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Impact of Medium Randomness on Radar Detection Accuracy
with Plane E-Wave Polarization

Hosam El-Ocla*

Abstract—Investigation of backscattering enhancement of waves propagation in random medium is a
crucial factor in remote sensing. Medium effects on waves backscattering are important to measure the
error rate in radar detection of targets with a finite size. In this paper, we present numerical results for
the backscattering enhancement factor assuming different medium parameters and target configuration.
Convex illumination region of partially convex surface is assumed. We consider targets to take large
sizes of about five wavelengths and a plane wave incidence in the far field. Waves propagation and
scattering from objects are calculated in free space and randommedium while considering E-polarization
of incident wave.

1. INTRODUCTION

Electromagnetic waves formulation is a task that have attracted researchers over decades. Several
interesting methods were presented such as Finite Element Method (FEM) [1] and Method of
Moment [2]. One of the major concerns of these methods is the requirement of a relatively long
computational time in addition to the memory space that would be barely available particularly for
large size objects needed in the realistic bodies such as aircraft. Fast Multiple Method (FMM) [3] is
alternative method aiming to reduce the processing time but yet not that enough for large and targets
having complex cross sections. However, these methods presented high level of accuracy.

Another successful method that uses a current generator operator has proved to be efficient to
formulate waves scattering from conducting cylinders. This method was introduced in [4, 5] based
on Yasuura’s method [6]. Current generator method (CGM) is valid for an arbitrary shaped object
that can be embedded in a random medium such as turbulence. The current generator operator is to
calculate the electromagnetic field on the whole surface of the cylinder including the shadow region.
In this regard, results for radar cross-section (RCS) of typical convex cylinders were presented in [7].
On the other hand, objects having inflection surfaces formed by concave–convex boundaries should be
considered to meet the expectations of radar applications. Investigating target effects was pursued in
some articles [8–10]. Our results are in excellent agreement with those assuming a cylinder with circular
cross section in free space in [11]. Lately, CGM was verified using FDFD method and proved a fair
agreement with an accuracy below 5% error rate for objects in random media and even less error in the
free space [12].

To probe the accuracy of RCS in disordered medium, backscattering enhancement (BE)
phenomenon should be considered. BE is produced due to the double passage effect on waves
propagation in a random medium and this was examined in several articles [13–16]. Accordingly,
the ideal BE factor in random medium is two. This BE factor might be altered by several parameters
such as object configuration and medium randomness parameters. Deviation of the BE factor from
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two reveals having an error in the RCS value and this should be avoided through precious selection
of the range where the variation in the BE factor is minimal. In this paper, we work on the analysis
of BE and consider both medium fluctuations intensity expressed by the medium correlation function
and the spatial coherence length (SCL) of waves around the object. While a plane is flying, it may
go through different media, such as fog, haze, mist, and rain, where these parameters differ and that
is why we consider media having various values in our simulation. Targets are to take large sizes up
to five wavelengths with convex illumination region. Axial polarization (E-wave incidence) is assumed.
The time factor exp(−iwt) is assumed and suppressed in the following section.

2. SCATTERING PROBLEM

Geometry of the problem is shown in Figure 1. A random medium is assumed as a sphere of radius L
around a target of the mean size a � L, and also to be described by the dielectric constant ε(r), the
magnetic permeability μ, and the electric conductivity σ. For simplicity ε(r) is expressed as

ε(r) = ε0[1 + δε(r)] (1)

where ε0 is assumed to be constant and equal to free space permittivity and δε(r) is a random function
with

〈δε(r)〉 = 0, 〈δε(r1)δε(r2)〉 = B(r1, r2) (2)

and
B(r1, r2) � 1, kl(r) � 1 (3)

Here, the angular brackets denote the ensemble average; B(r1, r2), l(r) are the local intensity and local
scale-size of the random medium fluctuation, respectively; k = ω

√
ε0μ0 is the wavenumber in free space.

Also μ and σ are assumed to be constant; μ = μ0, σ = 0. For practical turbulent media the condition
in Eq. (3) may be satisfied. Therefore, we can assume the forward scattering approximation and the
scalar approximation [17]. As shown in Figure 1, when an incident wave propagated along the z axis is
scattered and observed at a point close to the z axis, we can approximately express Eq. (2) under the
condition in Eq. (3) as follows:

B(r1, r2) = B(ρ1 − ρ2, z+, z−)

= B(z+) exp

[
−(ρ1 − ρ2)

2 + z2−
l2(z+)

]
(4)
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Figure 1. Geometry of the problem of wave scattering from a conducting cylinder in a random medium.
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where r = (ρ, z), ρ = ixx+ iyy, z+ = (z1 + z2)/2, z− = z1 − z2, and l is the local scale-size at z+, and
where

B(z+) =

{
B0, z0 ≤ z+ ≤ L
B0(z+/L)

−n, z+ ≥ L
(5)

l(z+) = l0 (6)

z0 = a. (7)

where n denotes the normalized thickness of transition layer from the random medium to free space;
n > 1 and n 	= 2, 3.

Consider the case where a directly incident wave is produced by a line source f(r′) distributed
uniformly along the y axis. Then, the incident wave is cylindrical and becomes plane approximately
around the target because the line source is very far from the target. The line source is located at rt,
that is beyond the target propagates and illuminates the target and induces a surface current on the
target. A scattered wave from the target is produced by the surface current and propagates back to the
observation point that coincides with the source point. That is, the monostatic scattering is considered
under the condition that the backscattering enhancement occurs [18]. The target is assumed to be a
conducting cylinder of which cross-section is expressed by

r = a[1− δ cos 3(θ − φ)] (8)

where φ is the rotation index and δ is the concavity index. We can deal with this scattering problem
two dimensionally under the condition in Eq. (3); therefore, we represent r as r = (x, z). Assuming an
axial polarization of incident waves (E-wave incidence), we can impose the Dirichlet boundary condition
for wave field u(r) on the cylinder surface S. That is, u(r) = 0, where u(r) represents Ey.

Here, let us designate the incident wave by uin(r), the scattered wave by us(r), and the total wave
by u(r) = uin(r) + us(r). According to our method [5], using the current generator YE and Green’s
function in random medium G(r | r′), we can express the scattered wave as

us(r) =

∫
S
dr1

∫
S
dr2 [G(r | r2)YE(r2 | r1)uin(r1 | rt)] (9)

Here, YE is the operator that transforms incident waves into surface currents on S and depends only
on the scattering body. The current generator can be expressed in terms of wave functions that satisfy
Helmholtz equation and the radiation condition. That is the surface current is obtained as∫

S
YE(r2 | r1)uin(r1 | rt) dr1 
 Φ∗

M (r2)A
−1
E

∫
S

〈〈
ΦT

M(r1), uin(r1 | rt)
〉〉

dr1 (10)

where ∫
S

〈〈
ΦT

M (r1), uin(r1 | rt)
〉〉

dr1 ≡
∫
S

[
φm(r1)

∂uin(r1 | rt)
∂n

− ∂φm(r1)

∂n
uin(r1 | rt)

]
dr1 (11)

Above equation is sometimes called “reaction” named by Rumsey [19]. In Eq. (10), the basis functions
ΦM are called the modal functions and constitute the complete set of wave functions satisfying the
Helmholtz equation in free space and the radiation condition; ΦM = [φ−N , φ−N+1, . . . , φm, . . . , φN ], Φ∗

M

and ΦT
M denote the complex conjugate and the transposed vectors of ΦM , respectively; M = 2N + 1 is

the total mode number; φm(r) = H
(1)
m (kr) exp(imθ); AE is a positive definite Hermitian matrix given

by

AE =

⎛
⎝

(φ−N , φ−N ) . . . (φ−N , φN )
...

. . .
...

(φN , φ−N ) . . . (φN , φN )

⎞
⎠ (12)

in which its m,n element is the inner product of φm and φn:

(φm, φn) ≡
∫
S
φm(r)φ∗

n(r)dr (13)

The YE is proved to converge in the sense of mean on the true operator when M → ∞.
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Assuming uin(r1 | rt) = G(r1 | rt), the average intensity of backscattering wave for E-wave incidence
is given by

〈|us(r)|2〉 =

∫
S
dr01

∫
S
dr02

∫
S
dr′1

∫
S
dr′2YE(r01 | r′1)Y ∗

E(r02 | r′2)
×〈G(r | r′1)G(r | r01)G∗(r | r′2)G∗(r | r02)〉 (14)

When we consider wave propagation through a continuous random medium, Green’s function in
Equation (14) has approximately a complex Gaussian probability distribution in an isotropic random
medium [5, 20]. As a result, to solve the fourth moment of Green’s function in Equation (14), structure
function of the turbulence D is used [21]. Random medium condition in Equation (3) assumes that the
randomness intensity, B, is low enough such that the medium has a quite small number of particles,
which leads to having large separations, ρ, among particles. In [22], it was demonstrated that D
agrees better with the two-dimensional isotropic relation for wider ρ among particles than for narrower
ρ. It was deduced that a random medium can be assumed as a two-dimensional turbulence in the
enstrophy inertial range. This was derived and compared with calculations based on wind data from
5754 airplane flights. Consequently, three-dimensional problems can be analyzed two-dimensionally
under the condition of Equation (3) in the absence of vortex stretching the nonlinear inertial force in
the direction of the y axis of the cylinder that is aligned with the line source. We can obtain the RCS
by using Equation (14)

σ =
〈|us(r)|2〉 · k(4πz)2 (15)

3. NUMERICAL RESULTS

Although the incident wave becomes sufficiently incoherent, we should pay attention to the spatial
coherence length of the incident wave around the target (SCL) [8–10]. The degree of spatial coherence
is defined by

Γ(ρ, z) =
〈G(r1 | rt)G∗(r2 | rt)〉

〈| G(r0 | rt) |2〉 (16)

where r1 = (ρ, 0), r2 = (−ρ, 0), r0 = (0, 0), rt = (0, z). SCL is the length around the object in
the far field where the electromagnetic waves maintain a certain degree of coherence determined
by Equation (16). In our results, we assume B(r, r) = B0 and kB0L = 4.8π, 0.48π for B0 =
8 × 10−4, 8 × 10−5, respectively; therefore the coherence attenuation index α defined as k2B0Ll/4
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Figure 2. The degree of spatial coherence of an incident wave about the cylinder.
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given in Reference [5] is 24π2, 69.6π2, 141.6π2 for B0 = 8 × 10−4 and α = 2.4π2, 6.96π2, 14.16π2 for
B0 = 8× 10−5, respectively, which means that the incident wave becomes sufficiently incoherent. The
SCL is defined as the 2kρ at which | Γ |= e−1 
 0.37. Figure 2 shows a relation between SCL and kl
in this case and that the SCL is equal to 3, 5.2 and 7.5 assuming B0 is 5× 10−4. These various values
of B0 and SCL are postulated in our calculations to evaluate the performance of the backscattering
enhancement in different media.

Here, we point out that N in Eq. (12) depends on the target parameters and polarization of incident
waves. For example, we choose N = 24 at δ = 0.1 for E-wave incidence in the range of 0.1 < ka < 5;
at ka = 20, we choose N = 40 at δ = 0.1. As a result, our numerical results are accurate because
these values of N lead to convergence of RCS. CGM is valid for large sizes of objects and that should
enlarge N in a way that would maximizes the calculation time. To have a reasonable calculation time,
computation of scattering data has been restricted to the interval 0.1 < ka < 30 where the target
mean size a is about five wavelengths. It is quite difficult to exceed this ka’s limit since larger ka
requires quite large M , used in Equations (10) and (11), which consequently enlarges the calculation
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Figure 3. NRCS vs. target size for targets in random media for SCL = 3 where (a) δ = 0, (b) δ = 0.1,
(c) δ = 0.2.
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time dramatically. This implies that CGM can be used in a range of frequencies from HF to about VHF
depending on the object size a.

Based on the assumption of waves coherence completion in the propagation of distance 2a, let us
define the effective illumination region (EIR) as the surface that is illuminated by the incident wave and
restricted by the SCL. Therefore, we expect that the target configuration including δ and ka together
with SCL is going to influence the EIR and accordingly NRCS in a way that will be analyzed in the
following results.

To evaluate the BE behavior, we conduct numerical results for the normalized RCS (NRCS),
defined as the ratio of RCS in random media σ to RCS in free space σ0. In Figures 3 to 5, we analyze
results for effects of random medium parameters including SCL and fluctuations intensity B0 defined in
Equations (2) to (5). Also, we discuss effects of target configuration including normalized target mean
size ka and concavity index δ on the NRCS.

We consider that RCS calculation is based on the plane waves scattering from cylinders in free
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Figure 4. As Figure 3, but for SCL = 5.2.
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Figure 5. As Figure 3, but for SCL = 7.5.

space as the ideal reference data. When ka −→ 0, the object tends to be a point target where the BE
factor expressed in NRCS has the value of two as a result of the double passage effect [13]. Deviation of
NRCS from two reflects the error rate in the RCS in random medium compared to the free space case
and our goal is to select that range of ka where NRCS keeps having this value with minimum variation.
On the other hand, when a plane is sensed at different spots while it is moving, RCS would vary as
a result of the backscattering from different illumination regions where δ is different, e.g., compare
between fuselage incidence to wings incidence and other parts. Minimizing this difference in RCS and
NRCS is another challenge to reduce the error in object identification.

In the range of a ≤ λ, NRCS suffers intense oscillations owing to the effect of creeping waves within
the resonance region [23]. To avoid this region of NRCS fluctuations, monopulse radar system was
proposed in [24]. It should be noted that this resonance effect is not that severe as in the case of H-wave
incidence shown in [25]. Scattered waves are in-phase within the SCL and out-of-phase outside of SCL
so they add up sometimes and cancel out in other times according to the directions of scattered rays
and also the width of the EIR and that in turn contribute to the strength of oscillations. When δ has
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smaller value, EIR shrinks while having smaller number of stationary and inflection points especially
those complex ones [26, 27] and, therefore, NRCS oscillations have lower peaks and this reveals less
impact of resonance; e.g., compare Figure 3(a) to Figures 3(b) and 3(c), Figure 4(a) to Figures 4(b)
and 4(c) and Figure 5(a) to Figures 5(b) and 5(c). We can see such effects of complex inflection points
as well with intricate cross-sections, where δ has bigger values, on NRCS as it has irregular fluctuations
compared to small values of δ including circular cylinder where it is a typical convex surface with δ = 0.
This effect of complex inflection points is valid in all ranges of target size compared to the wavelength.
With wider SCL around the object, waves are more in-phase, so the resonance has less peaks of NRCS;
e.g., compare Figure 3(a) to Figures 4(a) and 5(a).

In the range a > λ, NRCS oscillations have less strength away from the resonance region particularly
with δ = 0. It is noticed that peak-to-peak NRCS oscillations gradually reduce because of shortage of
the generated surface current. Hence, effects of medium parameters including B0 and SCL would decay
when a � λ. On the other hand, shadow region would have smaller contributions to the scattered
waves when ka � SCL where the EIR acts as being a flat surface.

NRCS is closer to two with weaker correlation function B0 in Equation (5) as a result of the
relatively low absorption of the medium which, in turn, enlarges the scattering waves intensity, defined
in Equation (14), in random medium compared to the free space case and this agrees with [28]. This
is more obvious when the object contour has less complexity (e.g., compare Figure 3(a) to Figures 3(b)
and 3(c)). As pointed out earlier, stationary and complex inflection points would contribute excessive
waves when the cross section of the object is more complex (e.g., δ = 0.2) which are absent when δ = 0
and as a result, B0 has more effect on the NRCS of such complex contour; e.g., compare Figure 3(c) to
Figure 3(a). When SCL is small, waves transverse suffers relatively acute turns on the edges of particles.
Consequently, waves scatter in a way spreading in wider range through medium particles, and hence
B0 would have more effect on the scattering intensity. In other words, NRCS differs obviously with B0

when SCL has a shorter length (SCL = 3) compared to wider length of SCL (SCL = 5.2 and 7.5) as
shown in Figures 3(a), 4(a) and 5(a) compared to other results where NRCS is evidently different with
B0.

As a result, propagation of waves in a medium where its correlation intensity B0 is low and/or
having a wider SCL would reduce the impact of the medium on the RCS, and consequently, NRCS
performance would be obviously acting as in the double passage effect. This implies that the deviation
of the BE factor from two is limited, and consequently, the error rate is minimized. This low error rate
can be more supported in the high frequency range where a � λ.

4. CONCLUSION

In this paper, we have numerically analyzed the effect of medium parameters and object configuration
on the BE. RCS of a conducting cylinder is calculated numerically in free space and random medium
such as turbulence. Using RCS, we could obtain the BE factor represented in the normalized RCS. We
have considered medium randomness parameters including the spatial coherence length (SCL) around
the target and the fluctuations intensity B. We have focused on the E-polarization using the CGM.

Mainly we aim to improve the radar detection accuracy through minimizing the deviation strength
of the BE factor. This is to reduce the error rate of the RCS calculation in random medium. To achieve
this goal, electromagnetic waves should be in the high frequency range where a � λ. In this range,
radar detection would be more precious away from the effect of the resonance region where the intense
oscillations in the BE factor would reflect inaccurate RCS calculation. In other words, resonance effect
has a limitation on the CGM accuracy at the low frequency band and hence CGM is a high frequency
method. Also, in the high frequency range, medium parameters and object configuration effects would
be relatively minimal, and the double passage would have a dominant effect.
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