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Statistical Moments and Scintillation Level of Scattered
Electromagnetic Waves in the Magnetized Plasma
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Vladimir Gavrilenko4, and Oleg Kharshiladze5

Abstract—Statistical characteristics of scattered ordinary and extraordinary electromagnetic waves
in the magnetized plasma are considered using the smooth perturbation method. Diffraction effects
and polarization coefficients are taken into account. Second order statistical moments of scattered
radiation are obtained for arbitrary correlation function of electron density fluctuations. The expressions
of the broadening of the spatial power spectrum and displacement of its maximum are obtained.
Wave structure functions and the angle of arrivals are calculated. Scintillation level of scattered
radiation is analyzed for different parameters characterizing anisotropic plasma irregularities for the
ionospheric F-region. Numerical calculations of the statistical characteristics are carried out for the
three-dimensional spectral function containing anisotropic Gaussian and power-law spectral functions
using the experimental data.

1. INTRODUCTION

At the present time peculiarities of electromagnetic (EM) waves propagation in a randomly
inhomogeneous media have been rather well studied [1, 2]. The analysis of the statistical properties
of small-amplitude electromagnetic waves that pass through a plane turbulent plasma slab is very
important in many practical applications associated with both in natural and laboratory plasmas.

Many excellent reviews and books devoting to the scintillation theory and observations in the
ionosphere have been published [3–5], whereas statistical characteristics of scattered radiation in the
turbulent magnetized plasma are less studied. In most papers, isotropic irregularities have been
considered; however, geomagnetic field leads to the birefringence and anisotropy.

The fluctuations in amplitude and phase (scintillation) of radio waves propagating through the
ionosphere are caused by plasma irregularities in the electron density. The irregularities have different
spatial scales and usually are elongated in the magnetic field direction. Ionospheric scintillation
models contain the worldwide climatology of the ionospheric plasma density irregularities that cause
scintillation, coupled to a model for the effects of these irregularities on radio signals. These irregularities
distort the original wave front, giving rise to a randomly phase-modulated wave. A high priority given to
the ionospheric scintillation study comes from its significant impact on satellite radio communications.
For instance, the signal distortion caused by scintillation can degrade the performance of navigation
system and generate errors in received messages.

Peculiarities of the second order statistical moments of scattered radiation in the collision
magnetized plasma have been investigated in [6] using the ray (-optics) approximation. Statistical
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characteristics and the scintillation level of scattered ordinary and extraordinary waves in the collision
magnetized plasma normal to the external magnetic field have been considered in [7–10] using modified
smooth perturbation method. Analytical and numerical calculations were carried out for both the
anisotropic Gaussian and power-law spectral functions assumption taking into account diffraction effects.
Scintillation index was calculated for small-scale irregularities using the “frozen-in” assumption and
taking into account movement of rigid irregularities. Minimums of the power spectrum of intensity
fluctuations of scattered ordinary and extraordinary waves satisfy the “standard relationship”. It was
shown that the normalized scintillation level increases in both non-fully-developed diffraction pattern
and transition zone increasing anisotropy factor. Rising orientation angle the scintillation level decreases,
and splashes arise in a fully developed scintillation region.

In Section 2 of this paper, stochastic differential equation of the phase fluctuation has been
obtained in the main plane containing wave vector of an incident wave and the external magnetic
field. Polarization coefficients and diffraction effects are taken into account. In Section 3, second
order statistical moments of scattered radiation are calculated for arbitrary correlation function of
electron density fluctuations. Numerical calculations are carried out for new spectral function combining
anisotropic Gaussian and power-law spectral functions in Section 4 using experimental data applied to
the ionospheric F -region. In Section 5 normalized scintillation level is calculated for different anisotropy
factors and orientation angles of elongated plasma irregularities with respect to the external magnetic
field. Conclusion is presented in Section 6.

2. FORMULATION OF THE PROBLEM

Let a plane electromagnetic (EM) wave with frequency ω be incident from vacuum on a semi-infinite
slab of turbulent collisionless magnetized plasma. We choose a Cartesian coordinate system such that
XY plane is the vacuum-plasma boundary; Z axis is directed in the plasma slab coinciding with the
wave vector k of the refracted wave; Y Z plane (main plane) is generated by the external magnetic field
vector H0. Components of the second rank permittivity tensor of the collisionless magnetized plasma
are [11]:

εxx = 1 − Y, εyy = 1 − Y (1 − uT ), εzz = 1 − Y (1 − uL), εxy = −εyx = iY
√
uL,

εyz = εzy = Y
√
uL uT , εxz = −εzx = −iY√

uT ,
(1)

where Y = v/(1 − u), v(r) = ω2
p(r)/ω

2 and u = Ω2
H/ω

2 are magneto-ionic parameters; ωp(r) =
[4πN(r)e2/m]1/2 is the plasma frequency; ΩH = eH0/mc is the angular gyrofrequency for the magnetic
field; N(r) is the electron density; c is the speed of light in vacuum; e and m are the charge and mass
of an electron, respectively; uT = u sin2 α, uL = u cos2 α, α is the angle between k and H0 vectors.
In reality components of the tensor εij vary weakly on a distances of wavelength. We will consider
distances L satisfying the condition L/kl2 � 1 (l is the characteristic spatial scale of irregularities). In
a particular case of plane-layered medium, when components of the permittivity tensor εij depend on
one coordinate, the obtained results are valid for arbitrary distances.

Assuming εik to be time independent, electric field E in the turbulent magnetized plasma satisfies
the differential equation: (

∂2

∂xi∂xj
− Δδij − k2

0εij(r)
)

Ej(r) = 0, (2)

where Δ is the Laplacian, δij the Kronecker symbol, and k0 = ω/c the wavenumber of an incident wave.
Electric field that we introduce in [12, 13] Ej(r) = E0j exp(ϕ1 + ik⊥y + ik0z)(k⊥ � k0), and k⊥

is the wavenumber normal to the main plane. Permittivity tensor εij(r) = ε
(0)
ij + ε

(1)
ij (r), |ε(1)ij (r)| � 1

contains two terms. The first is a regular term, and the second is proportional to the complex phase
ϕ1 ∼ ε

(1)
ij . Parameter μ = k⊥/k0 describes diffraction effects in a randomly inhomogeneous medium.

The first approximation fluctuation of the phase satisfies differential equation:[
∇i∇jϕ1 + ∇iϕ0∇jϕ1 + ∇iϕ1∇jϕ0 − δij

(
Δ⊥ + 2ik⊥

∂ϕ1

∂y
+ 2ik0

∂ϕ1

∂z

)
− k2

0ε
(0)
ij

]
E0j = 0. (3)
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where Δ⊥ = (∂2ϕ1/∂x
2) + (∂2ϕ1/∂y

2) is the transversal Laplasian.
Substituting two-dimensional spectral function

ϕ1(x, y, z) =

∞∫
−∞

dkx

∞∫
−∞

dkyψ(kx, ky, z) exp(ikxx+ ikyy)

into Equation (3) we obtain:

∂ψ

∂z
+

i

kx + (ky + k⊥)
E0y

E0x

[
k0kx + k0ky

E0y

E0x
− (k2

x + k2
y + 2k⊥ky

) E0z

E0x

]
ψ

= −i k2
0

kx + (ky + k⊥)
E0y

E0x

·
(
−iε̃(1)zx + ε(1)yz

E0y

E0x
+ ε(1)zz

E0z

E0x

)
. (4)

where ε̃
(1)
zx = α1n1(r), ε

(1)
yz = α2n1(r), ε

(1)
zz = −α3n1(r), Ψ ≡ v0/(1 − u0), α2 = u0Ψ sinα cosα,

α1 =
√
u0Ψ sinα, α3 = Ψ(1 − u0 cos2 α), electron density n1(r) is random function of the spatial

coordinates; kx and ky are the spatial wave-numbers in the x and y directions, respectively.
The ratio of the mean electric field components is expressed via well-known polarization coefficients:

(E0y/E0x) = iPj , (E0z/E0x) = iΓj [11]:

Pj =
2
√
uL(1 − v)

uT ±
√
u2

T + 4uL(1 − v)2
, Γj = −v√uT

1 + Pj
√
uL

1 − u− v + vuL
, (5)

upper sign and index j = 1 correspond to the extraordinary wave, and lower sign and index j = 2 to
the ordinary wave. These waves in magnetized plasma generally are elliptically polarized. Geomagnetic
field leads to the birefringence and anisotropy.

Fluctuation of the phase of scattered electromagnetic wave caused by electron density fluctuations
satisfies the boundary condition ϕ1(kx, ky, z = 0) = 0. Applying the modified perturbation
method [12, 14] the solution of Equation (4) is:

ψ(kx, ky, L) = A

L∫
0

dz′(b3 + ib4)n1(kx, ky, z
′) exp

[−Υ(b1 + ib2)(L− z′)
]
, (6)

where: A = (−α1 + Pα2 + Γα3)/μ2P2, b1 = Υkx[k2
0μP − Γ(k2

x + k2
y + 2k0μky)], Υ = 1/k2

0μ
2P2,

b2 = Υ
{
k0k

2
x + P(ky + k0μ)[Pk0ky + Γ(k2

x + k2
y + 2k0μky)]

}
, b4 = Υk2

0(ky + k0μ)P, b3 = Υk2
0kx, L

is a propagation distance by electromagnetic waves in the ionospheric plasma. For simplicity, index j
will be withdrawn from the polarization coefficients.

3. SECOND ORDER STATISTICAL MOMENTS OF SCATTERED RADIATION

Knowledge of the spectral function of the phase fluctuation allows the calculation of second order
statistical moments of scattered electromagnetic waves. Using the Fourier transform of Equation (6)
the variance of the phase fluctuations is:

〈
ϕ2

1

〉
= 2πA2

∞∫
−∞

dkx

∞∫
−∞

dky(−B0 + iB1)Wn [kx, ky,Υ(iB3 −B5)] , (7)

where B0 = k2
x + P2(−k2

y + k2
0μ)2, B1 = 2Pkxky, B3 = kx[k2

0μP − Γ(k2
x + k2

y)], B5 =
Pky[−Γ(k2

x + k2
y) + Pμk2

0 + 2Γμ2k2
0], Wn(k) is the arbitrary correlation function of electron density

fluctuations, and angular brackets mean ensemble average.
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Correlation function between two observation points spaced apart at small ρy and ρx distances in
the main and perpendicular planes, respectively, can be written in the form:

Vϕ(η, L) ≡ 〈ϕ1(r)ϕ∗
1(r + η)〉

= 2πA2k4
0L

∞∫
−∞

dx

∞∫
−∞

dy
[
x2 + P2(y + μ)2

]
Wn (k0x, k0y,−Υk0b3) · exp(−iηxx− iηyy), (8)

where b3 = [1 + PΓ(y + μ)]x2 +PΓy3 +P(P+3Γμ)y2 +Pμ(P+2Γμ)y, ηx = k0ρx, ηy = k0ρy; x = kx/k0

and y = ky/k0 are non-dimensional wave parameters. The double integral in Equation (8) depends only
on the shape of the fluctuation spectrum but not on the strength of the fluctuations. Phase fluctuations
at different observation points are not independent but correlate, and the asterisk represents the complex
conjugate.

The phase wave structure function and the angles of arrival of scattered electromagnetic waves in
the main and perpendicular planes can be easily calculated using Equations (7) and (8) [1, 15]:

D1(r1, r2) = 〈(ϕ1(r1) − ϕ1(r2)) (ϕ∗
1(r1) − ϕ∗

1(r2))〉,

〈Θ2
x〉 = lim

ηx→0

D1(ηx, 0, L)
η2

x

, 〈Θ2
y〉 = lim

ηy→0

D1(0, ηy , L)
η2

y

.
(9)

Correlation function of the complex field in the collisionless magnetized plasma can be written as [16, 17]:

WE(ρx, ρy, z) ≡ 〈E(x+ ρx, y + ρy, z)E∗(x, y, z)〉
= E2

0 exp(ikyρy)〈exp {iϕ1(x+ ρx, y + ρy, z) − iϕ∗
1(x, y, z)}〉. (10)

In the most interesting case of multiple scattering, when phase fluctuations are strong 〈φ1φ
∗
1〉 	 1, we

can assume that they obey a normal distribution [1, 2]. Correlation function decreases sharply as ρx

and ρy increase, and the argument of the second exponential term can be expanded in a series [16, 17]:

WE(ρx, ρyz) = E2
0 exp(ikyρy) exp

(
∂Vϕ

∂ρy
ρy +

1
2
∂2Vϕ

∂ρ2
x

ρ2
x +

1
2
∂2Vϕ

∂ρ2
y

ρ2
y

)
, (11)

where the phase correlation function Vϕ is given by Equation (8). The derivatives of the phase correlation
function are taken at the point ρx = ρy = 0.

The 2D spatial power spectrum (SPS) of scattered radiation which is of great practical importance
can be obtained by Fourier transformation from the correlation function in Eq. (11) [1, 2]:

S(kx, ky, z) =
1

(2π)2

∞∫
−∞

dρxdρyWE(ρx, ρy, z) exp(−ikxρx − ikyρy). (12)

This characteristic is equivalent to the ray intensity (brightness), which usually enters the radiation
transport equation [1, 2]. In the most interesting case of strong fluctuation of the phase 〈ϕ1ϕ

∗
1〉 	 1,

SPS is expressed as follows [16, 17]:

S(kx, ky, z) = S0 exp
[
− k2

x

2〈k2
x〉

− (ky − Δky)2

2〈k2
y〉

]
, (13)

where S0 is the peak value of the spectral curve, and Δky determines the displacement of the SPS of the
received radiation caused by random plasma irregularities, while 〈k2

x〉 and 〈k2
y〉 determine the widths of

this spectrum in the XZ and Y Z planes, respectively. The expressions Δky and 〈k2
y〉 may be obtained

directly from Equation 8) by differentiation. Similar calculations can be carried out for 〈k2
x〉 taking into

account the fact that the observation points are spaced at small distance apart in the Y Z plane near
the point y = 0. As a result, we have obtained:

Δky =
1
i

∂Vϕ

∂ρy
,
〈
k2

y

〉
= −∂

2Vϕ

∂ρ2
y

,
〈
k2

x

〉
= −∂

2Vϕ

∂ρ2
x

. (14)
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The derivatives of the correlation function of the complex phase fluctuations are taken at the point
ρx = ρy = 0. The parameter range in which expressions (13) and (14) correctly describe the SPS
of scattered radiation is determined by the following inequalities [18]: |Δkx| � 2π/λ,

√
〈k2

x〉 � 2π/λ,√
〈k2

y〉 � 2π/λ. These conditions are not in contravention to the assumption of strong phase fluctuations
because in a smoothly inhomogeneous medium mean spatial scale of plasma irregularities of the phase
correlation function substantially exceeds the wavelength of scattered electromagnetic waves, l 	 λ (l
is characteristic spatial scale of plasma irregularities caused by electron density fluctuations) [2], and
the angle of the normal to the random wavefront Δθ ∼ λ

√
〈ϕ2

1〉/l can remain small even at 〈φ2
1〉 	 1.

Further we will consider only electron density fluctuations in F region of the ionosphere.
Ionospheric phase scintillation fluctuations are characterized by the scintillation index. For weak

scattering of electromagnetic waves the scintillation level S4 and the 2D phase spectral function
describing 2D diffraction pattern at the ground are connected by the relationship [19]:

S2
4 = 4k2

0

∞∫
−∞

dx

∞∫
−∞

dyVϕ(x, y, L) sin2
[
Λ2

f

(
x2 + y2

)]
, (15)

where Λf = k0/kf , kf = (4π/λL)1/2 is the Fresnel wavenumber, λ the wavelength of an incident wave,
L a mean distance between the observer and plasma irregularities, and (λL)1/2 the Fresnel radius. The
sinusoidal term is responsible for oscillations in the scintillation spectrum. The spatial autocorrelation
function of the diffraction pattern could be measured with a suitable two-dimensional array of sensors.

Satellite and/or the F -region plasma irregularities moving relative to the receiver, temporal
variations of intensity and phase are recorded. We assume that irregularities drift across the beam
of the radio signals without changing their shapes (the assumption of “frozen-in” irregularities) along
the X-axis with apparent velocity Vx transverse to the line of the sight path. The power spectrum
PS(ν, L), scintillation level S4 (zero moment) and spectral width (1st and square root 2nd moments)
are computed from the power spectrum (one-dimensional case) [20]

Pϕ(ν, L) =
2π
Vx

∞∫
0

dkxWϕ

(
kx =

2πν
Vx

, ky, L

)
, PS(ν, L) = 4Pϕ(ν, L) sin2

(
ν

νf

)2

, (16)

S2
4 =

∞∫
0

dνPS(ν, L), ν1S =
1
S2

4

∞∫
0

dννPS(ν, L), ν2S =
1
S4

⎡
⎣ ∞∫

0

dνν2PS(ν, L)

⎤
⎦

1/2

. (17)

The Fresnel frequency νf = Vx/(πλL)1/2 is directly proportional to the drift velocity Vx of plasma
irregularities normal to the Y Z plane and inversely proportional to the Fresnel radius, and ν is the
scintillation frequency.

4. NUMERICAL CALCULATIONS

The incident electromagnetic wave having frequency of 3MHz (k0 = 6.28 · 10−2m−1) propagates along
the Z-axis. Plasma parameters at the altitude of 300 km are: u0 = 0.22, v0 = 0.28. The first Fresnel
radius and Fresnel wavenumber are equal to 5.5 km and 0.64 km−1, respectively.

The observations of an RH-560 rocket flight from Sriharikota rocket range (SHAR), India (14◦N,
80◦E, dip latitude 5.5◦N; apogee was 348 km) show [21] that the intermediate range irregularities (100 m–
2km) were observed in abundance in altitude regions 220–250 km and 290–320 km. Irregularities of a
range of scale sizes starting from a few hundred meters to a few tens of kilometers are observed in these
patches.

Data obtained from spaced receiver measurements made at Kingston, Jamaica (during the periods
August 1967–January 1969 and June 1970–September 1970) show that the irregularities between heights
of 153 and 617 km causing the scintillation of signals from the moving earth satellites (BE-B and BE-C)
are closely aligned along the magnetic field lines in the F -region of the ionosphere [22]. The dip angle
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of the irregularities with respect to the field lines was within 16◦. The anisotropic spectral features in
the F -region are defined for the Gaussian and Power-law spectra.

Observations (Tbilisi, 41◦43N) of drift small-scale irregularities in the ionospheric F-region show [23]
that they have elliptic forms, and the ratio of axes basically varies from 1 to 3. Anisotropy axis is mainly
oriented along the geomagnetic field of lines. Drift of small-scale irregularities mainly has S-W direction.
The most probable values of drift velocity is in the range of 40–100 meter/sec.

Measurements of satellite’s signal parameters moving in the ionosphere show that in F -region of
the ionosphere irregularities have power-law spectrum. 3D power-law spectral correlation function of
electron density irregularities with a power-law index p has been proposed in [24, 25]. The corresponding
spectral function has the form:

Wn(k) =
σ2

n

(2π)3/2

r30(k0r0)(p−3)/2(
r0
√
k2 + k2

0

)p/2

Kp/2(r0
√
k2 + k2

0)
K(p−3)/2(k0r0)

, (18)

where σ2
n is the mean-square fractional deviation of electron density, Kν(x) the McDonald function, p

the power index, r0 the inner scale of turbulence, and L0 = 2π/k0 the outer scale; it is supposed that
k0r0 � 1. In the interval of wavenumber k0r0 � kr0 � 1 spatial spectrum can be written as [24, 25]:

Wn(k) =
σ2

n

(2π)3/2

Γ(p/2)
Γ[(p− 3)/2]

kp−3
0

(k2 + k2
0)p/2

,

where Γ(x) is the gamma function.
We will use new spectrum of electron density irregularities combining anisotropic Gaussian and

power-law spectra [8]:

Wn(k) =
σ2

n

8π5/2

Apl
3
‖

χ2
[
1 + l2⊥(k2

x + k2
y) + l2||k

2
z

]p/2
exp

(
−k

2
xl

2
⊥

4
− p1

k2
yl

2
‖

4
− p2

k2
z l

2
‖

4
+ p3kykzl

2
‖

)
, (19)

where p1 = (sin2 γ0 + χ2 cos2 γ0)−1[1 + (χ2 − 1)2 sin2 γ0 cos2 γ0/χ
2], p2 = (sin2 γ0 + χ2 cos2 γ0)/χ2,

p3 = (χ2 − 1) sin γ0 cos γ0/2χ2, Ap = Γ(p/2)Γ[(5 − p)/2] sin[(p− 3)π/2]; kx, ky and kz are the wave
vector k components perpendicular (kx, ky) and parallel (k‖) to the incident wave propagation; χ = l‖/l⊥
is the anisotropy factor — the ratio of longitudinal and transverse characteristic linear sizes of plasma
irregularities; γ0 is the orientation angle of elongated ionospheric plasma irregularities with respect to the
magnetic lines of force. The shape of electron density irregularities has a spheroidal form. Anisotropy
of the shape of irregularities is connected with the difference of the diffusion coefficients in the field
align and field perpendicular directions.

Experimental investigations of the Doppler frequency shift of ionospheric signal and measurement
by translucence of satellite signals show that index of the power-law spectrum of electron density
fluctuations is in the range of 3.8 ≤ p ≤ 4.6(〈p〉 ≈ 4) [25]. Experimental observations of backscattering
signals from the artificially disturbed region of the ionosphere by the powerful HF radio emission shows
that a lot of artificial ionospheric irregularities of the electron density are stretched along the geomagnetic
field. Power-law spectral index was within the limits p = 1.4 ÷ 4.8 for different heating sessions using
“Sura” heating facility in the frequency range of 4.7÷9 MHz (ordinary mode) with the effective radiated
power 50 ÷ 70 MW beamed vertically upwards [26].

Scintillation spectra are in agreement with 3D power-law irregularity spectrum with an exponent
around −4 [25, 26]. This exponent of −4 is in agreement with the in situ measurements of the one-
dimensional irregularity spectrum derived from rockets and satellites.

Substituting Equation (19) into Equations (8) and (9) at p = 4 the variance and correlation function
of the phase fluctuations are:

〈
ϕ2

1

〉
=

σ2
n

4π
A2 ξ

3k0L

χ2

∞∫
−∞

dx

∞∫
−∞

dy

[
x2 + P2

(
μ2 − y2

)]− 2iPxy

[(1 + ξ2G1) − iξ2G2]
2 exp

[
−ξ

2

4
(
G3x

4 +G4x
2 +G5

)]

· exp
[−iξ2 (G6x

3 +G7x
)]
, (20)
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where: G1 = 2Γμ
μ4P3x

4 + ( 1
χ2 + T2

μ4P4 )x2 + ( y2

χ2 + T3
μ4P4 ), T2 = 2P2y4 + 2PΓμ(1 − P2)y2 − P2μ2,

T3 = P3[−2Γy4 + μ2(P + 2Γμ)2y2], G2 = 2
μ4P4 (−Λ2x

3 + Λ3x), Λ2 = 2P[Γ2y2 + Γμ(P − Γμ)]y,

Λ3 = P[Γ2y4 + 2Γμ(P − Γμ)y2 + Pμ2(P − 2Γμ)]y, G3 = 2Γμp2

μ4P3 , G4 = 1
χ2 + p2T2

μ4P4 + 4 p3Γ
μ2P

y2, G5 =
4Γp3

μ2P
y4 + [p1 − 4p3

μP (P + 2Γμ)]y2 − p2T3

μ4P4 , G6 = 1
μ2P2

(
p2Λ2

2μ2P2 − Γp3y
)
, G7 = 1

μ2P2 ( p2Λ3

2μ2P2 − Γp3y
3 + Pp3μy).

Vϕ (η, L) =
σ2

n

4π3/2

A2Ap

χ2
ξ3k0L

∞∫
−∞

dx

∞∫
−∞

dy
x2 + P2(y + μ)2[

1 + ξ2

χ2 (x2 + y2) +D4

]2 exp
[
−ξ

2

4
(
D1x

4 +D2x
2 +D3

)]

· exp(−iηxx− iηyy), (21)

where D1 = p2C2
0

μ4P4 , D2 = 1
χ2 + 2p2C0

μ4P4 (−C3y
3 + C2y

2 + C1y) + 4p3C0

μ2P2 y, D3 = p1y
2 +

1
4μ2P2 { p2

μ2P2 [C2
3y

6 − 2C2C3y
5 + (C2

2 − 2C1C3)y4 + 2C1C2y
3 + C2

1y
2]+4p3(−C3y

4 + C2y
3 + C1y

2)}, D4 =
ξ2

μ4P4{C2
0x

4 + 2C0(C1y + C2y
2 − C3y

3)x2 + [C2
3y

6 − 2C2C3y
5 + (C2

2 − 2C1C3)y4++2C1C2y
3 + C2

1y
2]},

b3 = C0x
2 +C3y

3 + C2y
2 + C1y.

Figure 1 depicts the 3D normalized correlation function of the phase fluctuations when two
observation points are located in mutually perpendicular planes at distances ηx and ηy; σn = 10−3,
diffraction parameter μ = 0.06, anisotropy factor χ = 10, plasma irregularities are field aligned (γ0 = 00),
ξ = 5(l‖ = 800 m).

Figure 1. Normalized 3D correlation function of
the phase fluctuations at α = 60◦.

Figure 2. Normalized correlation function
versus ηx for the extraordinary (curve 1) and the
ordinary (curve 2) electromagnetic waves.

Figure 2 illustrates cross-sections of 3D phase correlation function (21) of the field aligned plasma
irregularities in the main and perpendicular planes for both the ordinary and extraordinary waves
(plasma parameters are the same as in Figures 1 and 2). The width of the curves is approximately the
same in the main Y Z plane (Figure 1) as the external magnetic field has similar influence on both waves.
First and second minimums are at ηy = 76 and ηy = 80. In the XZ plane behaviors of these waves
strongly differ. Broadening of the 2D correlation function for the ordinary wave 2.6 times exceeds the
extraordinary one. Minimums for the ordinary and extraordinary waves are at ηx = 160 and ηx = 62,
respectively.

From expressions (8) and (14) follows that the displacement Δkx of the SPS in non-absorbing
medium

(1) is equal to zero because the dependence on kx is even. Plots of the parameter Δky as a function
of anisotropy factor χ for field aligned plasma irregularities are shown in Figure 3 at ξ = 5, μ = 0.06.
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Figure 3. Plots of the displacement of the SPS as
a function of anisotropy factor χ.

Figure 4. The width of the SPS in the XZ
plane versus parameter χ for the extraordinary
wave.

Curve 1 corresponds to the extraordinary wave, and curve 2 is devoted to the ordinary wave. At small
χ < 10 displacements of both waves are in opposite directions. Increasing anisotropy factor shift of
these waves is the same in the Y Z plane.

Figure 4 represents the broadening of the SPS of the extraordinary wave in the XZ plane at
ξ = 100. Numerical calculations show that varying orientation angle in the interval γ0 = 00 ÷ 30◦ the
width of the SPS in the XZ plane exceeds the width in the Y Z plane approximately three times.

Figure 5 depicts the phase structure function for the ordinary (curve 1) and extraordinary (curve
2) waves in the plane XZ at: α = 60◦, ξ = 10, χ = 10, γ0 = 0◦. Small-scale plasma irregularities having
characteristic spatial scale 160 meters are field aligned. The width of the extraordinary wave exceeds
the width of the ordinary wave 2.5 times. Curve 1 tends to saturation at ηx = 190, while curve 2 at
ηy = 300. Phase structure function in the main plane oscillates having approximately the same widths.

Using Equation (9) phase structure function allows to calculate the angle-of-arrivals in the
observation points in both XZ and Y Z planes. Numerical calculations show that 〈Θ2

x〉1/2 = 1.6′ ÷ 0.4′

Figure 5. Plots of the phase structure function
versus distance between observation points in the
XZ plane.

Figure 6. Scintillation index versus anisotropy
factor χ for different characteristic spatial scale
of plasma irregularities.
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at the anisotropy factor χ = 1 ÷ 4, while 〈Θ2
y〉1/2 = 0.7′ ÷ 0.1′ at χ = 1 ÷ 3.

Scintillation effects are investigated for the parameters: α = 60◦, σ2
n = 3 · 10−4, k0L = 105 (L ≈

104 km), Λf ≈ 100. Figure 6 depicts curves of the phase scintillation index of the 3MHz extraordinary
wave scattered on elongated (γ0 = 0◦) ionospheric plasma irregularities. Scintillation index is maximum
S4max = 0.97 at χ = 2.3 if characteristic spatial scale of anisotropic inhomogeneities is equal to
l‖ = 1.3 km (curve 1) S4max = 0.7 at χ = 2.6, l‖ = 1.6 km (curve 2), S4 max = 0.49 at χ = 3,
l‖ = 1.9 km (curve 3), S4 max = 0.33 at χ = 3.3, l‖ = 2.2 km (curve 4), S4 max = 0.22 at χ = 3.7,
l‖ = 2.5 km (curve 5). Scintillation level is varied between 5 ·10− 3 ≤ S4 ≤ 0.97 for the anisotropy factor
in the interval 1 ≤ χ ≤ 7. Hence, phase scintillation coefficient for small-scale plasma irregularities
fastly increases; reaching maximum it slowly decreases inversely δ proportional to the characteristic
linear scale.

Figure 7 illustrates the behavior of the scintillation index of scattered extraordinary electromagnetic
waves on the F -region anisotropic plasma irregularities having linear scale l‖ = 1.6 km and different
inclination angles to the external magnetic field. For elongated plasma irregularities (γ0 = 00) phase
scintillation index reaches maximum S4max = 0.7 at χ = 2.6 (curve 1), if γ0 = 50, S4max = 0.79 at
χ = 2.7 (curve 2), and if γ0 = 150, S4max = 0.94 at χ = 2.8 (curve 3). Hence, scintillation index fastly
grows in proportion to the orientation angle of elongated F-region ionospheric irregularities with respect
to the external magnetic field in the interval 1 ≤ χ ≤ 3.

Figure 7. Scintillation index versus anisotropy
factor χ for different orientation angle of anisotropic
plasma irregularities.

Figure 8. Fresnel filtering factor.

In Figures 6 and 7 phase scintillation index S4 slowly decreases inversely proportional to the
anisotropy factor χ. Low level scintillation is related with S4 ≤ 0.4, while S4 ≥ 0.4 describes high
scintillation level. According to [20], low scintillation level is associated with both positive and negative
intensity fluctuations, and high levels correspond to the positive intensity fluctuations.

Figure 8 depicts semi-log curve representing oscillations of the Fresnel filtering factor F (δ) =
4 sin2(δ2) versus parameter δ = ν/νf . The oscillation minima appear with ratio 1:

√
2 :

√
3 :

√
4 . . .

(so called “standard relationship” [14]). Figure 9 illustrates semi-log plots of the power spectrum
P

(⊥)
S (ν, L) for both the ordinary (curve 1) and extraordinary (curve 2) waves versus parameter δ at

fixed: k0L = 60 (L = 1 km), Vx = 100 m/sec, μ = 0.06, α = 60◦, γ0 = 0◦, χ = 5, ξ = 100 (l‖ = 1.6 km),
the Fresnel frequency νf = 10 mHz. Minimums of these curves satisfy the same condition.

Figure 10 depicts log-log plots of the spectral width of the power spectrum in Eq. (18) versus
parameter Ψ = ν0/νf , ν0 = k0Vx/2π. Curve 1 corresponds to the field-aligned plasma irregularities
(γ0 = 0◦), curve 2 — γ0 = 20◦, curve 3 — γ0 = 30◦. Breaking parameters are at: Ψ = 17 (curve 1),
Ψ = 19 (curve 2), Ψ = 21 (curve 3). The spectral width ν1S is approximately 10 mHz for 3 MHz incident
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Figure 9. The power spectrum of the phase
fluctuations versus parameter δ for the ordinary
and extraordinary waves.

Figure 10. The spectral width (1st moment)
of the power spectrum for different orientation
angle of elongated plasma irregularities.

electromagnetic wave. Scintillation period T1S = 1/ν1S is of the order of 100 sec. Using Equation (17)
numerical analyses show that ν1S < ν2S = 104 mHz.

5. CONCLUSION

Statistical characteristics of scattered electromagnetic waves in the turbulent magnetized ionospheric
plasma are calculated solving stochastic differential equation for the phase fluctuations taking into
account boundary condition, diffraction effects and polarization coefficients for both ordinary and
extraordinary waves. Variance and correlation function were obtained for arbitrary correlation function
of electron density fluctuations. These second order statistical moments allow to estimate the broadening
and shift of maximum of the SPS of scattered radiation, and also investigate scintillation effects in the
F region of the ionosphere using the experimental data. Numerical calculations are carried out for 3
MHz incident wave and 3D anisotropic spectral function of electron density fluctuations characterizing
anisotropic plasma irregularities containing both anisotropy factor and orientation angle of elongated
plasma irregularities with respect to the external magnetic field.

It is shown that displacement and width of the SPS for the ordinary and extraordinary waves
tends to the saturation increasing anisotropy factor. Shift of maximum of the SPS strongly depends on
the orientation angle of anisotropic plasma irregularities particularly, and varying angle in the interval
0◦–30◦ displacement of its maximum increases six times. The angle-of-arrivals in the main plane is less
than in normal direction.

Phase scintillation index for small-scale irregularities fast growth in proportion to the orientation
angle and reaching maximum slowly decreases inversely proportional to the characteristic linear scale
of plasma irregularities. Low level scintillations are associated with both positive and negative intensity
fluctuations, while high levels primarily correspond to positive intensity fluctuations.

Sinusoidal oscillations are observed in the intensity spectrum and are attributed to a Fresnel filtering
effect for plasma irregularities having characteristic spatial scale less than the Fresnel radius. These
oscillations satisfy the “standard relationship”. Scintillation level allows calculating the spectral width
(first ν1S and second ν2S moments), and computing the power spectrum and scintillation period. If
“frozen-in” elongated irregularities drift along the X-axis with the velocity 100 m/sec, spectral width
ν1S ∼ 10 mHz; period is 100 sec; ν1S < ν2S = 104 mHz. If elongated plasma irregularities are moving
along the Y -axis, T1S ∼ 80 sec and ν1s < ν2s = 118 mHz. Knowledge data of these oscillations allow
to calculate the velocity of plasma irregularities in the principal and perpendicular planes, to estimate
characteristic spatial scales and the r.m.s. electron density fluctuations for plasma irregularities smaller
than the Fresnel radius.



Progress In Electromagnetics Research C, Vol. 84, 2018 21

ACKNOWLEDGMENT

The work has been supported by the International Science and Technology Center (ISTC) under Grant
# G-2126 and Shota Rustaveli National Science Foundation under Grant # FR/3/9-190/14.

REFERENCES

1. Ishimaru, A., Wave Propagation and Scattering in Random Media. Vol. 2, Multiple Scattering,
Turbulence, Rough Surfaces and Remote Sensing, Academic Press, New York-San Francisco-
London, 1978.

2. Rytov, S. M., Yu. A. Kravtsov, and V. I. Tatarskii, Principles of Statistical Radiophysics. Vol. 4,
Waves Propagation through Random Media, Springer, Berlin, New York, 1989.

3. Wernik, A. W., J. A. Secan, and E. J. Fremouw, “Ionospheric irregularities and scintillation,”
Advances Space Research, Vol. 31, No. 4, 971–981, 2003.

4. Z.-W. Xu, J. Wu, and Z.-S. Wu, “A survey of ionospheric effects on space–based radar,” Waves in
Random Media, Vol. 14, 189–273, 2004.

5. Aarons, J., “Global morphology of ionospheric scintillation,” Proc. IEEE, Vol. 70, 360–378, 1982.
6. Yeh, K. C. and C. H. Liu, “Radio wave scintillations in the ionosphere,” Proc. IEEE, Vol. 70,

324–360, 1982.
7. Jandieri, G. V., A. Ishimaru, V. G. Jandieri, A. G. Khantadze, and Zh. M. Diasamidze, “Model

computations of angular power spectra for anisotropic absorptive turbulent magnetized plasma,”
Progress In Electromagnetics Research, Vol. 70, 307328, 2007.

8. Jandieri, G. V., Zh. M. Diasamidze, and M. R. Diasamidze, “Scintillation spectra of scattered
electromagnetic waves in turbulent magnetized plasma,” Journal of Basic and Applied Physics,
Vol. 2, 224–234, 2013.

9. Jandieri, G. V., Zh. M. Diasamidze, and M. R. Diasamidze, “Scintillation effects and the spatial
power spectrum of scattered radio waves in the ionospheric F region,” Journal of Advances in
Physics, Vol. 13, 4593–4604, 2017.

10. Jandieri, G. V., Zh. M. Diasamidze, M. R. Diasamidze, and I. G. Takidze, “Second order statistical
moments of the power spectrum of ionospheric scintillation,” Earth Science, Vol. 6, 142–148, 2017.

11. Jandieri, G., A. Ishimaru, B. Rawat, O. Kharshiladze, and Zh. Diasamidze, “Power spectra of
ionospheric scintillation,” Advanced Electromagnetics, Vol. 6, 42–51, 2017.

12. Ginzburg, V. L., Propagation of Electromagnetic Waves in Plasma, Gordon and Beach, New York,
1961.

13. Jandieri, G. V., A. Ishimaru, N. F. Mchedlishvili, and I. G. Takidze, “Spatial power spectrum of
multiple scattered ordinary and extraordinary waves in magnetized plasma with electron density
fluctuations,” Progress In Electromagnetics Research M, Vol. 25, 87–100, 2012.

14. Jandieri, G. V. and A. Ishimaru, “Some peculiarities of the spatial power spectrum of scattered
electromagnetic waves in randomly inhomogeneous magnetized plasma with electron density and
external magnetic field fluctuations,” Progress In Electromagnetics Research B, Vol. 50, 77–95,
2013.

15. Jandieri, G. V., ““Double-humped effect” in the turbulent collision magnetized plasma,” Progress
In Electromagnetics Research M, Vol. 48, 95–102, 2016.

16. Gershman, B. N., L. M. Eruxhimov, and Yu. Ya. Yashin, Wavy Phenomena in the Ionosphere and
Cosmic Plasma, Moscow, Nauka, 1984 (in Russian).

17. Gavrilenko, V. G., A. A. Semerikov, and G. V. Jandieri, “On the effect of absorption on multiple
wave-scattering in magnetized turbulent plasma,” Waves in Random Media, Vol. 9, 427–440, 1999.

18. Gavrilenko, V. G., A. V. Sorokin, G. V. Jandieri, and V. G. Jandieri, “Some properties of the
angular power distribution of electromagnetic waves multiply scattered in a collisional magnetized
plasma,” Plasma Physics Report, Vol. 31, 604–615, 2005.



22 Jandieri et al.

19. Bowhill, S. A., “Statistics of a Dario wave diffracted by a random ionosphere,” J. Res. Nat. Bur.
Stand. Sect. D, Vol. 65D, No. 3, 275–292, 1961.

20. Rufenach, C. L., “Power-law wavenumber spectrum deduced from ionospheric scintillation
observations,” Journal of Geophysical Research, Vol. 77, 4761–4772, 1972.

21. Raizada, S. and H. S. S. Sinha, “Some new features of electron density irregularities over SHAR
during strong spread F,” Ann. Geophysicae, Vol. 18, 141–151, 2000.

22. Chen, A. A. and G. S. Kent, “Determination of the orientation of ionospheric irregularities causing
scintillation of signals from earth satellites,” Journal of Atmospheric and Terrestrial Physics,
Vol. 34, 1411–1414, 1972.

23. Kvavadze, N. D., Z. L. Liadze, N. V. Mosashvili, and Z. S. Sharadze, “The phenomenon of F-
scattering and drift of small-scale irregularities at night low latitudes F-region of an ionosphere,”
Geomagnetizm and Aeronomy, Vol. 28, 139–141, 1988.

24. Shkarofsky, I. P., “Generalized turbulence space-correlation and wave-number spectrum-function
pairs,” Canadian Journal of Physics, Vol. 46, 2133–2153, 1968.

25. Kung, C. Y. and C.-H. Liu, “Radio wave scintillations in the ionosphere,” IEEE Proceedings,
Vol. 70, 324–360, 1982.

26. Bakhmet’eva, N. V., V. N. Bubukina, Yu. A. Ignat’ev, G. S. Bochkarev, V. A. Eremenko,
V. V. Kol’sov, I. V. Krasheninnikov, and Yu. N. Cherkashin, “Investigation by backscatter radar
irregularities produced in ionospheric plasma heating experiments,” Journal of Atmospheric and
Terrestrial Physics, Vol. 59, 2257–2263, 1997.


