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The Use of the Fractional Derivatives Approach to Solve the

Problem of Diffraction of a Cylindrical Wave on an Impedance Strip

Eldar I. Veliyev1, 2, Kamil Karaçuha1, *, Ertuğrul Karaçuha1, and Osman Dur1

Abstract—Earlier we considered the use of the apparatus of fractional derivatives to solve the two-
dimensional problem of diffraction of a plane wave on an impedance strip. We introduced the concept
of a “fractional strip”. A “fractional strip” is understood as a strip on the surface, which is subject to
fractional boundary conditions (FBC). The problem under consideration on the basis of various methods
has been studied quite well. As a rule, this problem is studied on the basis of numerical methods. The
proposed approach, as will be shown below, makes it possible to obtain an analytical solution of the
problem for values of fractional order ν = 0.5 and for fractional values of the interval ν ∈ [0, 1], the
general solution will be investigated numerically.

1. FORMULATION OF THE PROBLEM

We arrange a two-dimensional strip of width 2a on the plane y = 0. The strip along the z-axis is infinite.
The source of the cylindrical wave �Je = �zJeδ(x−xo)δ(y−yo) is located at the point (xo, yo) (see Fig. 1).

Figure 1. Geometry of the problem.
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z(0, 0, Ez), �H i

z(Hx,Hy, 0). In this case, the
source field has the form

�Ei
z (x, y) = − �Je

η0k

4
H

(1)
0

(
k

√
(x − xo)

2 + (y − yo)
2

)
(1)

Received 22 March 2018, Accepted 28 May 2018, Scheduled 13 June 2018
* Corresponding author: Kamil Karaçuha (karacuha17@itu.edu.tr).
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Here H
(1)
0 (kx) is the Hankel function of the first kind and zero order, η0 the impedance of free space,

and k = 2π
λ the wave number. We set the time dependency as e−iωt and then omit it. The complete

field can be represented as a superposition of the fields below

�Ez = �Ei
z + �Es

z (2)

where, �Ei
z is the source field, and �Es

z describes the scattered field. To find the scattered field �Es
z , it is

necessary to subject the total field, as noted above, to a new boundary condition [1, 2], which we call
the fractional boundary condition (FBC).

Dν
kyEz (x, y)

∣∣
y=±0

= 0 (3)

where x,−a < x < a and ν is a fractional order (FO). Further, the fractional derivative Dν
ky will be

determined from the Riemann-Liouville equation [3] which has the form

Dν
yf (y) =−∞ Dν

yf (y) =
1

Γ (1 − ν)
d

dy

y∫
−∞

f (t)
(y − t)ν

dt (4)

The fractional order ν varies from 0 to 1, and Γ (ν) is the Gamma function. For the value ν = 0, the
strip with FBC in Eq. (3) corresponds to a perfect electrical conducting (PEC) strip, and for ν = 1 a
strip with perfect magnetic conductivity (PMC) is obtained [3]. For intermediate values 0 < ν < 1, FBC
describes a fractional boundary with specific properties, which is investigated in this article. FBC leads
to the use of the fractional Green’s function (FGF) Gν(x) [5, 6] and the fractional Green theorem [1, 5, 6].
In this case, the scattered field can be represented as [1]

Es
z (x, y) =

∞∫
−∞

f1−ν
(
x′) Gν

(
x − x′, y

)
dx′ (5)

Here, f1−ν(x′) is an unknown function, which we will call the fractional density of the potential, and
the fractional Green’s function Gν(x) has the form [3]

Gν
(
x − x′, y

)
= − i

4
Dν

kyH
(1)
0

(
k

√
(x − x′)2 + y2

)

= −i
e±i π

2
ν

4π

∞∫
−∞

eik[α(x−x′)±y
√

1−α2](1 − α2)
ν−1
2 dα, y ≷ 0 (6)

Representing Eq. (5) for the scattered field by taking Fourier transform, we obtain

Es
z (x, y) = −e±i π

2
ν

4π

∞∫
−∞

F 1−ν(α)eik[αx±y
√

1−α2](1 − α2)
ν−1
2 dα (7)

where,

F 1−ν (α) =

1∫
−1

f̃1−ν(ξ)e−iεαξdξ, f̃1−ν (ξ) = af1−ν (ξ)

ε = ka, ξ =
x

a
, f̃1−ν (ξ) =

ε

2π
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−∞

F 1−ν(α)eiεαξdα (8)
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2. SOLUTION OF THE PROBLEMS

Now, subjecting the total field �Ez to the FBC in Eq. (3) and taking into account Eqs. (7) and (8)
to determine the fractional Fourier transform F 1−ν(α), we obtain the integral equation (IE) of the
following form

∞∫
−∞

F 1−ν (α)
sin ε (α − β)

α − β

(
1 − α2

)ν− 1
2 dα

= −4Bπe−i π
2
ν

∞∫
−∞

ei[−kx0α+ky0

√
1−α2] sin ε(α − β)

α − β
(1 − α2)

ν−1
2

dα (9)

where,

B = −Je
η0k

4π
As noted above, for values of fractional order ν = 0.5, IE in Eq. (9) has an analytic solution that has
the form

F 0.5 (α) = −4Be−i π
4

∞∫
−∞

sin ε (β − α)
(β − α)

e
i
[
(−kx0β)+ky0

√
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] (
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)− 1
4 dβ (10)

Accordingly, the density of the fractional potential has the form

f̃0.5 (ξ) = −2εBe−i π
4

∞∫
−∞

ei[(εαξ−kx0α)+ky0

√
1−α2] (1 − α2

)− 1
4 dα (11)

Analytic solutions in Eqs. (10) and (11) will be analysed below. Now we construct the solution of the
IE in Eq. (9) for fractional values of 0 < ν < 1. Fractional Fourier Transform of density function [1, 2]
can be written as

F 1−ν (α) =
2π

Γ (ν + 1)

∞∑
n=0

(−i)n f ν
nβν

n

Jn+ν (εα)
(2εα)ν (12)

Here βν
n = Γ(n + 2ν)/Γ(n + 1), f ν

n are the unknown coefficients, which are subject to the definition,
and Jn+ν(εα) are the Bessel functions. The representation in Eq. (12) is a consequence of the fact
that the fractional density of the potential f̃1−ν(ξ) in order to satisfy the condition on the edge [1, 2] is
represented as a uniformly convergent series in the orthogonal Gegenbauer polynomials Cν

n(ξ)

f̃1−ν (ξ) = (1 − ξ2)ν−
1
2

∞∑
n=0

f ν
n

Cν
n(ξ)
ν

(13)

Substituting now the representation in Eq. (12) for Fourier Transform in IE in Eq. (9), we obtain a
system of linear algebraic equations (SLAE) for determining the unknown coefficients fν

n of the form
∞∑

n=0

(−i)nf ν
nβν

nCν
mn = γν

m (14)

where,
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As noted in [1, 2], SLAE allows one to determine the unknown coefficients fν
n with any given accuracy.



22 Veliyev et al.

3. PHYSICAL CHARACTERISTICS OF THE SCATTERED FIELD

In this section we present the expressions for the radiation pattern, monostatic and bi-static radar cross
sections (RCS). These expressions will be used to analyse the electromagnetic characteristics of the
scattered field.

Let’s derive the expression for the field �Es
z in the far-zone kr → ∞. First in the cylindrical

coordinate system (r, ϕ) can be found by using these relations x = r cos ϕ, y = r sin ϕ. Then, the
scattered field in Eq. (7) is

Es
z (r, ϕ) =

i

4π
(±iν)

∫ +∞

−∞
F 1−ν (cos β) eikr cos(ϕ±β)sinνβdβ (15)

where, the upper sign is chosen for the values ϕ ∈ [0, π], and the lower sign for ϕ ∈ [π, π]. If kr → ∞
we can use the method of stationary phase to derive the expression for Es

z(r, ϕ) as follows

Es
z (r, ϕ) = A(kr)Φν(ϕ) while kr → ∞ (16)

where,

A (kr) =

√
2

πkr
eikr−iπ/4

Φν (ϕ) = − i

4
(±i)ν F 1−ν(cos ϕ)sinνϕ

The function Φν(ϕ) denotes the radiation pattern (RP) of the scattered field that can be expressed via
the coefficients f ν

n

Φν (ϕ) =
iπ (±i)ν

2Γ (ν + 1)
tanνϕ

∞∑
n=0

(−i)νf ν
nβν

n

Jn+ν(ε cos ϕ)
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The formula for the bi-static RCS σ2d
λ and monostatic RCSσ2d is derived from the expression for RP

Φν(ϕ) as [4]
σ2d

λ
(ϕ) =

2
π
|Φ (ϕ) |2; σ2d(monostatic) =

σ2d

λ
(θo) . (18)

As was shown in [2], the fractional order is related to the impedance

ν =
1
iπ

ln
1 − η

1 + η
, η = −itan

(πν

2

)
(19)

The value ν = 0 corresponds to the impedance η = 0 (PEC) and ν = 1 corresponds to η = −i∞
(PMC). For the intermediate values 0 < ν < 1 the impedance has pure imaginary values between 0 and

−i∞. For a special case, when ν = 0.5, η =
√

μ
ε = −i by using Eq. (19).

4. NUMERICAL RESULT

In this section, we numerically analyze diffraction of a cylindrical wave on an impedance strip. We have
focused on Radiation Pattern, Monostatic Radar Cross section and Total Electric Field near the strip.
For ν = 0.5, we have found the expression analytically as introduced in previous section. Figs. 2–5 show
the RP, Monostatic RCS and field distributions in the vicinity of the impedance strip for various values
of the frequency parameter ε and the distribution of the source. The parameters can be summarized
by following equations which are expressing the location of source and radial distance from the source,
wave number and width of strip. Here, the results are given for ν = 0.5 in Figs. 2–5.

ε = ka

κ1 = kx0 =
εx0

a
, κ2 = ky0 =

εy0

a
κ3 = kρ0 = k

√
x2

0 + y2
0 =

√
κ2

1 + κ2
2

(20)

Figure 2 shows Normalized RP and Monostatic RCS for the ‘fractional strip’ with the frequency
parameter ε = 2π, it yields κ1 = 0, κ2 = 0.1ε, and κ3 = 0.1ε by using (20) when ν = 0.5.
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(a) (b)

Figure 2. (a) Normalized radiation pattern for ε = 2π, κ1 = 0 and κ2 = 0.1ε, (b) monostatic radar
cross section for ε = 2π and κ3 = 0.1ε.

(a) (b)

Figure 3. (a) Normalized radiation pattern for ε = π, κ1 = and κ2 = 0.6ε, (b) monostatic radar cross
section for ε = π and κ3 = 0.6ε.

(a) (b)

Figure 4. (a) Normalized radiation pattern for ε = π, κ1 = 0 and κ2 = 1.4ε, (b) monostatic radar
cross section for ε = π and κ3 = 2πε.
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Figure 3 shows Normalized RP and Monostatic RCS for the ‘fractional strip’ with the frequency
parameter ε = π, it yields κ1 = 0, κ2 = 0.6ε, and κ3 = 0.6ε by using (20) when ν = 0.5.

Figure 4 shows Normalized RP and Monostatic RCS for the ‘fractional strip’ with the frequency
parameter ε = 2π, it yields κ1 = 0, κ2 = 2πε, and κ3 = 2πε by using (20) when ν = 0.5.

Figure 5 shows magnitude of Electric Field for the ‘fractional strip’ with the different frequency
parameter ε and source location when ν = 0.5.

(a)

(b)

(c)
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(d)

Figure 5. Magnitude of total electric field for (a) ε = 3π, κ1 = 0 and κ2 = 1.4ε, (b) = 3π, κ1 = 0 and
κ2 = 3ε, (c) ε = 1.5π, κ1 = 1.2ε and κ2 = 1.2ε, (d) ε = 1.5π, κ1 = 0 and κ2 = 1.2ε.
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