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Ololade Sanusi1, Patrizia Savi2, *, Simone Quaranta3, Ahmad Bayat2, and Langis Roy1

Abstract—Graphene, a one-atom thick layer of carbon atoms arranged to form a honeycomb lattice
exhibits intriguing mechanical, thermal and electrical properties, which make it attractive for bio- and
chemical sensors as well as flexible electronics applications. In this paper, graphene films with different
amounts of graphene loading (weight fraction 12.5% and 25%) deposited by screen printing technique
are characterized in the microwave frequency range. By fitting the measured scattering parameters
of graphene-loaded microstrip lines with Advanced Design System (ADS) circuit simulations, a simple
equivalent lumped circuit model of the film is obtained. The proposed equivalent lumped circuit model
presented in this paper proves suitable as an initial step towards the full-wave electromagnetic modeling
and analysis of graphene loaded microwave structures intended for sensing and tuning applications.

1. INTRODUCTION

Graphene is a 2D structure with sp2 chemical bonding of carbon atoms arranged in a hexagonal
(honeycomb) lattice [1, 2]. Electrical and mechanical properties of graphene have been widely
investigated (see for example [3]).

Graphene flakes can be deposited on different substrates as thin or thick films through the
preparation of inks with a proper combination of solvents and binders [4]. Graphene-based nano-
materials have gained interest due to their various applications in the terahertz region [5], in the optical
range [6], for sensors development [7–9] and in the RF and microwave frequency range [10]. More
recently, both graphene and carbon nanotubes have been increasingly used to develop millimeter wave
components [11–13] and flexible electronics [14].

For these applications, it would be very useful to know the film impedance in the microwave range.
For example, mono-atomic thick graphene can be accurately modeled as an infinitely thin surface of
complex conductivity [15]. And by applying electric bias, graphene has been used for the design of
reconfigurable antennas [16]. However, there has been little research done on the characterization of
graphene films at radio frequencies. Only a few works can be found on the characterization of graphene-
polymer composite films [17–19]. This makes it difficult to realize adequate electromagnetic models of
graphene films at these frequencies.

In [20], a circuit model of graphene thick film is introduced, but the model is based only on the fitting
of the amplitude of the measured scattering response. In this letter, a detailed circuit characterization
of graphene films based on measurement-based modeling in 1–5 GHz band is addressed. Based on the
measured scattering parameters (amplitude and phase) of a microstrip line loaded with graphene film
of various compositions, a lumped element equivalent circuit is derived to describe the film impedance
at microwave frequencies.
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2. FILM PREPARATION

Screen-printing is used to deposit graphene as a thick film (each layer is about 10 µm thick) across the
gap between two electrodes. The ink for screen printing is prepared according to the procedure described
in [21] for 12.5% and 25% graphene by adding proper quantity of ethyl cellulose (EC) binder (Sigma
Aldrich, viscosity 10 cP, 5% toluene/ethanol, 48% ethoxyl) and terpineol (Sigma Aldrich, boiling point
220◦C). The chemistry of ink formulation for screen printing accounts for a homogeneous dispersion
of graphene sheets into the binder matrix to ensure that the electrical and mechanical properties of
graphene are translated uniformly along the film. Homogeneous dispersion also guarantees repeatability
of the films. Electrical connectivity throughout the film is verified by sheet resistance measurements (see
Table 1). A 3 × 3 mm2 film is printed on an FR-4 substrate through a 230 mesh/inch polyester screen.
Films with thicknesses of about 30 µm are made by depositing three layers, with intermittent drying at
125◦C for 5 minutes following the deposition of successive printed layers. Final curing is performed in
a muffle at 160◦C for 150 minutes in air.

Table 1. Measured dc sheet resistance for 12.5% and 25% weight fraction graphene film.

Sample One-layer (Ω/sq) Two-layer (Ω/sq)
Ethyl cellulose > 2 × 108 > 2 × 108

12.5 wt.% 2 × 107 2 × 106

25 wt.% 650 440

3. EQUIVALENT MICROWAVE CIRCUIT

In order to understand the RF behavior of the deposited graphene films, a 3mm wide microstrip line with
a 2.6 mm gap spacing is photo-etched on a 1.57 mm thick FR-4 substrate (nominal dielectric constant
of 4.3 and loss tangent of 0.03 at 2 GHz). The 3 mm strip width corresponds to 50 Ω characteristic
impedance. Thick films (30µm×3mm×3mm) of ethyl cellulose binder alone, 12.5 wt.% graphene and
25 wt.% graphene, are then printed on the gap (see Fig. 1(a)) using the deposition technique described
in Section 2.

(a) (b)

Figure 1. (a) Microstrip line with gap loaded by a graphene thick film, and (b) equivalent circuit
model.

The binder plays a crucial role in stabilizing the ink (by steric and thickening effects), ensuring
the ink’s printability and providing graphene platelets’ interconnection and adherence on the substrate.
Since film thermal treatment does not allow for binder removal (but only for solvent evaporation and
cellulose chains reorganization above the glass transition temperature) the graphene platelets end up
being embedded into the binder matrix. Therefore, the film’s contribution to the overall microwave
properties of the device is reasonably composed of two different effects: the dielectric losses stemming
from the ethyl cellulose binder and the electrical conductivity of graphene platelets. For each of the
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graphene weight fractions (12.5% and 25%), three layers of film are deposited to realize a thickness of
approximately 30µm.

The measured transmission coefficient (S21) for a line without any gap (reference line) and for
microstrip lines with the gap filled with various film compositions is plotted in Fig. 2. These results
emphasize that 12.5 wt.% graphene film acts as a binder insulator. On the other hand, 25 wt.%
graphene film shows a marked increase in transmission across the gap due to the film’s reduced sheet
resistance. A circuit model for the graphene thick film is derived using Advanced Design System (ADS)
simulations by fitting the amplitude and phase of the measured S-parameters. First, the line with a
gap (no graphene film) is modeled using the microstrip gap, an additional capacitance (Cgap = 0.01 pF)
and microstrip line models available in ADS library. The 2.6 mm gap corresponds to 0.1λg at 5 GHz
and can therefore be represented by an equivalent circuit. Capacitance, Cgap, accounts for the deviation
of FR-4 substrate permittivity from its nominal value and its frequency dependence. This way, the
fit between the measured S-parameter response and simulated equivalent circuit S-parameter response
is improved. The binder across the gap and the 12.5 wt.% graphene film behave the same way as
the microstrip line with an unloaded gap. For such low graphene concentrations, the dielectrics —
the binder and the FR4 — have insignificant impacts on the S-parameter response. Since the loss
tangent and relative dielectric constant of cellulose derivative binders are on the same order of the FR-
4 [22], the electrical properties of the mirostrip line are not affected by introducing ethyl cellulose across
the gap. Therefore, the difference between the microstrip line with the gap, the line with the binder
only and the line with 12.5 wt.% graphene is negligible. On the other hand, 25 wt.% graphene film
shows higher transmission due to the creation of percolative conductive paths across the two copper
strips (in agreement with the DC sheet resistance). In addition, high graphene concentrations may
result in the formation of nanoscale capacitors across the gap. Therefore, the film composed of 25
wt.% graphene can be represented with RC elements (Rg = 290Ω, Cg = 0.8 pF) in parallel as shown in
Fig. 1(b). Rg represents the electrical resistance of the graphene conductive percolative structures, while
Cg accounts for the combined effect of graphene and binder. In other words, graphene nanoplatelets act
as the electrodes of a “classical” electrostatic nanocapacitor employing ethyl cellulose (and FR-4) as the
dielectric. Therefore, capacitance Cg is not strictly attributed to the graphene. In fact, the chemical
capacitance of graphene is inactive at microwave frequencies [23].

Measurements and model-derived fitted data are compared in Fig. 3 and Fig. 4 for the case of 12.5
wt.% and 25 wt.% graphene films, respectively. Good agreement is observed between the circuit model
and the measurements over 1–5 GHz range.

Figure 2. Measurement of the transmission coefficient magnitude of the reference line and of the
microstrip line with gap for various graphene-loading compositions.
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Figure 3. Measurements (dashed line) and simulations (solid line) for the film of graphene of weight
fraction 12.5%.

Figure 4. Measurements (dashed line) and simulations (solid line) for the film of graphene of weight
fraction 25%.
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4. CONCLUSION

A circuit model of thick films loaded with different amounts of graphene have been presented. Films
made of binder alone, as well as binder plus graphene (weight fraction 12.5% and 25%), were printed
across the gap of microstrip lines and experimentally studied to produce a circuit model in ADS. The
S-parameter results reveal that low (12.5 wt.% upon the screen printing paste total mass) graphene
loadings have negligible impact on the RF properties of the ethyl cellullose binder used for the polymer
thick film deposition. Therefore, lightly loaded graphene films are prone to behave as lossy insulators
where the dielectric loss is dominated by the substrate and binder. On the other hand, S-parameter
measurements of 25 wt.% graphene films fit with an equivalent circuit composed of a single RC parallel
element. Such a model can be easily ascribed to the formation of nano-capacitors composed of graphene
nano-platelets distributed into an insulating matrix (film’s binder and FR-4 substrate).
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