered as a homogeneous mixture over a soil surface at L-band frequencies. In this case, the total
backscattering coefficient σ0

total at incident polarization p and received polarization q can be simplified
to:

σ0
total = T2

pq(θi)σ0
g,pq(θr) (29)

where Tpq is the transmission from air to snow across the air-snow boundary, and σg is the surface
backscattering contribution from the snow-soil interface. For a horizontally polarized incident wave, Tpq

is defined as:

Th = 1 −
∣∣∣∣∣
cos θi −

√
ε′ds cos θr

cos θi +
√

ε′ds cos θr

∣∣∣∣∣
2

(30)

where θi denotes the incidence angle and θr denotes the refraction angle in the snow layer. Snell’s law
states that:

sin θr = sin θi/
√

εds (31)

Note that the snow density is related empirically to the effective permittivity of snow by Looyenga’s
semi-empirical dielectric formula as stated before. At L-band, σtotal is insensitive to snow depth as seen
theoretically in (8). That’s why in the numerical simulation in the section before, d can be chosen to
be any value.

The I2EM model is applied to simulate the ground surface backscattering coefficient (σg) under
snow cover. Ground (soil) surface parameters such as surface rms height s, correlation length cL, soil
permittivity εsoil, and autocorrelation function (ACF ) are used to compute the surface backscattering
value. For soil surfaces, the exponential correlation function (ECF) is a more realistic choice and it has
been shown that ECF can be used to match active remote sensing experimental data [24].

The input variables used to find σtotal at L-band are: frequency f , polarization pq, incidence angle
θi, snow density ρs or εds, dielectric constant of the ground εsoil, rms height of the ground surface
roughness s, ACF of the ground surface, correlation length of the ground surface roughness cL.

Measurements before snow fall can be done so that the dielectric properties of the ground as well as
its roughness information can be retrieved. Many semi-empirical models were done to recover the values
of the ground surface properties or they could be measured using a laser profilometer. After that, the
only remaining unknown in Equation (29) is εds which is related to the snow density by an empirical
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Table 2. Parameter values used in the forward theoretical simulation at L-band.

Parameter Value
Operating frequency f 2 GHz

Incidence angle θi 0◦

Polarization pq HH

Ground Permittivity 11.3 − j1.5
RMS height s 0.6 cm

Correlation length cL 25 cm
Autocorrelation function ECF
Snow density range study [0.25–0.5] g/cm3 Interval: 0.05

Table 3. Comparison between forward theoretical values and estimated values at L-band.

Snow density
(g/cm)3

εsnow theory εsnow retrieved ρs retrieved Density error in %

0.25 1.4291 1.4236 0.2472 1.12 %
0.3 1.5303 1.5311 0.3004 0.13 %
0.35 1.6399 1.6416 0.3509 0.26 %
0.4 1.7592 1.7632 0.4016 0.4 %
0.45 1.8773 1.8763 0.4496 0.09 %
0.5 1.9983 2.001 0.5011 0.22 %

formula. So, in our work, the parameters related to the ground surface are well known before snow fall.
The values that were chosen in our forward theoretical simulation are summarized in Table 2. They
are based on experimental data found in [4]. Then, the snow permittivity is solved using the non-linear
Equations (29), (30), and (31). Then, the snow density is calculated using Equation (23).

Calculations are performed now using MATLAB where a zero-mean Gaussian noise with variance
(σ2 = 0.02) is added to the theoretical values to form a statistical variation similar to that collected
from a real radar. The study was done over a range of snow densities from 0.25 to 0.5 g/cm3 and a
comparison is shown between simulated theoretical values and estimated values in Table 3. For each
snow density, the HH-polarized backscattering coefficient is calculated and a Gaussian noise is added
to the theoretical value to form a statistical variation as that in Figure 9(a). Then, the permittivity
is solved for each value from the obtained histogram of the backscattering coefficient. Therefore, an
estimate of the snow permittivity for a specific density is obtained by averaging the values of the new
obtained histogram shown in Figure 9(b).

4. SNOW DEPTH RETRIEVAL ALGORITHM USING MULTIPLE OBSERVATIONS

The backscattering signals at X-band or higher frequency band is more sensitive to snow parameters so
that the snow parameters inversion algorithm at these bands is more effective [25]. After the calculation
of the snow density at L-band, the snow depth will be retrieved from backscattering measurements at X-
band where volume scattering effects will have a significant effect on the total backscattering coefficient.

4.1. Volume Scattering Physical Model

In contrast with surface scattering, which occurs at a rough interface between two different dielectric
media, snow volume scattering is caused by ice crystals that are present in an air background. As
we said before, the total backscatter reflects the volume contributions significantly especially at higher
incidence angles. That’s why it was necessary to study numerically the backscattering coefficient of a
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(a) (b)

Figure 9. (a) Statistical distribution of the HH-polarized backscattering coefficient for air-snow-
ground media for a snow density = 0.5 g/cm3 with parameter values found in Table 1. (b) Histogram
of the retrieved permittivity of snow with density = 0.5 g/cm3 using the statistical distribution of the
HH-polarized backscattering coefficient in Figure 9(a).

Figure 10. Three-layered structure setup in HFSS with planar interfaces and a heterogeneous snow
volume.

ground layer covered by an inhomogeneous snow layer. So, the critical issue for this section is to test
the validity of the volume backscattering effect through a careful numerical setup. The simulation setup
for the calculation of the backscattering coefficient due to volume scatterers is shown in Figure 10. It
consists of a dry snow layer of depth d = 0.1 m. This layer is treated as a heterogeneous mixture where
uniformly distributed scatterers (ice crystals of r = 6 mm) are embedded in an air background.

The size distribution of the scatterers relative to the wavelength is an important factor in modeling
radar scattering by a snow volume. Due to the assumption that Rayleigh approximation provides
reasonably accurate results up to 15 GHz for much larger particles (r = 5mm) [4], the numerical
study is done on a sample of dry snow of density 0.1 g/cm3 with a 6 mm ice particle radius at an
operating frequency in the X-band (f = 9 GHz). These chosen specifications for the snow sample are
just a compromise between the available memory and the limited range of the applicability of Rayleigh
approximation. All calculations were performed on an HPC of 24 cores with a systems memory of 192
GB RAM. The lower boundary is chosen to be perfectly flat so that surface scattering from the ground
layer will have no effect on the total backscatter (σ0

g = 0) and the backscattered field in this case is
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just due to the heterogeneity structure of snow. But, the ground roughness will be not neglected when
retrieving snow depth. It was ignored here for decreasing computation time because the verification of
the validity of the I2EM model was done in the section before.

The procedure for calculating the bistatic scattering coefficient is the same as in Equation (9)
where the averaging process is done for mixtures with the same volume fraction of ice but with different
positioning of inclusions. Table 4 summarizes the values of the parameters used in the simulation setup.

Table 4. Parameter values used in the HFSS simulation for a three-layered structure with a
heterogeneous snow medium.

Parameter Value
Operating frequency, f 9 GHz

Snow depth, d 0.1 m
Snow density, ρ 0.1 g/cm3

Ice radius, r 6mm
Permittivity of soil, εsoil 5

Incident wave Plane wave
N 20

Surface size, L 0.2 m

The calculated numerical results of the co-polarized backscattering coefficient using the averaging
process are shown in Figure 11 at different incidence angles with an H-polarized incident beam. A
comparison was done with S2RT/R model where a good agreement is observed.

Figure 11. The calculated backscattering coefficient as a function of the incidence angle at H-
polarization.

4.2. Snow Depth Retrieval Method

In this section, the snow depth is retrieved using dual incidence angles from radar backscattering
measurements at X-band. It is true that the operating frequency was 9 GHz in the numerical study
(due to the available memory), but now we will use a 10 GHz frequency for snow depth estimation where
the volume scattering coefficient is more significant. Again, calculations are done now using MATLAB
where a Gaussian noise is added also to theoretical values.
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In our retrieval algorithm, the two chosen incidence angles were 10◦ and 30◦. These two incidence
angles were chosen so that there is a much difference between their output values for parameter values
shown in Figure 3. This is can be easily observed when calculating σg at 10 GHz for the obtained
snow density and soil surface parameters. Typically, in real measurements, a variety of incidence angles
could be observed so that the collected experimental backscattered data could be all tested in the snow
parameters retrieval. This algorithm performs best at 10◦ and 30◦ for such ground properties. Table 5
summarizes all the values chosen in the forward theoretical calculation at X-band.

Table 5. Parameter values used in the forward theoretical simulation at X-band.

Parameter Value
Operating frequency f 10 GHz

Soil permittivity εsoil = 11.3 − j1.5
RMS height s 0.6 cm

Correlation length cL 25 cm
Snow density ρsnow 0.476 g/cm3

εsnow 1.9396 − j2.5567e − 04
Temperature T −4◦C

Albedo a 0.8207
Extinction Coefficient κe 0.1836 Np/m

Ice particle radius r 0.75 mm

To retrieve snow depth, the density is calculated first using the previous procedure. Knowing the
density, the refraction angle θr can be easily calculated from Snell’s law and then Tpq, Υpq, and Γg can
be computed. After replacing κs with a×κe, the remaining unknowns in Equation (3) are: the albedo
(a) and the snow optical depth (τ) which is the product of the extinction coefficient (κe) and the snow
depth (d):

τ = κed (32)
The extinction coefficient is related to the albedo by:

κe = κa/(1 − a) (33)
where the volume absorption coefficient is defined empirically by:

κa = vik0
ε
′′
ice

εair

∣∣∣∣ 3εair

εice + 2εair

∣∣∣∣
2

(34)

where ε′′ice is the imaginary part of the permittivity of ice, and it is determined from snow temperature.
The retrieval process can be summarized as follows:
(i) Using dual incidence angles, the albedo and the snow optical thickness can be calculated using the

non-linear relationship between the backscatter values and the snow parameters in Equation (3).
(ii) Calculate κa using Equation (34).
(iii) Calculate κe using Equation (33) with the estimated value of the albedo in step 1.
(iv) Finally, snow depth can be easily retrieved using (32).

The HH-polarized backscattering coefficient is calculated for each snow depth value for two
incidence angles, and a Gaussian noise is added to the theoretical value forming a statistical variation
of σtotal as shown in Figure 12. Then, the albedo (a) and the snow optical depth (τ) are solved for each
value from the obtained two histograms of σtotal. So, another two histograms will be obtained for ′a′
and ′τ ’ where their averages are just the estimated values of ′a’ and ′τ ’. Continuing in the procedure,
snow depth can be easily estimated and a comparison is shown between simulated theoretical values
and estimated values in Table 6. As it can be seen from Table 6, all retrieved snow depth values are in
a well agreement with the simulated ones. Note that increasing the noise variance is just an increase in
the error. Figure 13 represents a graphical comparison between input data and estimated snow depth.
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Figure 12. Statistical distribution of the HH-polarized backscattering coefficient from air-snow-ground
for a snow density = 0.476 g/cm3 and snow depth = 1m with parameter values found in Table 5 at
θi = 10 (Blue) and θi = 30 (Red).

Table 6. Comparison between forward theoretical values and estimated values at X-band.

d (cm) albedo ‘a’ d-retrieved (cm) a-retrieved Error in d (%)
50 0.8207 48.91 0.8426 2.18
75 0.8207 74.59 0.8416 0.546
100 0.8207 100.61 0.8303 0.61
125 0.8207 125.30 0.8317 0.24
150 0.8207 150.97 0.8255 0.646
175 0.8207 176.45 0.8272 0.828
200 0.8207 203.59 0.8224 1.795
225 0.8207 223.46 0.8364 0.684
250 0.8207 248.34 0.8393 0.664
275 0.8207 276.42 0.8336 0.516
300 0.8207 302.56 0.8361 0.853

4.3. Sensitivity of Snow Thickness Estimates to Errors in Snow Density

Provided with a 10 GHz operating radar, the measured backscattering coefficient depends mainly on
the snow density. Knowledge of the effective permittivity of snow is essential to accurately derive the
snow layer thickness, hence it is necessary to measure the sensitivity of the radar to errors in estimates
of the snow density. Table 7 shows that there is an increasing error made in distance calculations as the
error in the density estimation increases. The values in Table 7 show that for a dry snow pack a 20%
error in density contributes approximately a 13.85% error to snow thickness (for example, if the snow
thickness is 100 cm, this is gives a 13.85 cm error in snow thickness).

Table 7. Error in snow pack thickness calculations as a function of error in density for dry snow.

ρs = 0.3 g/cm3 ρs ρs + 10% ρs-10% ρs + 20% ρs − 20 %
εeff of snow 1.5303 1.6285 1.4389 1.7345 1.3532

Error in distance (%) 0 7.31 % 10.93 % 13.85 % 23.97 %
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Figure 13. Comparison of the estimated snow depth using the previous algorithm with a 0.02 noise
variance with real input data.

5. CONCLUSION

In this paper, forward theoretical physical models regarding the propagation properties of snow were
tested numerically in an electromagnetic simulator. The choice of Looyenga’s model in density
estimation and the I2EM model for surface scattering calculations were the best. Then, a snow depth
retrieval algorithm was proposed based on backscattering measurements at L- and X-band using multi-
incidence angles. This algorithm requires a priori knowledge of the dielectric and roughness properties
of the ground. Estimated values were in an excellent agreement with simulated ones showing an error
of less than 2% for a 0.02 noise variance. Our future work is to validate this algorithm experimentally
with the use of a MIMO radar.
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