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MIMO Systems
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Abstract—This paper presents a P-OMP-IR algorithm for the hybrid precoding problem in millimeter
wave (mm-Wave) multiple-input multiple-output (MIMO) systems. In the proposed approach, the
digital precoding matrix is updated via the orthogonal matching pursuit (OMP) method, and the analog
precoding matrix is refined column by column using the dominant singular value and corresponding
singular vectors of a residual matrix successively. During the refining phase of the analog precoding
matrix, an extended power method is designed to calculate the dominant singular value and the
corresponding left and right singular vectors, which is able to reduce the computational complexity
significantly. Simulation results show that the proposed algorithm can not only reduce the residual of
the hybrid precoder effectively, but also improve the spectral efficiency consistently.

1. INTRODUCTION

Millimeter wave (mm-Wave) multiple-input multiple-output (MIMO) system is emerging as a promising
technology for the next generation communication [1]. Although mm-Wave MIMO systems experience
higher path loss than existing cellular systems, they can take advantage of the large bandwidth in
mm-Wave spectrum and employ large-scale antenna arrays that are packed in a very small area due
to short wavelength. With large number of antenna elements at the transmitter/receiver, mm-Wave
MIMO array can provide significant beamforming gains to combat path loss [2].

Hybrid precoding architecture has attracted wide attention recently, which only requires a small
number of radio frequency (RF) chains between the low-dimensional digital precoder and high-
dimensional analog precoder [3]. Several methods of hybrid precoder are conceived in [4–6], including
the optimal analog beamforming of clustered subarrays [4], minimum-mean-square-error (MMSE)-based
analog/digital beamforming [5], and joint transmit/receive beamforming [6]. The convex quadratic
programming method and least squares method are utilized to obtain the analog precoding matrix
and digital precoding matrix in [7]. A restricted set of dominant candidate directions is leveraged to
find the analog precoding matrix in [8]. A successive interference cancelation-based hybrid precoding
scheme for subarray structures is proposed in [9]. The advantages of directional beamforming are
studied by considering two-path mm-Wave channels in [10]. In [11, 12], the hybrid precoding problem is
reformulated as a sparse signal reconstruction problem and solved via the orthogonal matching pursuit
(OMP) method. The sparse hybrid precoding algorithm can approach the full digital MIMO processor
by iteratively selecting a beamforming vector from the set of array response vectors; however, due to the
limited size of the set of array response vectors, the sparse hybrid precoding algorithm still inevitably
leads to performance losses.

In this paper, a P-OMP-IR algorithm is proposed to further improve the performance of the sparse
hybrid precoding. The hybrid precoding matrix of the proposed algorithm is initialized through the
OMP algorithm. Then, each column vector of the analog precoding matrix is refined by using the
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dominant singular vectors of a residual matrix. Afterwards, with the refined analog precoding matrix,
the digital precoding matrix is updated via the OMP method again. Finally, by alternatively iterating
the above stages, the performance of the hybrid precoder is improved gradually. It is noteworthy that
the proposed algorithm depends on the dominant singular vectors of a residual matrix. In order to
reduce the computational complexity, an extended power method is proposed to derive the dominant
left and right singular vectors simultaneously.

The remaining part of this paper is organized as follows. The system model is introduced in
Section 2. Section 3 presents details of the proposed algorithm. Simulations are given to demonstrate
the performance of the proposed method in Section 4. Section 5 concludes the paper.

Notations: A stands for a matrix. a represents a vector. A(m,n) denotes the element of A
corresponding to the mth row and nth column. A(:,n) represents the nth column of A. A(:,1:n) is

the first n columns of A. A(n,:) represents the nth row of A. (A)T , (A)H , (A)−1 and (A)† denote
the transpose, the conjugate transpose, the inverse and the pseudoinverse of A, respectively. IN is the
N ×N identity matrix. |A|, ‖A‖2 and ‖A‖F represent the determinant, the 2-norm and the Frobenius
norm of A, respectively. CN (a, b) is a complex Gaussian distribution with mean a and variance b.
diag(A) is a vector which consists of the diagonal elements of A. diag{a1, · · · , aN} is a diagonal matrix
with the entries in {a1, · · · , aN} on its diagonal. rank(A) is the rank of A. E[·] denotes the expectation
operation.

2. SYSTEM MODEL

Consider a single-user mm-Wave MIMO system with the hybrid precoder and combiner as shown
in Fig. 1, where Nt denotes the number of transmit antennas, Nr the number of receive antennas,
and Ns the number of data streams. The number of RF chains is denoted by NRF such that
Ns ≤ NRF ≤ min(Nt, Nr). Without loss of generality, it is assumed that the transmitter and receiver
have the same number of RF chains. FRF ∈ C

Nt×NRF represents the analog precoding matrix, and
FBB ∈ C

NRF×Ns is the digital precoding matrix. The transmitted signal x can be written as

x = FRFFBBs (1)

where s is the Ns × 1 vector of transmitted symbols and E[ssH ] = 1
Ns

I. The normalized transmit power

is imposed by ‖FRFFBB‖2F = Ns. Then the received signal can be written as

y =
√
ρWH

BBW
H
RFHFRFFBBs+WH

BBW
H
RFn (2)

where ρ is the average received power, WRF the Nr×NRF analog combining matrix, WBB the NRF ×Ns

digital combining matrix at the receiver, n the noise drawn from the Gaussian distribution CN (0, σ2
n),

and H the Nr ×Nt channel matrix.

Figure 1. A single-user mm-Wave MIMO system with hybrid analog-digital precoder and combiner.
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The narrowband Saleh-Valenzuela clustering channel model is adopted to characterize the mm-
Wave propagation environment [13], i.e.,

H =

√
NtNr

NclNray

Ncl∑
i=1

Nray∑
l=1

αilar(φ
r
il, θ

r
il)at(φ

t
il, θ

t
il)

H (3)

where Ncl is the number of clusters, Nray the number of the propagation paths in each cluster, αil

the gain of the lth ray in the ith cluster distributed as CN (0, 1). at(φ
t
il, θ

t
il) and ar(φ

r
il, θ

r
il) denote the

transmit array response vector and receive array response vector, respectively. (φr
il, θ

r
il) stands for the

azimuth and elevation angles of arriver (AOAs), and (φt
il, θ

t
il) denotes the azimuth and elevation angles

of departure (AODs). When a uniform planar array (UPA) is considered, the array response vector of
the lth ray in the ith cluster can be expressed as [14]

a(φil, θil) =
[
1 · · · ej

2π
λ
d(p sinφil sin θil+q cos θil) · · · ej

2π
λ
d((M−1) sinφil sin θil+(N−1) cos θil)

]T
(4)

where d denotes the antenna spacing; λ represents the signal wavelength; p (0 ≤ p ≤ M) and
q (0 ≤ q ≤ N) are the antenna indices in the 2-dimensional plane.

In matrix form, the channel model in Eq. (3) can be rewritten as

H =

√
NtNr

NclNray
ArΛAH

t (5)

where Ar = [ar(φ
r
11, θ

r
11), · · · ,ar(φ

r
Ncl,Nray

, θrNcl,Nray
)] and At = [at(φ

t, θt11), · · · ,at(φ
t
Ncl,Nray

, θtNcl,Nray
)]

are the array response matrices of transmitter and receiver respectively. Λ = diag{α11, · · · , αNcl,Nray}
is a diagonal matrix.

When the Gaussian symbols are transmitted throughout the mm-Wave channel, the achieved
spectral efficiency R can be given by [15]

R = log2

(∣∣∣∣INs +
ρ

Ns
R−1

n WH
BBW

H
RFHFRFFBBF

H
BBF

H
RFH

HWRFWBB

∣∣∣∣
)

(6)

where Rn = σ2
nW

H
BBW

H
RFWRFWBB is the noise covariance matrix after the receiving processing.

Furthermore, all the elements of FRF and WRF should satisfy the unit modulus constraints, namely,
|FRF (m,n)| = |WRF (m,n)| = 1.

Note that directly maximizing spectral efficiency R requires a joint optimization over the four matrix
variables (FRF ,FBB ,WRF ,WBB). However, it is intractable to find the global optimal solution of the
joint optimization problem. Fortunately, the joint design problem can be approximately separated into
two sub-problems [12], that is, the precoding and combining problems that have similar mathematical
formulations. This paper will mainly focus on the precoding problem, and the presented algorithm can
be used to solve the combining problem equivalently.

The precoder optimization problem can be expressed as [16]

argmin
FRF ,FBB

‖Fopt − FRFFBB‖2F s.t. |FRF (m,n)| = 1, ‖FRFFBB‖2F = Ns (7)

where Fopt is the unconstrained fully digital precoder that can be obtained from the SVD of the

channel H = UΣV H , i.e., Fopt = V H . |FRF (m,n)| = 1 is the unit modulus constraint, and

‖FRFFBB‖2F = Ns denotes the transmit power constraint. Finding the optimal analytical solutions
of Eq. (7) is still intractable due to the unit modulus constraint of FRF , and Section 3 will further
analyze the optimization problem.

3. ALGORITHM FORMULATION

In this section, the proposed P-OMP-IR algorithm is carried out. The OMP-based sparse precoding
algorithm is implemented to initialize the hybrid precoding matrix, and then, the RF and digital
precoding matrices are refined alternatively by using the dominant singular vectors of a residual matrix
and the OMP method, respectively. The specific process is described in the rest of this section.
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3.1. Analog Precoding Matrix Refinement

Let’s start with the initialization of the hybrid precoding matrix. As stated above, the hybrid precoding
matrix is initialized with the OMP-based sparse hybrid algorithm in [12]. Essentially, the above
initialization problem can be considered as a sparse signal reconstruction problem, which is solved
with sparse signal recovery methods. According to the compressed sensing theory, the dictionary plays
an important role in the OMP method, which can be obtained by either an analytical or a learning-based
approach. The analytical approach generates the dictionary via a predefined mathematical transform,
while for the learning-based approach, the dictionary is adapted from a set of training signals. Learned
dictionaries have potential to improve the performance of the sparse signal recovery algorithms (e.g., the
OMP algorithm) further, since the learned dictionaries can capture the salient information directly from
the training signals [17]. Therefore, in this section, a novel design is proposed to reduce the residual of
the hybrid precoder through refining the matrix FRF iteratively. The residual β between the optimal
precoder Fopt and the hybrid precoder FRFFBB can be given by

β = ‖Fopt − FRFFBB‖2F =

∥∥∥∥∥Fopt −
NRF∑
i=1

f i
RFf

i
BB

∥∥∥∥∥
2

F

(8)

where f i
RF (1 ≤ i ≤ NRF ) is the ith column vector of matrix FRF , and f i

BB (1 ≤ i ≤ NRF ) denotes the
ith row vector of matrix FBB. In the refinement stage of FRF , the column vectors of FRF are modified
one by one to reduce the coherence among them [18].

For the i0th column of FRF and the corresponding i0th row of FBB , the optimization problem can
be expressed as

argmin
f
i0
RF ,f

i0
BB

∥∥∥∥∥∥Fopt −
NRF∑
i �=i0

f i
RFf

i
BB − f i0

RFf
i0
BB

∥∥∥∥∥∥
2

F

. (9)

Let Gi0 = Fopt −
∑NRF

i �=i0
f i
RFf

i
BB , the problem in Eq. (9) can be rewritten as

argmin
f
i0
RF ,f

i0
BB

∥∥∥Gi0 − f i0
RFf

i0
BB

∥∥∥2
F
. (10)

Ignoring the unit modulus constraint temporarily, the optimal solution of the problem in Eq. (10)
can be given by the Eckart-Young-Mirsky theorem [19], i.e.,

argmin
f
i0
RF ,f

i0
BB

∥∥∥Gi0 − f i0
RFf

i0
BB

∥∥∥2
F
=
∥∥Gi0 − σ1u1v

H
1

∥∥2
F

(11)

where σ1 is the largest singular value of Gi0 , and u1 and v1 are the left and right singular vectors

corresponding to σ1. By Eq. (11), f i0
RF and f i0

BB can be refined by the following equations

f i0
RF = u1, f i0

BB = σ1v
H
1 . (12)

After the refinement of all the column vectors of FRF and the row vectors of FBB , the constrained

RF precoding matrix FRF can be given by FRF (m,n) =
FRF (m,n)

|FRF (m,n)| , ∀m,n [20].

3.2. Estimation of the Dominant Singular Value and the Corresponding Singular Vectors

From Eq. (12), it is clear that the proposed method depends on the dominant singular value and vectors.
In order to circumvent the SVD involved high computational complexity, the power method [21] is
extended in this subsection to quickly estimate the dominant singular value and the corresponding
singular vectors. The following theorem describes the proposed extended power method in detail.
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Theorem 1: Suppose that G is an m× n matrix with singular values σ1 > σ2 ≥ . . . ≥ σr > 0 and
dominant singular vectors u1 and v1. For the vector sequence⎧⎪⎪⎨

⎪⎪⎩
bk−1 =

Gak−1

‖Gak−1‖2
ak =

GHbk−1

‖GHbk−1‖2

k = 1, 2, · · · , (13)

if aH
0 v1 = α1 �= 0, then the following statements are true:

(a) lim
k→∞

ak =
α1

|α1|v1, (b) lim
k→∞

bk =
α1

|α1|u1, (c) lim
k→∞

‖Gak‖2 = σ1.

Proof: Let the SVD of G ∈ C
m×n be G = UΣV H , where U = [u1 u2 · · · um], V =

[v1 v2 · · · vn], Σ =

[
Σ1 0
0 0

]
and Σ1 = diag{σ1, σ2, · · · , σr}. Decomposing a0 into a0 =

∑n
i=1 αivi

(α1 = aH
0 v1 �= 0), from Eq. (13), ak and bk can be written as:

ak =
GHbk−1

‖GHbk−1‖2 =
GHGak−1

‖Gak−1‖2‖GHGak−1

‖Gak−1‖2 ‖2
=

GHGak−1

‖GHGak−1‖2 =
(GHG)ka0

‖(GHG)ka0‖2 =
(V Σ2V H)ka0

‖(V Σ2V H)ka0‖2

=
(
∑r

i=1 viσ
2
i v

H
i )ka0

‖(∑r
i=1 viσ

2
i v

H
i )ka0‖2

=
(
∑r

i=1 viσ
2k
i vH

i )(
∑n

i=1 αivi)

‖(∑r
i=1 viσ

2k
i vH

i )(
∑n

i=1 αivi)‖2
=

∑r
i=1 αiσ

2k
i vi

‖∑r
i=1 αiσ2k

i vi‖2

=
α1σ

2k
1 (v1 +

∑r
i=2

αi
α1
( σi
σ1
)2kvi)

‖α1σ2k
1 (v1 +

∑r
i=2

αi
α1
( σi
σ1
)2kvi)‖2

bk =
Gak

‖Gak‖2 =
GGHbk−1

‖GHbk−1‖2‖ GGHbk−1

‖GHbk−1‖2 ‖2
=

GGHbk−1

‖GGHbk−1‖2 =
(GGH)kb0

‖(GGH)kb0‖2 =
(UΣ2UH)kb0

‖(UΣ2UH)kb0‖2

=
(
∑r

i=1 uiσ
2
i u

H
i )kGa0

‖(∑r
i=1 uiσ2

i u
H
i )kGa0‖2

=
(
∑r

i=1 uiσ
2k
i uH

i )(
∑r

i=1 αiσiui)

‖(∑r
i=1 uiσ2k

i uH
i )(
∑r

i=1 αiσiui)‖2
=

∑r
i=1 αiσ

2k+1
i ui

‖∑r
i=1 αiσ

2k+1
i ui‖2

=
α1σ

2k+1
1 (u1 +

∑r
i=2

αi
α1
( σi
σ1
)2k+1ui)

‖α1σ
2k+1
1 (u1 +

∑r
i=2

αi
α1
( σi
σ1
)2k+1ui)‖2

It is well known that lim
k→∞

(
σi
σ1

)k
= 0, therefore,

lim
k→∞

ak = lim
k→∞

α1σ
2k
1 v1

‖α1σ
2k
1 v1‖2

=
α1

|α1|v1, lim
k→∞

bk = lim
k→∞

α1σ
2k+1
1 u1

‖α1σ
2k+1
1 u1‖2

=
α1

|α1|u1 (14)

According to Eq. (14), it is clear that

lim
k→∞

||Gak||2 = ||Gv1||2 = ||UΣV Hv1||2 =
∥∥∥∥∥
(

r∑
i=1

uiσiv
H
i

)
v1

∥∥∥∥∥
2

= ||σ1u1||2 = σ1.

This concludes the proof.
According to Theorem 1, the extend power algorithm is given in Table 1, where η is the terminal

threshold.

3.3. Summary of the P-OMP-IR Algorithm

Based on the above discussion, the pseudo-code of the proposed hybrid P-OMP-IR precoding algorithm
can be summarized in Table 2. The proposed algorithm starts by selecting parts of columns from the
array response matrix At with the OMP algorithm (Step 1–Step 7) to form the initial hybrid precoding

matrix F
(0)
RF and F

(0)
BB .
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Table 1. The extended power algorithm.

Input: G, a0, η

Initializations: k = 0
repeat

1: k = k + 1

2: bk−1 =
Gak−1

||Gak−1||2
3: ak =

GHbk−1

||GHbk−1||2
until ‖ak − ak−1‖2 ≤ η

4: σ1 = ‖Gak‖2
Output: u1 = bk, v1 = ak, σ1

Table 2. P-OMP-IR algorithm.

Input: Fopt, NRF , At, ε

Initializations: Fres = Fopt, F
(0)
RF = At, t = 0

repeat
1: FRF = EmptyMatrix

for j = 1 → NRF do

2: Φ = F
(t)H
RF Fres

3: k = argmax(diag(ΦΦH))

4: FRF =
[
FRF |F (t)

RF (:,k)

]
5: F

(t)
BB = (FH

RFFRF )
−1FH

RFFopt

6: Fres =
Fopt−FRFF

(t)
BB

‖Fopt−FRFF
(t)
BB‖F

end for

7: F
(t)
RF = FRF

8: δt = ‖Fopt − F
(t)
RFF

(t)
BB‖F

Refinement of analog precoder
for i = 1 → NRF do

9: Gi = Fopt −
∑NRF

n �=i F
(t)
RF (:,n)F

(t)
BB(n,:)

10: Compute u1, v1 and σ1 of Gi by the extended power method

11: F
(t)
RF (:,i) = u1,F

(t)
BB(i,:) = σ1v

H
1

end for
12: t = t+ 1

13: F
(t)
RF (m,n) =

F
(t−1)
RF (m,n)

|F (t−1)
RF (m,n)

| ,∀m,n

until (δt−1 − δt) ≤ ε

14: FBB =
√
Ns

F
(t)
BB

||F (t)
RFF

(t)
BB ||F

Output: FRF = F
(t)
RF , FBB

Afterwards, the hybrid precoder is refined by using the extended power method in Step 9–Step 13.

Then, the updated matrix F
(t)
RF is used as a new input to the OMP algorithm for the next iteration.

The process continues until (δt−1 − δt) ≤ ε, where ε denotes the predefined threshold. Finally, the
transmitter power constraint is considered in Step 14.
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4. SIMULATION RESULTS

In this section, several simulation results are presented to evaluate the performance of the proposed
hybrid precoding algorithm for a single-user 144× 36mm-Wave MIMO system.

The mm-Wave propagation channel is modeled by L = 50 paths which are equally divided into 5
clusters Ci (i = 1, 2, · · · , 5), and each cluster contains 10 rays. The average azimuth and elevation AODs
of each cluster, i.e., φt

Ci =
1
10

∑
l∈Ci φ

t
l , θ

t
Ci =

1
10

∑
l∈Ci θ

t
l (i = 1, 2, · · · , 5), distribute uniformly in (0, 2π).

The azimuth and elevation AODs of rays in each cluster are drawn from Laplace distribution, i.e.,
φt
l,l∈Ci ∼ L(μt

φ,Ci , b
t
φ,Ci), θ

t
l,l∈Ci ∼ L(μt

θ,Ci , b
t
θ,Ci), where the location parameters μt

φ,Ci = φt
Ci , μ

t
θ,Ci = θtCi ,

and the scale parameters btφ,Ci and btθ,Ci are set as 10
◦. The statistic properties of azimuth and elevation

AOAs are the same as the azimuth and elevation AODs. All the results are averaged over 1000 random
channel realizations.

Figure 2 compares the proposed algorithm with the OMP-based sparse precoding algorithm in [12],
the successive refinement (SR)-OMP-based sparse precoding algorithm in [22], the PE-AltMin algorithm
in [16] and the optimal full digital precoding when SNR = 0dB, andNs = 4. It is clear that the proposed
algorithm achieves better performance than other hybrid precoders, which implies that the proposed
refinement process is effective for reducing the residual of the hybrid precoder. Besides, more RF
chains can reduce the performance gap between the proposed algorithm and the full digital precoder
remarkably, since more degrees of freedom can be used as the the number of RF chains increases.
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Figure 2. Spectral efficiencies given by different
algorithms as functions of the number of RF
chains NRF when SNR = 0dB and Ns = 4.
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Figure 3. Spectral efficiencies given by different
algorithms as functions of the number of data
streams Ns when SNR = 0dB and NRF = 8.

Figure 3 shows spectral efficiency curves with different numbers of data streams Ns, when
SNR = 0dB and NRF = 8. Obviously, the advantage of the proposed algorithm is more significant when
Ns is smaller. For the case Ns = NRF = 8, the spectral efficiencies given by the proposed algorithm and
the SR-OMP-based sparse precoding algorithm are almost the same, and the performance deterioration
of the proposed precoding is more severe than the full digital precoder. Therefore, for fixed number of
RF chains, transmitting relatively less data streams could reduce the performance loss of the hybrid
precoder effectively.

Figure 4 gives the residuals of the proposed approach for different numbers of iterations when
SNR = 0dB, Ns = 4, and the number of RF chains varies from 4 to 8. Explicitly, the residuals
decrease as the iteration increases for different RF chains, which suggests that the proposed algorithm
is convergent under normal cases. Furthermore, the residuals of 8 RF chains are much smaller than that
of 4 RF chains. This difference is caused by the increasing degrees of freedom of the hybrid precoder.
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Figure 4. Residuals of the proposed hybrid
precoding algorithm as functions of the iterations.
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Figure 5. Spectral efficiencies given by different
algorithms as functions of the SNR and iterations
when Ns = 4 and NRF = 6.

Figure 5 gives the spectral efficiency curves of the proposed method with different iterations when
NRF = 6 and Ns = 4. The optimal full-digital precoding and OMP-based sparse precoding serve as
benchmarks. It can be seen that the spectral efficiency given by the proposed algorithm is improved
gradually as the iterations increase. When t = 5, the proposed algorithm can provide about 1 dB
SNR gain compared with the OMP-based sparse precoding algorithm. However, if iterations increase
continuously, the improvements will be marginal, which means that the proposed algorithm can approach
a steady solution with a few iterations.

5. CONCLUSION

In this paper, a hybrid precoding algorithm is proposed for mm-Wave MIMO systems. In the presented
approach, the OMP technique is used to initialize the hybrid precoder, then the digital precoding matrix
and RF precoding matrix are alternatively refined by the OMP method and the dominant singular
vectors given by the extend power method. Simulation results show that the proposed algorithm can
not only approach a steady solution with a few iterations, but also offer higher spectral efficiencies than
existing sparse precoding algorithms.
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