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Parameter Estimation of an Inhomogeneous Medium by Scattered
Electromagnetic Fields Using Nonlinear Optics and Wavelets

Manisha Khulbe1, 2, *, Harish Parthasarathy3, and Malay R. Tripathy1

Abstract—The aim of this work is to study the parameter estimation of a nonlinear medium in
terms of scattered electromagnetic fields. The surface parameters are defined in terms of linear and
nonlinear components of susceptibility and permeability. A set of Maxwell’s equations are derived for
an inhomogeneous medium using Green’s function and the scattered Electromagnetic fields solving
integrodifferential equations. Mathematical formulas are simplified using wavelet based method.
Susceptibility and permeability is assumed as a function of wavelet basis. For parameter estimation,
least square method and inner product methods are used with wavelets as a basis function, which gives
solutions for nonlinear integrodifferential equation. Both time and spatial domain analysis is done using
wavelets, and parameter coefficients are obtained. It is found that in both the parameter estimation
methods, least square estimation gives better results. At the end of the paper statistical analysis of the
scattered signals is included by calculating the mean and covariance of the signals.

1. INTRODUCTION

Different nonlinear inverse scattering theorems have been suggested for multiple scattering effects. The
algorithms are solved for inhomogeneous medium by forward scattering methods, and their optimization
is done using Maxwell’s equations by measurement of scattered fields at discrete points [1].

Here a medium is illuminated by some incident wave, which is a monochromatic wave. Because of
the incident wave, the medium-particles are energized, and perturbation in the movement of an electron
causes nonlinear polarization, i.e., field dependent polarization. The linear and nonlinear polarizations
play an important role in the scattering of electromagnetic waves.

Although computational complexity due to Integrodifferential equations arises in nonlinear inverse
scattering algorithms, nonlinear methods more accurately define the physical properties of complex
medium [1].

Integrodifferential equation derived contains the derivatives of unknown functions [2]. Mathematical
modelling can be done by functional equations, PDE, Integro differential equations (IDE), and stochastic
equations [2]. These equations are used to solve problems of fluid dynamics, biological models, etc.
Wavelet method is one of the methods [3] to find approximate numerical solution to linear and nonlinear
differential equations [2]. In this paper, algorithms to find parameters of the medium are obtained using
least mean square estimation and inner product methods. These techniques are applied after getting
solutions from Integrodifferential equations obtained using Maxwell’s equations and Green’s function.

Three-dimensional wavelet functions are used to present the basis functions. These functions
estimate the solutions of integral equations. Daubchies 6 wavelet is an orthogonal wavelet with compact
support and is used in different numerical approximation problems.
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The nonlinearity and susceptibility of a medium play an important role in the generation of second
harmonic and third harmonic waves, which is used in imaging [4–6]. Terahertz technology is also applied
to image processing using a minimum entropy criterion for estimating and compensating linear phase
error [2]. By the nonlinear interaction of light and matter, THz waves are produced. These THz waves
can be used in nondestructive detection, medical imaging and standoff personnel screening [2]. A two-
dimensional imaging of CW THz radiation using electro-optical detection was done by Nahata et al. [4].
A 3D imaging system was worked out by Chattopadhyay et al. [6] involving THz sources and heterodyne
detection techniques in submillimeter frequency modulated carrier wave.

In this work, we consider a slab of inhomogeneous medium. An algorithm is given to find the
medium parameters susceptibility and permeability in terms of scattered electromagnetic fields. Using
wavelet basis functions in least square estimation and inner product method using Method of Moment,
the inverse solutions and parameters are obtained in terms of basis functions.

Paper organization is as follows. In Section 2, computational algorithms is given to estimate the
parameters of a medium in terms of time domain algorithms using first order susceptibility. Section 3
defines the algorithm using second order susceptibility, and Section 4 gives the wavelet solutions for
integral equations. In Section 5 the parameter estimation method Least square estimation and Inner
product methods are defined. Stochastic method is also derived for random parameter estimation.
Section 6 shows result and simulation where the results of least square estimation and inner product
are shown. Section 7 concludes this work.

2. COMPUTATIONAL ALGORITHMS TO ESTIMATE THE PARAMETERS OF A
MEDIUM

2.1. Time Domain Algorithm for First Order Susceptibility

In majority of inverse scattering algorithms, the illumination of an object or medium is done by an
incident wave which may be generated by an array of antennas or an ultra-wideband pulse [8]. For
analyzing we need a setup to use time domain solver [1]. Using the computer model forward scattering
data are generated.

Forward Solver:
An electromagnetic wave is incident on the medium. Maxwell’s equations are written for the

medium, which gives nonlinear Helmholtz equation [9] in terms of electric E and magnetic field H.
Here susceptibility kernel of the medium is assumed on some prior approximate data for the forward
solver in computer model. Generalized Helmholtz equation is obtained for electric as well as magnetic
fields of a nonlinear random medium. In the forward solver of computer program we can approximate
the scattered waves E1, H1, E2, H2 in terms of the incident electric or magnetic fields. For this, we
need some basic knowledge of the scatterers. For this calculation a set of Maxwell’s equations are
derived changing the permeability and permittivity of the medium to inhomogeneous parameters of the
medium.

This method includes two parts:
1. Using integral equation formulation of linear PDE or solving PDE.
2. Equations are resolved in terms of Green’s function and method of moment.
From Maxwell’s equations —

∇ (εE) = 0 (1)
Here we assume that permittivity χe(x, y) and permeability χmn(x, y) both are functions of x, y and
are perturbed by δ then

μ (x, y) = μ0(1 + δχmn(x, y)) (2)

ε (x, y) = ε0(1 + δχe(x, y)) (3)

δ is a small amount of perturbation due to applied electric field.

E =
(
E0 + δE1+δ2E2 + . . .

)
[1] (4a)

H =
(
H0+δH1+δ2H2 + . . .

)
(4b)
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In Equation (1), we put Equations (3) and (4) —

div(ε0(1 + δχe))
(
E0 + δE1+δ2E2 + . . .

)
= 0 (5)

From Equation (5), we get

ε0divE0 = 0 (6)(
divE1

)
+

(∇ (
χe,E

0
))

= 0 (7)
χe = χe(x, y)

ε0
(
divE2

)
+ ∇ (

χe,E
1
)
+χedivE1 = 0 (8)

Opening Maxwell’s equation for magnetic field —

∇ · (B) = 0 (9)
∇ · (μH) = 0 (10)

μ = μ0(1 + δχm(x, y)) (11)
∇ · (μ0(1 + δχm(x, y))H) = 0 (12)

If the field H is perturbed by δ then again use Taylor series expansion in H.
We put H = (H0+δH1+δ2H2+ . . .)) in Equation (12)

∇ · (μ0H) = ∇ (
μ0

(
1 + δχmn (x, y)

(
H0+δH1+δ2H2+ . . .

)))
= 0 (13)

δ∇ · (μ0H
0
)

= 0 (14)

δ1μ0

((
Div ·H1

)
+

(∇χmn (x, y)H0
))

= 0 (15)

∇ · μ0H
2 + ∇ (

χmn·H1
)

= 0 (16)

Div ·H2 + ∇ (
χmnH

1
)

+ χmn∇H1 = 0 (17)

Using curl equations —

∇× (∇× E) = ∇× (−jωμH) = −J (18)
∇ (divE) −∇2E = −jω( (∇μ) ×H + μ∇×H) (19)
∇2E −∇ (divE) + jω(∇μ0 (1 + δχm)
× (

H0+δH1+δ2H2
)

+ μ0(1 + δχm)∇× (H0+δH1+δ2H2 + . . .)) = 0 (20)

The following equation is written in the form of permittivity and permeability functions, which will
vary as a function of x, y. We should have prior knowledge of the scatterers so as to generate computer
based data or forward solution.

Substituting
∇×H = jωεE (21)

we get —

∇2E −∇ (divE) + jω
{∇μ0(1 + δ∇χm) × (H0 + δH1 + δ2H2 + . . .)

}
−jωμ(jωε0 (1 + δχe (x, y)) (E0 + δE1+δ2E2 + . . . .) = 0 (22)

Solving Equation (19) we get E1, E2, H1, H2 in terms of E0 and H0

∇2E0 +K2E0 = 0 (23)

∇2E1 + ∇ (∇χe, E0
)− jωμ0∇χm×H0 +K2

(
χmE

0 + χeE
0
)

+K2E
1 = 0 (24)

In medium, we get perturbation in electric field in terms of the fundamental field E0 [10].
If initial electric field is taken as radiation from a small dipole, Green’s function and current density

are assumed equal to 1 [10]. Then

E0 (t, r)=
∫
f

(
n̂, t− n̂, r

c

)
dΩ (n̂) which is equal to

∫
f(n̂, ω)e−iω

n̂·r
c dΩ(n̂) (25)
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The perturbed electromagnetic field is given by Taylor series expansion —
(Using duality E → H, H → −E, ε→ μ)
For δ0

∇2H0 +K2H0 = 0 (26)

For δ1

∇2H1 + ∇ (∇χm,H0
)− jωμ0∇χe × E0 +K2H1 +K

2(χm + χe)E
0 = 0 (27)

∇×(∇×H) = ∇×(−jωεE) = −jω(∇×εE + ε∇×E)= −jω(∇×(1+δχe)×E)+(1+δχe) (∇×E) (28)
∇2H −∇ (∇ ·H)= −j (∇×ε0 (1+δχe)

(
E0 + δE1+δ2E2 + . . .

))
+ε0(1+δχe)(−jωμH)}

= jω
{∇×E0+δ∇×(

χe
(
E0 + δE1+δ2E2+. . .

))
+j2ω2μ0ε0(1+δχe)(1+δχm)

(
H0+δH1+δ2H2+. . .

)}
(29)

∇2(H0 + δH1+δ2H2 + . . . ) −∇ (∇ · (H0 + δH1 + δ2H2 + . . .
))

= RHS (30)

∇2H0 +K2H0 = 0
∇2H1 +K2H1 = ∇ (∇·H1

)−jωε0 (∇×χeE0
)−K2

(
χmH

0 + χeH
0
)

(31)

∇H1 = −∇ · (χmH0) put in Equation (31)

∇2H1 +K2H1 = −{∇ (∇χm,H0
)
+K2(χm + χe)} + jωμ0

(∇× χeE
0
)}

(32)

Same equation exists for H1 —
Hence using

E0(r) =
∫
E0(k)exp(−jkr)d3r (33)

which is perpendicular to the direction of propagation hence using (k,E0(r)) = 0

∇×E0 (r) = −jωμH0 (34)

From above equation incident magnetic field is H0 which is computed —

H0 =
P∑
1

(
Kα × E0(Kα)

ωμ0

)
(35)

E1 using Green’s function will be evaluated in terms of E0, similarly, E2 in terms of E0 and iterative
solution in terms of lower order fields.

E1 =−
∫
Gk

(
r−r′)[∇(∇χe,E0

)(
r′
)
+jωμ0

(∇χm×H0
)(
r′
)
+K2

(
χe

(
r′
)

+ χm(r′)
)
E0

(
r′
)]
d3r′ (36)

This E1 is in terms of E0 and H0.
Similarly, for E2

∇2E2 −∇divE2 + jω
(∇×χmH1

)−j2ω2μ0ε0
(
χe

(
r′
)
χm

(
r′
)
E0

(
r′
))

+K2E2 +K2(χe
(
r′
)

+ χm
(
r′
)
E1) = 0 (37)

From Equation (7) —
ε0divE2 = −ε0∇(χeE1) − ε0χedivE1 (38)

Put in Equation (38)

∇2E2 + ∇{(∇χe (r′) ,E1
(
r′
))

+χe
(
r′
)
E1

(
r′
)}

+K2E2

= −jω (∇× (
χm,H

1
) −K2 (χm + χe)E1 −K2χeχmE

0 (39)

So(∇2 +K2
)
E2 = −∇{∇ (

χe,E
1
)
+χe

(∇·E1
)}−jω (∇×χm,H1

)−K2 (χm + χe)E1−K2χeχmE
0 (40)

(The above equation holds true for permittivity χe and permeability χm).
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If χm = 0 for nonmagnetic material, then equation is reduced to(∇2+K2
)
E2 = −∇{∇ (

χe,E
1
)
+χe

(∇·E1
)}−K2 (χm + χe)E1 (41)

E2 = −
∫
Gk

(
r − r′

)[∇(∇χe,E1
)(
r′
)−jωμ0

(∇χm×H1
)(
r′
)
+K2

(
χe

(
r′
)
E1

(
r′
))]

d3r′ (42)

E2 is in terms of E1 and H1.
In Equation (24), also if χm = 0, the material is assumed as nonmagnetic, and the equation is

reduced to (
∇2E1 +K2E

1
)

= − [∇ (∇χe, E0
)
(r′) +K2

(
χeE

0
)]

(43)

First order-perturbed field in terms of the Green’s function is written as —

E1 = −
∫
Gk

(
r − r′

) [∇ (∇χe, E0
) (
ω, r′

)
+K2

(
χeE

0
) (
ω, r′

)]
d3r′ (44)

E1 (ω, r) = − 1
4π

∫
e−jk(r−r′)

|r − r′|
[∇ (∇χe, E0

) ((
ω, r′

))
+K2

(
χeE

0
) (
ω, r′

)]
d3r′ (45)

Hence E1 and E2 are iterative solutions where E1 depends on E0, and E2 depends on E1. So if E1 is
calculated, we can put the values in Equation (43) to calculate E2. However for a magnetic material,
the computations are a bit lengthy.

Similarly, H2 can be calculated from Equations (29), (30) and (31). In terms of χm, χe
∇2H2 +K2H2 = ∇ (∇ ·H2

)− jωε0
(∇× (χeE1

)
+ j2ω2μ0ε0(χm + χe)H1 + j2ω2μ0ε0(χmχe)H0 (46)

∇2H2 +K2H2 = −μ0

(∇ (
χmH

1
)
+χm∇·H1

)−jωε0 (∇×(χe, E1
)−K2χeχmH

0−K2(χe+χm)H1 (47)

=
{
μ0∇

((∇·χm,H1
)
+χm∇·H1

)
+K2(χe+χm)H1+jωε0

(∇×(χe, E1
)
+K2χeχmH

0
)

(48)

Equations (46) and (33) tell us how to compute the first order scattered fields E1, H1 from the
incident fields E0, H0, and Equations (43) and (47) tell us how to compute the second order scattered
fields E2, H2 that is the next higher order corrections to the scattered fields in terms of E0, H0 and
E1, H1. We have been using second order perturbation theory.

3. FORWARD SOLVERS IF THERE IS A SECOND ORDER SUSCEPTIBILITY χ2

div
(
E + δχ1E1 + δ2χ2E2 ± . . .

)
= 0 [11]

Using Einstein summation convention over space β is defined as(
χ2 (E ⊗ E)

)
(ω, r) =

∫
χ2(ω1, ω − ω1, r)(E(ω1, r) ⊗ E(ω − ω1, r))dω1 (49)

=
((∫

χ2
αβγ (ω1, ω − ω1, r)Eβ (ω1, r)Eγ (ω − ω1, r) dω1

))
α

(50)

α, β, γ are the indices.
Again Einstein summation convention over (βγ) is implied

E = E0 + δE1 + δ2E2 +O(δ3) (51)
divE0 = 0,
divE1 + div

(
χ1 · E0

)
= 0, (52)

divE2 + div(χ1E1) + div(χ2E0 ⊗ E0) = 0 (53)

χ1
αβ (ω, r) =

N∑
m=1

θ1
αβmψ

1
m (ω, r) (54)

χ2
αβγ (ω1, ω2, r) =

N∑
m=1

θ2
αβγmψ

2
m (ω1, ω2, r) (55)
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Remark1: The coefficients θ1
αβm and θ2

αβγm in these expressions are the parameters to be estimated.
ψ1
km, ψ

2
km known as basis functions.

If E0 is represented by —

E0 (ω, r) =
∫
F (ω, n̂) exp (jkn̂ · r) dΩ (n̂) (n̂, F (ω, n̂)) = 0 (56)

(Since divE0 = 0)

∇× E = −jωμH (57)
∇×H = jωε0(E + δχ1E + δ2χ2(E ⊗ E)) (58)
∇ ·H = 0 (59)

Hence

∇(∇ ·E)−∇2E = k2(E + δχ1E + δ2χ2(E ⊗ E)) (60)
Propagation constant k2 = ω2ε0μ (61)
∇2E0 +K2E0 = 0, (62)
∇2E1 +K2E1 + k2χ1E0 + ∇ (

div
(
χ1E0

))
= 0, (63)

∇2E2 + k2E2 + k2χ1E1 + k2χ2
(
E0 ⊗ E0

)
+ ∇ (

div
(
χ1E1

))
+ ∇ (

div
(
χ2

(
E0 ⊗ E0

)))
= 0 (64)

Equations are represented in the form of basis function and parameter variation defined in indices.
In Equation (37), we put susceptibility in matrix form and define it in terms of indices αβγm

E1
α (ω, r) = − 1

4π

∫
Gω

(
r, r′

)[((
χ1
γβ

(
ω, r′

)
, E0

β

(
ω, r′

))
, γα

)
d3r′+

(
K2χ1

αβ

(
ω, r′

)
E0
β

(
ω, r′

))]
d3r′ (65)

Remark2: 1 — A symbol like F (ω, r),η means ∂F (ω,r)
∂Xη η = 1, 2, 3.

and a symbol like ∂2F (ω,r)
∂Xη∂Xα means η, α = 1, 2, 3.

2 — All through here calculates the indices αβγk run over 1, 2, 3 and we adopt the summation
convention, i.e., if a repeated index appears then it means we are summing over that index.

Defining a susceptibility matrix in the form of wavelet basis ψ1(ω, r′) function, we can express the
scattered signal as —

E1
α (ω, r) = −

∑
k,γ,β

θ1
γβk

∫ [((
ψ1
k(ω, r

′), E0
β

(
ω, r′

))
, γα

)
d3r′

+
(
δγαK

2ψ1
k

(
ω, r′

)
E0
β

(
ω, r′

))]
Gω

(
r, r′

)
d3r′ (66)

θ1
γβk are parameters in terms of wavelet coefficients.

Green function

Gω
(
r, r′

)
=

e−ik|r−r′|

4π |r − r′| (67)

Or if electromagnetic field in frequency domain is given by

E1
α (ω, r) =

∑
αβγ

θ1
γβk

[∫
Fβ(ωn̂)dΩ(n̂)

×
∫ (

δγαk
2ψ1

k

(
ω, r′

)
eikn̂·r

′
+

(
ψ1
k

(
ω, r′

)
eikn̂·r

′)
,
αγ

)]
Gω

(
r, r′

)
d3r′ (68)

E1
α (ω, r) =

∑
αβγ

θ1
γβk

[∫
Fβ(ωn̂)dΩ(n̂)

×
∫ {(

k2δγαψ
1
k

(
ω, r′

)
eikn̂·r

′
+ ψ1

k,γ

(
ω, r′

)
eikn̂α − ψ1

k,γ

(
ω, r′

)
k2nαnγ

)
eikn̂·r

′}]
Gω

(
r, r′

)
d3r′ +

(
ψ1
k,αγ

(
ω, r′

))
+ (ψ1

k,α

(
ω, r′

)
)eikn̂γ (69)
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We can write this as —
E1
α (ω, r)=

∑
αβγ

θ1
γβk

∫
Fβ (ω,n̂)Kαγ

(
ω, n̂αr

′) (70)

where

Kαγ

(
ω,n̂α,r

′) =
∫
k2ψ1

k,γ

(
ω,r′

)
(δγα−nαnγ) exp

(
jkn̂ · r′)G (

r,r′
)
d3r′

+
∫
jk

(
ψ1
k,α

(
ω, r′

)
ny+ψ1

k,γ

(
ω, r′

)
nα

)
exp(jkn̂ · r′))Gω

(
r,r′

)
d3r′

+
∫
ψ1
k,αγ

(
ω,r′

)
exp

(
jkn̂r′

)
Gω

(
r,r′

)
d3r′ (71)

n is a unit vector representing direction defined for a region L.
The above equations give the forward solver data and it as an iterative process. Other higher order

fields can also be calculated.

4. WAVELETS FOR NUMERICAL SOLUTIONS OF INTEGRAL EQUATIONS

The integral equations provide an important tool for modeling a numerous phenomenon and processes.
Many numerical methods have been developed for one-dimensional integral equation, and fewer methods
are known for two- and three-dimensional integral equations.

Many different basic functions are used to estimate the solution of integral equations, such as
orthogonal functions and wavelets. Daubchies wavelets are orthogonal wavelets with compact support,
and they have been used in different numerical approximation methods [14].

The orthogonal basis ψn(t) of one-dimensional Daubchies wavelet for the compact support space
L2[0, 10] consists of

ψk,n (t) = |a|− 1
2 ψ

(
ak0t− nb0

)∣∣∣
[0,1]

(72)

where n = 1, 2 . . . , 0 ≤ k ≤ 2n − 1.
It forms a basis for L2(R) · a0 = 2 and b = 1.
In this work we apply three-dimensional Haar wavelet construction on [0, 10] × [0, 10] × [0, 10] to

solve the least square estimation method and inner product method.
The integer 2k indicates the level of the wavelet, and nk0 is the translation parameter. By simple

calculations ∫ 1

0
ψm (r)ψn (r) =

{
1 m = n
0 m �= n

(73)

Any function ψn(x) ∈ C[0, 1] can be expressed [12] as
∑
n
〈f, ψn〉ψn where

〈f, ψn〉 =
∫ 1

0
f(r)ψn(r)dr (74)

If ψk(r′) is a basis function which is one-dimensional wavelet on [0, 1], then for three-dimensional
analysis we have taken the same wavelet in three dimensions x, y, z.

The expansion of f(x, y, z) is defined over [0, 1] × [0, 1] × [0, 1] expanded by the three dimensional
Daubchies wavelet Db6.

For simplification we assume that if wavelet basis is as ψk(r′), then define susceptibility and
permeability in one dimension as —

χe

(
r′
)

=
d∑
1

akψk(r′) And χm

(
r′
)

=
d∑
1

bkψk(r′) (75)

ak, bks are constants. For three dimensions we take summation in the given region space integrating
over the region L. Here we have taken L from 0 to 1 for simulation.
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Substituting χe(r′) by above values in Equation (37), the fields are solved in terms of E0 and H0.
For simplification let ak and bk be assumed parameters of the medium (as measured values will be

depending on it). Both E1(r) and H1(r) are written in the form of E0 and H0 from Equations (33)
and (46).

E1 (r) =
d∑
k=1

akλ
1
k (r) +

d∑
k=1

bkλ
2
k (r) (76)

E1(r) is the scattered field, and λ1
k(r), λ

2
k(r) are the integral equations in terms of E0 and H0,

respectively. Similarly, for H field

H1 (r) =
d∑

k=1

akλ
3
k (r) +

d∑
k=1

bkλ
4
k (r) (77)

H1(r) is the scattered field, and λ3
k(r), λ

4
k(r) are the integral equations in terms of E0 and H0,

respectively.
We have E0 and H0 expressed in terms of wavelets.

H0 =
p∑
1

αkE0(kα)
ωμ0

(78)

λ1
k (r) = −

∫
Gk

(
r − r′

) [∇ (∇χe, E0
) (
r′
)

+K2
(
χe + χm

(
r′
))
E0 (r)

]
d3r′ (79)

λ2
k (r) =

∫
Gk

(
r − r′

) {
jωμ0

(∇χm ×H0
) (
r′
)}
d3r′ (80)

λ3
k (r) =

∫
Gk

(
r − r′

) {
jωμ0

(∇×χe,E0
)}
d3r′ (81)

λ4
k (r) =

∫ {∇ (∇χm,H0
)
+K2(χm)H0

}
d3r′ (82)

In the first experiment, we assume χe &χm a matrix and calculate the scattered outputs. In our earlier
work, this has been taken as centrosymmetric and noncentrosymmeric matrices, and the scattered
outputs were calculated [13].

First order scattered fields E1 and H1 and second order scattered fields E2 and H2 are calculated
(Figure 1 [13]) using Maple.

5. PARAMETER ESTIMATION METHODS

5.1. Least Square Estimation

The scattered or measured data are as follows — which depend upon two parameters — θ1, θ2 of the
medium [14]

E0(t, r′) = θ1X1

(
r′
)

+ θ2X2

(
r′
)
, (83)

E1 (t, r) = θ1F1(r̂) + θ2F2(r̂) (84)

In order to find the error between the measured data and computer generated data, by applying least
mean square error [14] ∑

k

∥∥E1 (ω,r̂k) − α1F1 (r̂k) − α2F2(r̂k)
∥∥2 =Xn (85)

The minimization of the equation uses Eq. (86) —

akbk

⎧⎨
⎩w1j

∥∥∥∥∥E1 (rj) −
d∑
k=1

akλ
1
k (rj) − bkλ

2
k (rj)

∥∥∥∥∥
2

+ w2j

∥∥∥∥∥H1 (rj) −
d∑
k=1

akλ
1
k (rj) − bkλ

2
k (r)

∥∥∥∥∥
2
⎫⎬
⎭ (86)
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Figure 1. Db6 wavelet (using Mat lab).

Minimization and approximation are done by taking the derivative of error with respect to parameters
X1 and X2, and we get the matrix and set it to zero.

Then
∑
k

∥∥E1 (t, r) − α1F1 (r̂k) − α2F2 (r̂k)
∥∥2 = Yn (87)

Finding
dYn
dα1

and
dYn
dα2

and setting it to zero (88)

Parameters are defined in terms of α1 and α2.
We get α′

1α
′
2 in terms of F1(r̂) and F2(r̂) in matrix form. These are the parameters of the nonlinear

material [
α′

1

α′
2

]T
= argmin(α′

1α′
2)

∑
l≤k≤p

(
(WψY )nk,l

)− (WψY )Tnk,l

)2

=

⎡
⎣∑
n,k

(WψX)nk,l
(WψX)Tnk,l

⎤
⎦
−1 ⎡

⎣∑
k,l

(WψY )
nk,l

⎤
⎦ (89)

Error minimization leads to the following matrix

−
⎡
⎣ 2 ‖X1 (r̂k)‖2 2

∑
k
Re (X1 (r̂k)X2 (r̂k))

2
∑

k
Re (X1 (r̂k)X2 (r̂k)) 2 ‖X2 (r̂k)‖2

⎤
⎦
−1

×
⎡
⎣ 2

∑
k
Re

(
E1 (r̂k)X1 (r̂k)

)
2
∑

k
Re

(
E1 (r̂k)X2 (r̂k)

)
⎤
⎦
(90)

The fields are in terms of magnetic component and electric field components. Error minimization
is done by the following equation —

Minimizing

akβkw1j

∥∥∥∥∥E1 (rj) −
d∑
k=1

akλ
1
k (rj) −

d∑
k=1

bkλ
2
k (rj)

∥∥∥∥∥
2

+w2j

∥∥∥∥∥H1 (rj) −
d∑
k=1

akλ
3
k (rj) −

d∑
k=1

bkλ
4
k (rj)

∥∥∥∥∥
2

(91)

The results are discussed in Section 6.
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5.2. Inner Product with Integral Equations

Another method is by taking inner product of fields generated by forward solver of E1, H1 to λ1
m(rj)

and λ3
m(rj), respectively. It is also used as a basis function as scattered waves are presented in its form.

Here we get two sets of equations for E field and H field.

〈
E1 (rj) , λ1

m(rj)
〉

=
d∑
k=1

ak
〈
λ1
k (rj) , λ1

m (rj)
〉

+
d∑
k=1

bk
〈
λ2
k (rj) , λ1

m (rj)
〉

(92)

〈
H1 (rj) , λ3

m (rj)
〉

=
d∑
k=1

ak
〈
λ2
k (rj) , λ3

m (rj)
〉

+
d∑

K=1

λk
〈
λ4
k (rj) , λ3

m (rj)
〉

(93)

By adding them, we get the following equations —
RHS of the following equation generates data in a forward solver called computer-generated data

where fields are represented in the form of integral equations. It is an inner product between integral
equations.

From Equations (93) and (94) —
K∑
j=1

w1j

〈
E1 (rj) , λ1

m (rj)
〉

+
K∑
j=1

w2j

〈
H1 (rj) , λ3

m (rj)
〉

=
d∑

K=1

ak

K∑
j=1

w1j

〈
η1
k (rj) , η1

m (rj)
〉

+
d∑

K=1

ak

K∑
j=1

w2j

〈
η2
k (rj) , η3

m (rj)
〉

+
d∑

K=1

bk

K∑
j=1

w1j

〈
η2
k (rj) , η1

m (rj)
〉

+
d∑

K=1

bk

K∑
j=1

w2j

〈
η4
k (rj) , η3

m (rj)
〉

(94)

This gives a scattered field matrix

ξE = AEEα+AEHβ (95)

ξH = AHEα+AHHβ (96)

In addition, parameters can be calculated by using inverse of A matrix with the scattered field matrix.[
α
β

]
=

[
AEE AEH
AHE AHH

] [
ξE

ξH

]
(97)

where field matrix scattered is multiplied with the integral equations λ1
m(rj) in time domain.[

αk
βk

] [ 〈
λ1
k (rj) ,λ1

m (rj)
〉 〈

λ2
k (rj) , λ1

m (rj)
〉〈

λ2
k (rj) , λ3

m (rj)
〉 〈

λ4
k (rj) , λ3

m (rj)
〉 ]

=
[
ξE

ξH

]
(98)

[
αk
βk

]
= A−1

[
ξE

ξH

]
(99)

ξE =
K∑
j=1

w1j〈〈E1 (rj) , λ1
m (rj)〉 (100)

ξH =
K∑
j=1

w2j〈〈H1 (rj) , λ1
m (rj)〉 (101)

Here again put χm = 0 for a nonmagnetic material.

〈
E1η1

k

〉
+

〈
H1η3

k

〉
= [ ak bk ]

[
wi

〈
akλ

1
k (r) , akλ1

k (r)
〉 〈wij = 0〉

w2j

〈
akλ

1
k (r) , akλ1

k (r)
〉

w2j

〈
akλ

3
k (r) , akλ4

k (r)
〉
]

(102)
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We get —∣∣akλ1
k (r)

∣∣2 =
∣∣∇ (∇χe, E0

) (
r′
)

+K2 (χe)E0 (r)
∣∣2 (103)〈

akλ
1
k (rj) , akλ2

k (rj)
〉

= 0 (104)∣∣akλ3
k (rj)

∣∣2 = |jωε0∇× χe, E|2 (105)〈
a2
kλ

3
k (rj) , λ4

k (rj)
〉

= (iωε0∇× χe, E)
(∇ (∇χm,H0

)
+K2(χm + χe)H0

)
where χm = 0 (106)

[ AEE AEH
AHE AHH

] is a computer generated forward solver. [ ξ
E

ξH
] is the measured scattered field inner

product with the basis functions. [ α
β

] are the parameters of the medium.

Future Scope

5.3. The Statistical Parameters of the Random Medium Over Dimension L

Nonlinear medium behaves as a harmonic oscillator [5], and the scattering is random. Random variables
whose matrix is estimated are calculated by estimating the mean value of E(ω, r) and correlations using
local ergodicity. Ensemble averages can be replaced by local frequency and spatial averaging defined by
correlations of the scattered fields. If θ′γβm are random variables whose statistics is to be estimated,
then we find the expectation E(θ′γβm) and E(θ′γβmθ′γ′β′m′) estimating the mean value of E′

α(ωr) and its
correlations using local ergodicity. Here ensemble averages are replaced by local frequency and spatial
averages.

E[E′
α(ω, r)] =

∑
E

(
θ′γβm

)
Lαβγm(ω, r) (107)

And

E
[
E′
α (ω, r)E′

α′
(
ω′, r′

)]
=

∑
αβγmα′β′γ′m′

E
(
θ′αγβmθ

′
α′γ′β′m′

)
Lαγβm (ω, r)Lα′γ′β′m′

(
ω′, r′

)
(108)

where E′
α(ω, r) =

∑
γβm

θγβmLαβγm(ω, r).

From Equation (69)

Lαβγn(ω, r) =
∫
Fβ(ω, n̂)

∑
αβγ

θ1
γβk

[∫
Fβ(ω, n̂)dΩ(n̂)

×
∫ (

δγαk
2ψ1

k

(
ω, r′

)
eikn̂·r

′
+

(
ψ1
k

(
ω, r′

)
eikn̂·r

′)
,
αγ

)]
Gω

(
r, r′

)
d3r′ (109)

The aim here would be to evaluate the mean and covariance of parameters θ1
βkγ from the mean and

covariance of the scattered electric fields. The mean and covariance of the electric field can be estimated
using spatial and frequency averages assuming ergodicity.

Here we assume that the parameters are θ. For example∣∣∣∣E [
E′
α(ω, r)E′

α′
(
ω′, r′

)] ≈ 1
N

∫
ξ,η∈B

E′
α (ω + ξ, r + η)E′

α′
(
ω′ + ξ, r′ + η

)
dξdη , (110)

where N =
∫
B dξdη.

This is the expansion of the scattered electric field in terms of susceptibility expansion coefficients
θγβm, which are assumed to be random variables for characterizing the randomness of the susceptibility
fluctuations.
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6. RESULTS AND SIMULATIONS

6.1. Inner Product with Integral Equations

Defined by 〈
E1, λ1

m

〉
(111)

Using wavelet basis functions —
ψk is a basis function.
Find ∇ψk first, then take inner product with E0

E0 =
∑

ψk (112)

If r is a vector space r = x̂+ ŷ + ẑ

∇ψk (r) =
∂

∂x
ψx +

∂

∂y
ψy +

∂

∂z
ψz (113)

(∇(∇ψk (r)) =
∂

∂x2

2

ψk +
∂

∂x

∂

∂y
ψk +

∂

∂x

∂

∂z
ψk +

∂

∂y

∂

∂x
ψk

+
∂

∂y2

2

ψk +
∂

∂y

∂

∂z
ψk +

∂

∂x∂z

2

ψk +
∂

∂y

∂

∂z
ψk +

∂

∂z2

2

ψk (114)

From Equation (100) are computer generated data from forward solver, and [ ξ
E

ξH
] are measured

scattered field.
In step one we define susceptibility χe and permeability χm of the medium in terms of wavelet

basis functions.

χe (r) =
d∑
k=1

akψk(r) (115)

In direct least square-based estimation on spatial samples at points, r1, r2, r3, . . . , rN we get parameters
by using the equation

(
θ̂1, θ̂2

)T
= argmin(θ1,θ2)

N∑
k=1

(
Y (rk) − θTX(rk)

)2

=

(
N∑
k=1

(X(rk)X(rk)
T

)−1 ( N∑
K=1

Y (rk)X(rk)

)
(116)

Heavy computations are required for large N . On the other hand, if we know that parameters
X1(r),X2(r) have dominant wavelet coefficients at the resolution indices {n1, n2, np} only then, we
can use the model.

Basis function Daubchies wavelet (see Figure 1) is designed in Matlab and in Maple (see Figure 2).
Initially the scattered electromagnetic fields are E1, E2 simulated in Maple [13].

6.2. Outputs Using Least Square Estimation

Using least square estimation method, we estimated state space representation of the susceptibility and
permeability [14].

The incident electric and magnetic fields were designed, and scattered electric fields are simulated
using self-phase modulation, which is defined by third order nonlinearity [14].

The inner matrix is generated with the help of these scattered fields, and parameters are achieved.
This matrix is in the form of sine cosine wave harmonics when Maple is used. This also proves that
the medium behaves as a harmonic oscillator [4] and as a scatterer. These scattered wave equations
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Figure 2. Wavelet basis function Db6 using Maple tool.

and above-mentioned methods can be used in imaging 1D, 2D and 3D data. Figures 1 and 2 give the
Daubchies wavelet and its matrices in the workspace.

psi(s) = Wavelet Coefficients (“Daubechies”, 6)

Ψ(x) =

⎛
⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎣

0.0352262918857095
0.0854412738820267
−0.135011020010255
−0.459877502118492
0.806891509311093
−0.332670552950083

⎤
⎥⎥⎥⎥⎥⎦ ·

⎡
⎢⎢⎢⎢⎢⎣

0.332670552950083
0.806891509311093
0.459877502118492
−0.135011020010255
−0.0854412738820267
0.0352262918857095

⎤
⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎠

The scattered fields are calculated at 4.7 GHz [14] frequency. Figure 3 gives the scattered field
amplitude and phase variation, which is fed to Equation (90).

The least square estimation gives permeability and permittivity variations shown in Figures 4(a)
and 4(b).

6.3. Outputs Using Inner Product Methods

A set of equations from (96) to (101) are used to find the inner product solutions. Scattered
electromagnetic wave from self-phase modulated data [13] is used which is a nonlinear scattered
electromagnetic wave. Using E and H fields from these second order nonlinear waves and defining three-
dimensional wavelet basis functions for susceptibility, we get the set of equations. Equations from (103)
to (107) are used for inverse solutions. Assuming negligible magnetic permeability, susceptibility
variations are calculated. Figure 5 shows the relative susceptibility variation in the medium.

6.4. Discussions

In nonlinear inverse scattering, the sensors as antennas are required for the measurements [8]. We also
need a large dataset and dielectric properties of the scattering medium. The solutions are based upon
the Maxwell’s equations. The scattered fields are continuous function of incident field and dielectric
properties of the background. Therefore, we get a single solution in terms of the scattering fields at all
positions. With the help of a sensor practical measurement of the field at a finite number of locations



48 Khulbe, Parthasarathy, and Tripathy

(a)

(b)

Figure 3. Scattered waves E1 generated by self-phase modulation for testing the inverse technique
(Figure 3 [14]). (a) Impulse response. (b) Magnitude and phase response.

as well as limited number of frequencies is done. It has been studied that the solution is not unique
for practical problems, and uniqueness of the integrating field is overcome by measuring large number
of samples of the scattered field data [7]. We estimated susceptibility by the least square estimation
method. The error between the measured values and computer-generated values is practically used to
optimize parameters of the medium. This RF imaging technique is helpful in identifying the hidden
objects and underground explosives, which can be used for security purposes.

Assuming the susceptibility matrix of the medium to be frequency and space dependent and also
anisotropic, we formulate, using Maxwell’s theory in such media, the basic generalized Helmholtz
equation for the electric field. We then expand the inhomogeneous (i.e., the space dependent)
susceptibility tensor as a linear combination of basis function with coefficients of this expansion as being
unknown parameters to be estimated from the measurements of the electric field at different spatial
points. Only one frequency 4.7 GHz is involved since we are using a field independent susceptibility,
and therefore our partial differential equations are linear. Using the first order perturbation theory
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(a) (b)

Figure 4. Spatial resolution of medium parameters at 4.7 GHz (Figure 4 [14]). (a) Relative
susceptibility variation. (b) Relative permeability variation.

Figure 5. Relative susceptibility variation assuming medium is nonmagnetic using inner product
method.

by treating the susceptibility tensor as being the first order of smallness, we express the first order
perturbation to the electric field (i.e., the scattered field) as a linear combination of these expansion
parameters. To do so, Green’s function for the Helmholtz operator is used.

Once we have obtained such a solution for the perturbed electric field in terms of the susceptibility
expansion parameters, we match this scattered field expansion to the actual measurements of the
scattered electric field at different spatial points using the least squares method. The number of
measurements must be far more than the number of parameters. In this way, we obtain accurate
parameters estimation. Further, we also discuss the case of field dependent susceptibility. In this case,
frequency mixing taking place, and our test function must depend on two frequency variables and also
the spatial variables in contrast to the previous case where it depends only on one frequency and spatial
variables. For the case, we have not carried out any simulation for that is the subject of another paper.
Finally, we have also proposed an algorithm for estimating the parameters in the test function expansion
of the susceptibility but rather the parameter statistics, i.e., mean and correlation. This is important
in cases when the susceptibility undergoes rapid fluctuations.
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7. CONCLUSION

Using Maxwell’s equations, we have optimized the parameters of an inhomogeneous medium by
scattered electromagnetic fields with a time domain algorithm. The inverse solutions using Least Square
Estimation and Inner Product Methods are solved by method of moments. Parameters are obtained
in terms of the basis functions. Forward solver technique is used with the first order nonlinearity and
Kerr nonlinearity. Method of moment is used with wavelet bases in one-dimensional, two-dimensional
and three-dimensional cases. For this, we use two-dimensional and three-dimensional wavelet functions.
Computational complexity increases as the number of wavelets is increased. We can limit this problem
by taking a limited number of wavelets for a set of scattered electromagnetic waves, which will reduce
the computational cost. Wavelet technique requires less memory space. Wavelet basis also gives
better solutions in terms of fast computations. To conclude, we have developed a computationally
cheaper algorithm for estimating linear and nonlinear components of the parameters that govern the
susceptibility field from measurements of the scattered Electromagnetic fields at different frequencies
and spatial locations.
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