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A T-Matrix Solver for Fast Modeling of Scattering from Multiple
PEC Objects

Lin E. Sun*

Abstract—T matrix characterizes the scattering property of a single PEC object and does not depend
on the incidence. In this work, we propose a method to derive a reduced-order T matrix for a single
3D PEC object with arbitrary shape. The method is based on the vector addition theorem and the
conventional EFIE, MFIE or CFIE methods. Given the T matrix for a PEC object, the scattered fields
can be directly calculated from any incidence. For multiple objects, a matrix equation system is built
based on the T-matrix and the position of each object. Finally, numerical examples show the accuracy
and efficiency for solving the scattering of both spherical and non-spherical arrays. Compared to the
moment methods, the computational cost of solving the final matrix equation is reduced by several
orders of magnitude.

1. INTRODUCTION

Modeling of electromagnetic scattering from multiple objects has been studied over many years. The
popular solutions for analysis of scattering from conducting objects are the finite difference method
(FDM), finite element method (FEM) and moment method (MOM). Among the moment methods,
electric field integral equation (EFIE), magnetic field integral equation (MFIE) and combined field
integral equation (CFIE) with RWG basis functions are widely used. However, for a large problem
that includes multiple PEC objects, there are some challenges for the conventional methods. First, it
is well known that fast algorithms need to be applied to these methods in order to solve large-scale
problems. Second, as the mesh is refined for large problems, the condition numbers of EFIE and CFIE
formulations grow fast and can cause the ill-conditioned system matrices. MFIE has a well-conditioned
formulation, while it can only be applied to closed objects and is ill-conditioned for interior resonance
problems.

The T-matrix method is firstly discussed in [1] for solving electromagnetic scattering problems.
Later, [2] extends the T-matrix method to an arbitrary number of scatterers. The total T-matrix
is expressed in terms of the individual T-matrices by an iterative procedure. In order to reduce the
computational cost of the total T-matrix, a recursive algorithm is proposed in [3–5]. Since then, the use
of this idea for various structures has been demonstrated [9–11, 13]. Although a great deal of work has
been performed on solving scattering problems of multiple objects using the T-matrix method [12, 14, 15],
applying the method to the multiple PEC structures with arbitrary shapes, especially to non-spherical
structures is sill limited. Among the literature work for solving the scattering electromagnetic fields
from the 3D multiple objects, most of the previous work handles multiple spherical or cylindrical objects
only.

In this paper, a method based on T-matrix is proposed to analyze the scattering from multiple
PEC objects. In this method, we first discuss how to obtain the T-matrix for each PEC object and
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then convert it into a small matrix. Then based on the small T-matrix for each object, an algorithm
considering the interactions of multiple scatterers is proposed. There are three main advantages of
this method. First is that since the T-matrix for each 3D PEC object with arbitrary shape can be
found to be very small, the dimension of the system matrix equation for multiple objects can be several
orders of magnitude smaller than those from the method of moments. Hence, the computational cost
for multi-scatterer problems is greatly reduced compared to the conventional methods. Secondly, the
proposed method is not limited to the spherical objects and can be applied to any multiple PEC
problems with arbitrary shapes. Finally, since the T-matrix for each object is independent of incidence,
the recalculation for difference incidences can be avoided.

2. FACTORIZATION OF THE DYADIC GREEN’S FUNCTION BY VECTOR
ADDITION THEOREM

A dyadic Green’s function in EM can be written as

G(rj, ri) =
(
I +

∇∇
k2

)
g(rj, ri) (1)

It can be expanded by vector wave functions in spherical coordinates [6, 7]

G(rj , ri) =ik
∞∑
l=1

l∑
m=−l

1
l(l + 1)

[Mlm(k, rjs)�gM̂lm(k, ris))

+ Nlm(k, rjs)�gN̂lm(k, ris))] (2)

where rj − ri = rjs − ris, |rjs| < |ris|. Mlm and Nlm are vector wave spherical harmonics expressed in
terms of spherical Hankel functions and spherical harmonics. �g means taking the regular part of the
function where the spherical Hankel function is replaced by a spherical Bessel function:

Mlm(k, r) = ∇× rψlm(k, r)

Nlm(k, r) =
1
k
∇×∇× rψlm(k, r) (3)

Here, ψlm(k, r) is the solution of the Helmholtz equation in free space, and

ψlm(k, r) = h
(1)
l (kr)Ylm(θ, φ) (4)

Here, h(1)
l (kr) is the first-kind spherical Hankel function,

Ylm(θ, φ) =

√
(l −m)!(2l + 1)

(l +m)!4π
Pm

l (cos(θ))eimφ (5)

where Pm
l (x) is the Legendre’s polynomial.

In the above, �g means taking the regular part of the function, which means that the spherical
Hankel function is replaced by the spherical Bessel function.

�gM̂lm(k, r′) = ∇× r′ψ̂lm(k, r′)

�gN̂lm(k, r′) =
1
k
∇×∇× r′ψ̂lm(k, r) (6)

Here,
ψ̂lm(k, r′) = jl(kr′)Y ∗

lm(θ, φ) (7)

where jl is the l-order spherical Bessel function. Since Ylm(θ, φ) is orthonormal, Yl,−m(θ, φ) =
(−1)mY ∗

lm(θ, φ).
Truncating the summation at l = lmax, then the number of terms involved in Eq. (2) is

P = (lmax + 1)2 − 1. Therefore, Eq. (2) can be rewritten in a more compact form

G(rj, ri) = ψ
t(rjs)3×2P · �gψ̂(ris)2P×3 (8)
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where ψt(rjs) and �gψ̂(ris) are matrices composed of ordered Mlm and Nlm.
In Eq. (2), Mlm and Nlm can be further expanded by the vector theorem in spherical coordinates

[7], that is

Mlm(r) =
∑
l′,m′

[�gMl′m′(r′)Al′m′,lm(r′′) + �gNl′m′(r′)Bl′m′,lm(r′′)]

Nlm(r) =
∑
l′,m′

[�gNl′m′(r′)Al′m′,lm(r′′) + �gMl′m′(r′)Bl′m′,lm(r′′)] (9)

where r = r′ + r′′ and |r′| < |r′′| has been assumed.
Next, Substituting Eq. (9) into Eq. (2), we obtain the expansion form for the dyadic Green’s

function

G(rji) =ik
∞∑

L′L

1
l(l + 1)

[�gML′(k, rjs′)AL′,L(rs′s)�gM̂L(k, ris)

+ �gNL′(k, rjs′)AL′,L(rs′s)�gN̂L(k, ris)

+ �gML′(k, rjs′)BL′,L(rs′s)�gN̂L(k, ris)

+ �gNL′(k, rjs′)BL′,L(rs′s)�gM̂L(k, ris)] (10)

It can be further written as

G(rji) = ik
∞∑

L′L

1
l(l + 1)

(�gML′(k, rjs′)
�gNL′(k, rjs′)

)T

·
(
AL′,L(rs′s) BL′,L(rs′s)
BL′,L(rs′s) AL′,L(rs′s)

)
·
(
�gM̂L(k, ris)

�gN̂L(k, ris)

)
(11)

Here, we use rjs = rjs′ + rs′,s, where |rjs′| < |rs′s|. In the above, L = (l,m), L′ = (l′,m′). The
expressions for Al′m′,lm and Bl′m′,lm can be found in [7].

In the above, Equation (9) can be written in the compact form as below

ψ
t(r)3×2P = �gψt(r′)3×2P ·α(r′′)2P×2P (12)

When |r′| < |r′′| is assumed, it is written as

ψ
t(r)3×2P = ψ

t(r′′)3×2P · β(r′)2P×2P (13)

where α and β are translation operators defined in [6, 7].
The expansion of the dyadic Green’s function can also be rewritten in the compact form as

G(rj, ri) = �gψt(rjs′)3×2P ·α(rs′s)2P×2P · �gψ̂(ris)2P×3 (14)

Here, ψt and �gψ̂ are matrices composed of ordered �gMlm and �gNlm. α is the matrix stacked by
AL′,L and BL′,L. The detailed formulations can be found in Appendix D of [7]. Fig. 1 shows all the
position vectors mentioned above.

3. DERIVATION OF THE T-MATRIX FOR A SINGLE PEC SCATTERER

The scattering solution of a PEC object is known as

Es(r) = iωμ

∫
G(r, r′) · J(r′)dr′ (15)

To get the scattering solution, usually the PEC object is discretized into RWG basis, and the scattering
field of the whole object is discretized into the scattering solution from each basis. Suppose that the
PEC object is discretized into M RWG bases, then

Es(r) =
M∑
i=1

iωμ

∫
si

G(r, r′i) ·Λi(r′i)dr
′
i · ai (16)
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Figure 1. Configuration of position vectors.

Substituting Eq. (1) into Eq. (16) and using the property of the RWG basis, we can get

Es(r) =
M∑
i=1

iωμ

∫
si

g(r, r′i)Λi(r′i)dr
′
i · ai +

M∑
i=1

i

ωε

∫
si

∇g(r, r′i)∇′ · Λi(r′i)dr
′
i · ai (17)

Equation (17) is the familiar expression for EFIE equation. Rewrite (r − r′) as (r − ri) − (ri − r′i) in
Eq. (16), and by using the expansion of dyadic Green’s function in Eq. (8), Eq. (16) can be expanded
into

Es(r) =
M∑
i=1

ψ
t(r− ri) ·Mii · ai (18)

where Mii is defined as

Mii = iωμ

∫
Si

�gψ̂(r′i − ri) · Λi(r′i)dr
′
i (19)

In the above, ri denotes the center of the i-th RWG; r′i are the sampling points on the RWG; ai is the
current coefficient. In this way, each basis on the PEC surface is regarded as a subscatterer and its
scattered field is expanded into outgoing wave function form. More compactly, Eq. (18) can be rewritten
in a matrix form,

Es(r) = Ψt(r) ·M(1) · a(1) (20)

Ψt(r) and M(1) are larger matrices stacked by ψt(r−ri) and Mii, i = 1, 2, . . . ,M , respectively as below.
Here M is the number of RWG bases used in the discretization of the PEC surface.

Ψt(r) = [ψt(r − r1),ψ
t(r− r2), . . . ,ψ

t(r − rM )], (21)
M(1) = [M11,M22, . . . ,MMM ]t. (22)

a(1) is the current coefficient vector. Subscript (1) indicates for one object.
Using the factorization of the Dyadic Green’s function, the incident field by any source can also be

expanded. Suppose that J(rs) are any kind of sources located at rs, then the incident field at r′i is

Ei(r′i) = iωμ

∫
G(r′i − rs) · J(rs)drs (23)

Applying Eq. (14) to the dyadic Green’s function above, one can get the incident field on the i-th RWG
as

Ei(r′i) = �gψt(r′i − ri) ·αis(ri − rs) · as(r′s − rs) (24)

where
as(r′s − rs) =

∫
�gψt(r′s − rs) · J(rs)drs (25)
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Here, we consider J(rs) as the dipole excitation with magnitude Il. Ixl, Iyl, Izl are the excitation
magnitude in x̂, ŷ, ẑ direction respectively. That is

J(rs) = Jx(rs) + Jy(rs) + Jz(rs) = (x̂Ixl + ŷIyl + ẑIzl)δ(rs) (26)
Therefore, by the property of the δ function, we can get the x, y, z components of as, respectively.

[as]x = iωμ[�gψ(−r′s)Ixl]x
[as]y = iωμ[�gψ(−r′s)Iyl]y
[as]z = iωμ[�gψ(−r′s)Izl]z (27)

So far both the incident and scattered fields have been expanded into the wave function form. Next,
a T-matrix can be defined as below to express the linear relationship between them, i.e.,

Es(r) = Ψt(r) ·T(1) ·αs · as (28)

where αs is a larger matrix stacked by αis. We can see from Eq. (28) that the incident and scattered
fields are related by T-matrix T(1). Given the T-matrix T(1), the scattered fields can be directly
calculated from the incident fields.

In order to calculate the T-matrix, we first apply the boundary condition on the PEC surface. That
is,

0 =
∫

Si

Λi(r′i) · {Ei(r′i) + Es(r′i)}dr′i (29)

i = 1, 2, . . . ,M .
Then replacing Es and Ei with Eqs. (16) and (24) respectively, we have

−N(1) ·αs · as = S · a(1) (30)

Here, S is the system matrix of the EFIE, MFIE or CFIE method. N(1) is a matrix with the diagonal
subblocks defined as

Nii =
∫

Si

Λi(r′i) · �gψt(r′i − ri)dr′i (31)

i = 1, 2, . . . ,M .
Next, substituting Eq. (20) into Eq. (28), we get

M(1) · a(1) = T(1) ·αs · as (32)

and from Eq. (30), we have
a(1) = −S · N(1) ·αs · as (33)

Then substituting Eq. (33) into Eq. (32), we can get the formulation for the T-matrix T(1)

T(1)(2PM×2PM)
= −M(1)(2PM×M)

· S−1
(M×M) ·N(1)(M×2PM)

(34)

In the above, M is the number of RWG bases on the PEC surface, and it is also the number of unknowns
in the EFIE, MFIE or CFIE method. P is the number of expansion terms in the factorization of the
dyadic Green’s function. The dimension of the T-matrix T(1) is 2PM by 2PM . Therefore, the T-
matrix we obtain so far has larger dimensions than the final matrix of the MOM method. To reduce
the dimension of the T-matrix T(1), we introduce it next.

The T-matrix T(1) derived so far is in terms of each basis on the PEC surface, so it has the
dimension at least the same as that of MOM method, which is M2. Actually, if the number of wave
functions used for the field expansion of each basis is 2P , then the dimension of T(1) is (2PM)2, which is
even larger than that of MOM method. In order to reduce the dimension of T(1), we apply the addition

theorem in Eq. (13) to ψt(r−ri) in Ψt(r) above [8]. In this way, the scattering center is pushed from the
centers of all the basis to the center of the entire object. Then, the scattered field can be recalculated
as

Es(r) = Ψ
t(r − r0) · β0 ·T(1) ·αs · as = Ψ

t(r− r0) · T̃(1) · as (35)
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Here, r0 is the center of the object. β0 is a matrix stacked by the translation operation β. Then we
define the reduced T-matrix T̃(1) as

T̃(1)(2P×2P )
= β0(2P×2PM) · T(1)(2PM×2PM)

·αs(2PM×2P ) (36)

Since P is the number of expansions for the Dyadic Green’s function, it is usually much smaller than
M . Therefore, the dimension of the T-matrix is greatly reduced from 2PM by 2P ×M for T(1) to 2P

by 2P for T̃(1).

From Eq. (35), we can see that the reduced-order T-matrix T̃(1) directly relates the incident field to

the scattered field. Given the incident field vector as and the reduced-order T-matrix T̃(1), we can easily

calculate the scattered field. Therefore, the reduced-order T-matrix T̃(1) characterizes the scattering
properties of the scatterer and depends on the scatterer only, but not on the incident field. This makes
it very useful for the calculation of the multi-scatterer problems when we know the T-matrix T̃(1) of
each subscatterer.

4. BUILDING THE SYSTEM MATRIX FOR MULTIPLE SCATTERERS

For the multi-scatterer case, suppose that there are N PEC objects Bm, m = 1, 2, . . . , N . The boundary
of Bm is Sm. When a given wave is incident upon the N objects, the total field can be calculated by

E(r) =Ei(r) + Es(r) = �gΨt(r − rm) ·αms · as

+ Ψ
t(r− rm) · bm +

N∑
n=1,n �=m

�gΨt(r − rm) ·αmn · bn (37)

where bm and bn are the wave function coefficients for the m-th and n-th object respectively, and rm

and rn are the centers of the m-th and n-th object. Here we expand the incident and scattered fields
about the center of the m-th scatterer rm. Then by the definition of the T matrix for a single object
and the boundary condition on each object, one can get the matrix equation for bm as

bm = T̃m(1) ·
⎛
⎝as +

N∑
n=1,n �=m

α−1
ms ·αmn · bn

⎞
⎠ (38)

m = 1, 2, . . . , N . N is the number of the PEC objects.
In Eq. (37), vector addition theorem below has been applied

Ψt(r − rn) = �gΨt(r− rm) ·αmn (39)

with condition of |r − rm| < |rm − rn|. This enforces the method with the requirement that any two
objects cannot have intersection with each other. The computational cost for the matrix Equation (38)
is (2PN)3, and it is much smaller than (MN)3 of the MOM method since P is much smaller than M .

After solving for bm in Eq. (38), the scattering wave out of region S1∪S2∪. . .∪SN can be calculated
as

Es(r) =
N∑

m=1

Ψ(r − rm) · bm (40)

Once the scattered field is solved, the radar cross section can be calculated as

σθ = 4πr2|Es
θ |2, σφ = 4πr2|Es

φ|2 (41)

where,
Es

θ = Es · θ̂, Es
φ = Es · φ̂ (42)
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5. NUMERICAL RESULTS

5.1. Example 1: Numerical Test of Expansion of Scattering Fields

To test the accuracy of the expansion of the scattering field, the scattering solution by one RWG basis
in Eq. (18) is compared with the direct method in Eq. (17). Here we randomly picked an RWG basis
from one of the 435 basis for the discretization of PEC sphere located at the origin with radius of 1 m.
The current coefficient on the RWG basis ai is set as 1.0. The frequency is 0.3 MHz. The scattering
field outside the PEC surface at x = 0.0 m, y ∈ [−1.0, 1.0] m, z = 30.0 m which is 0.01λ away from the
PEC sphere is calculated. The results are shown in Fig. 2. In this example, the vector wave function
truncation number P is chosen as 8 in Eq. (18). We can see a good agreement between the scattering
fields by the expansion method and the direct method.
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Figure 2. Scattered field from a RWG basis by the direct method and expansion method. (a) Real
(Es). (b) Imag (Es).

5.2. Example 2: Scattering of Multiple PEC Spheres

This example is the scattering of a 2×2 sphere array. The centers of the four spheres are located at (0, 0,
0) m, (−3, 0, 0) m, (0, 3, 0) m and (−3, 3, 0) m respectively. The dipole incidence is at 0.03 GHz, located
at (20, 1.5, 0) m and radiates in −x̂ direction with the magnitude of 100. The radius of each sphere
is 1.0 m. Each of them is discretized into 4,044 RWG basis functions. The proposed T-matrix method
and CFIE with MLFMA method are used to calculate the RCS and scattered fields respectively. Fig.
3 shows the RCS results by the two methods. They have a good agreement. The near field results are
shown in Fig. 4. The observation points are along a circle of 5m around the spheres on the x-y surface.
Fig. 4(a) shows the real part of the x component of the scattered field. Fig. 4(b) shows imaginary part
of the x component of the scattered field. Both of them agree well with those from the CFIE with
MLFMA method.

The simulation is performed on a standard PC with 8 GB memory. The total number of bases
for the CFIE method is 4 × 4, 044, which is 16,176. Using CFIE method with 3-level MLFMA, the
memory usage is 6.4 GB. The matrix filling time is 12 min 38 sec and it takes 148 steps which is 1 min
28 sec to converge by GMRES method. While by the proposed T-matrix method, the memory cost for
calculating the single T-matrix is 4 GB and the unknown number for the final system matrix is only
64. And it takes only 1.8 sec to solve the matrix equation. In the final matrix solving, the unknown
reduction of the T-matrix method is 99.6% compared to the CFIE method.
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Figure 3. RCS of four PEC spheres at 0.03 GHz.
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Figure 4. Scattered field of four PEC spheres at 0.03 GHz. (a) Real (Esx). (b) Imag (Esx).
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5.3. Example 3: Scattering of an Antenna Array

This example is a 2 × 2 antenna array, which is shown in Fig. 5. It is excited by an electric dipole at
(4, 0.02, −5.0e-3) in the −x̂ direction at the frequency of 1.5 GHz. The total number of unknowns are
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2856 × 4. Each of them is modelled by a T matrix. P is taken as 15. The reduction in the number
of unknowns is 98.95%. Fig. 6 shows that the RCS results by the proposed method and the moment
method have good agreement. As for the simulation time, the total simulation time for the EFIE with
2-level MLFMA is 30 mins, and the final matrix solving time for the T-matrix method is several seconds.

6. CONCLUSION

We developed a T-matrix method for modeling the electromagnetic scattering of multiple PEC objects.
The T-matrix for a single PEC object with an arbitrary shape is derived based on the vector addition
theorem combined with traditional EFIE, MFIE or CFIE method. Numerical examples for both
spherical and non-spherical array structures demonstrate the accuracy and efficiency of the proposed
method. The main features of the proposed method can be summarized as:

• The T-matrix for a single object only depends on its size, shape and electrical properties. It does
not depend on the incidence, polarization, observation point and location of the object. Hence, it
is not necessary to re-derive the T-matrix for an object when the incident field or the observation
point changes or the location of the object changes. For two PEC objects with the same shape and
size, they have the same T-matrix.

• By combining the vector addition theorem with the traditional EFIE, MFIE or CFIE method,
the proposed method is not limited to spherical objects, it can be applied to any object with an
arbitrary shape.

• The size of the T-matrix is related to the electrical size of the object. As the size of the object
increases, the dimension of its T-matrix increases. However, the size of the T-matrix often much
smaller than that of the corresponding MOM impedance matrix, which makes it more efficient in
terms of the computational cost for the final matrix solving for multiple objects.

• One major limitation for the proposed T-matrix method is that it only works for well-separated
structures, it can not apply to structures with overlaps.
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