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Algebraic Algorithm for Mixed Near-Field and Far-Field Sources
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Abstract—Using uniform linear array (ULA), a passive localization algorithm is presented for mixed
far-field (FF) and near-field (NF) signals scenarios. Based on the high-order cumulant (HOC) technique,
a special Hermite matrix is constructed by three fourth-order cumulant matrices, which are calculated
by dividing the ULA into two sub-arrays. Then, the special matrix of signals is decomposed to obtain
the source subspace. According to ESPRIT algorithm, two transformation matrices of all sub-arrays
can be obtained. Meanwhile, the two transformation matrixes could be used to calculate the range
and angles of arrival (AOA) of NF sources, as well as AOAs of FF sources. Moreover, compared with
two-stage MUSIC (TSMUSIC) and four-order cumulant MUSIC method, the proposed algorithm has
higher accuracy for localisation of both FF and NF sources without any spectral search.

1. INTRODUCTION

Passive mixed source localisation using a sensor array has many important application areas such as
radar and sonar [1, 2]. For far-field (FF) sources, only DOA parameters are needed to be estimated.
However, for near-field (NF) sources, both the DOA and range parameters are required since the plane
wave-front assumption is no longer valid. Although various algorithms focus on the pure FF or NF
sources scenario [3–7], it is more realistic in many applications that FF and NF sources coexist, so that
several typical solutions have been developed to solve this problem. In the mixed NF and FF sources
scenario, the above mentioned algorithms may fail to distinguish and locate the mixed sources.

Recently, Liang and Liu [8] provided a four-order cumulant multiple signal classification
(Cum4MUSIC) method to solve the mixed sources localization issue. This algorithm constructs a
special HOC matrix to eliminate the range parameter in the steering vectors and estimates the DOAs of
both FF and NF sources. With the estimated DOA estimates, the range parameters can be obtained by
1-D spectral search. It must be noticed that the steering vectors of NF sources can be approximated to
high order polynomials by Taylor expansion. In the Fresnel Region, we often consider that higher than
second order items of the polynomials are approximately equal to zero [9], i.e., the steering vectors of
NF sources can be described as the quadratic function of the indexes of all sensors in the array which is
uniformized by the half of free-space wavelength. However, the prior knowledge of which signals are NF
or FF sources must be known. In [10], Liu and Sun used the spatial differencing technique to classify
the NF sources from the mixed sources after the estimations of FF sources. The methods in [11, 12] are
the promotion of the algorithms in [9, 10] from 2-D (AOA and range) to 3-D (azimuth angle, elevation
angle and range). However, all aforementioned high-resolution methods depend on the spatial spectral
search, which implies a very high computational cost.

In this paper, a mixed sources localization method is presented, which has low computational
complexity. By dividing the ULA into two sub-arrays, the proposed method takes full advantage of
the AOAs information of each source at different phase reference points to classify the sources rapidly,
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and localizes NF sources efficiently without any spectral search. Additionally, the proposed algorithm
would avoid parameter matching and two-dimensional searching problems.

2. SIGNAL MODEL

Consider K (near-field or far-filed) narrowband and independent signal sources, impinging on a uniform
array with 2L+1 omnidirectional sensors. From left to right, the sensors are indexed by −L, −(L− 1),
. . . , L − 1, L, and the centre of array is set to be the phase reference point whose index is zero. The
signals received by the l-th sensor can be expressed as

zl(t) =
K∑

k=1

sk(t)ejτlk + nl(t) l = −L,−L + 1, . . . , L− 1, L (1)

where sk(t) is the k-th narrowband source, nl(t) the additive Gaussian noise, and τk,l the phase shift
associated with the k-th source propagation time delay between the phase reference point located at the
0-th and the l-th sensor. It is straightforward to show that the phase shift between the phase reference
point and l-th sensor can be expressed as [13]

τk,l =
2π

λ

(√
r2
k + (ld)2 − 2rkld sin θk − rk

)
(2)

where λ denotes the signal free-space wavelength. θk ∈ [−π/2, π/2] is the AOA of the k-th source; and
rk ∈ [0.62(D3/λ)1/2, +∞) stands for the range of the k-th source between the phase reference point; D
represents the aperture of the array; d is the constant inter-element spacing, denoted as d ≤ λ/4 [14, 15].
According to the Taylor expansion, τk,l can be approximately given as follows [16]

τk,l = αkl + βkl
2 + O(l3) ≈ αkl + βkl

2

αk = −2π
d

λ
sin θk

βk = π
d2

λrk
cos θk

(3)

Using the above approximation of τk,l, the outputs of the l-th sensor can be described as

zl(t) =
K∑

k=1

sk(t)ej(αkl+βkl2) + nl(t) (4)

Throughout the paper, the following hypotheses are assumed to hold:

1) The incoming source signals are statistically independent and zero-mean stationary random process
with nonzero kurtosis;

2) The sensor noise is the additive (white or color) Gaussian one, which is independent from the source
signals;

3) The incoming signals are numbered 1 to K, and the signal numbers are known.

3. PROPOSED

The ULA is divided into two overlapping sub-arrays. The first sub-array comprises the first 2L sensors,
while the other sub-array comprises the last 2L sensors. The outputs of the two sub-arrays can be given
by

Z1(t) = [z−L(t), . . . , z0(t), . . . , zL−1(t)]T

Z2(t) = [z−L+1(t), . . . , z0(t), . . . , zL(t)]T
(5)

It is obvious that the common characteristic of near-field and far-field sources is αk, and the differences
consist in that βk is approximately equal to zero for far-field sources but nonzero for near-field sources,
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which means that we can construct some cumulant matrices that contain the common term αk no
matter whether these sources are near-field sources or far-field sources. In this way, αk exists in both
far-field and near-field sources, which can be estimated by the conventional high-resolution algorithms.

High-order cumulant technique can increase both the estimation accuracy and the degree of freedom
for an array with given sensor number [17, 18]. In addition, higher than third order cumulant of Gaussian
random process would be equal to zero [19]. Motivated by these properties, fourth-order cumulant is
chosen as a key technique in this paper.

Firstly, the proposed algorithm begins with the fourth-order cumulant of the array outputs. The
symmetry definition of fourth-order cumulant of the zero-mean stationary random process can be given
as follows:

cum(zi(t), zp(t), z∗q (t), z∗j (t))

= cum

(
K∑

k=1

ej(αki+βki2)sk(t),
K∑

k=1

ej(αkp+βkp2)sk(t),
K∑

k=1

e−j(αkq+βkq2)s∗k(t),
K∑

k=1

e−j(αkj+βkj2)s∗k(t)

)

+cum(ni(t), np(t), n∗q(t), n
∗
j (t))

=
K∑

k=1

ejαk[(i−q)−(j−p)]+jβk[(i2−q2)−(j2−p2)]γk

i, j, p, q ∈ {−L,−L + 1, . . . , L} (6)

where γk = cum(sk(t), sk(t), s∗k(t), s∗k (t)) is the kurtosis of the k-th signal, and i, j, p, q are the indexes
of sensors. It is noticed that both i − q 6= j − p and i2 − q2 = j2 − p2 are required to retain the αk

and remove the βk. For this purpose, the parameters should be set as q = −i and p = −j. Thus,
Eq. (6) becomes

cum(zi(t), z−j(t), z∗−i(t), z
∗
j (t)) =

K∑

k=1

ejαk2(i−j)γk i, j ∈ {−L,−L + 1, . . . , L} (7)

Based on the above observation, a special fourth-order cumulant matrix C1 ∈ C2L×2L which only
contains the data received by sub-array 1 can be defined as

C1(L + 1 + i, L + 1 + j) = cum
(
zi(t), z−1−j(t), z∗−1−i(t), z

∗
j (t)

)
=

K∑

k=1

ej(αk−βk)[(2i+1)−(2j+1)]γk

i, j ∈ {−L,−L + 1, . . . , L− 1}. (8)

Similarly, another special fourth-order cumulant matrix C2 of sub-array 2 can be given by

C2(L + i, L + j) = cum
(
zi(t), z1−j(t), z∗1−i(t), z

∗
j (t)

)
=

K∑

k=1

ej(αk+βk)[(2i−1)−(2j−1)]γk

i, j ∈ {−L + 1,−L + 2, . . . , L} (9)

To construct a Hermite matrix, a cross correlation matrix of sub-array 1 and sub-array 2 is needed,
which is defined as matrix C3. The matrix C3 is actually the cross fourth-order cumulant matrix of
sub-array 1 and sub-array 2.

C3(L + 1 + i, L + j) = cum
(
zi(t), z1−j(t), z∗−1−i(t), z

∗
j (t)

)
=

K∑

k=1

ej(αk−βk)(2i+1)e−j(αk+βk)(2j−1)γk

i ∈ {−L,−L + 1, . . . , L− 1}, j ∈ {−L + 1,−L + 2, . . . , L} (10)

Then, collecting the three matrices C1, C2, and C3, a 4L× 4L Hermite matrix is described as

C =
[

C1 CH
3

C3 C2

]
(11)
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Note that the matrix C can be expressed in a compact matrix form
C = BCγBH (12)

where Cγ = diag[γ1, γ2, . . . , γK ], and B is the steering matrix. According to the way of array partition,
matrix B can be divided into two parts

B =
[

B1

B2

]
(13)

where B1, B2 ∈ C2L×K are the steering matrixes of sub-array 1 and sub-array 2, which is given by

B17 =




ej(α1−β1)(−2L+1) ej(α2−β2)(−2L+1) . . . ej(αK−βK)(−2L+1)

ej(α1−β1)(−2L+3) ej(α2−β2)(−2L+3) . . . ej(αK−βK)(−2L+3)

...
...

. . .
...

ej(α1−β1)(2L−1) ej(α2−β2)(2L−1) . . . ej(αK−βK)(2L−1)




B2 =




ej(α1+β1)(−2L−1) ej(α2+β2)(−2L−1) . . . ej(αK+βK)(−2L−1)

ej(α1+β1)(−2L+1) ej(α2+β2)(−2L+1) . . . ej(αK+βK)(−2L+1)

...
...

. . .
...

ej(α1+β1)(2L+1) ej(α2+β2)(2L+1) . . . ej(αK+βK)(2L+1)




(14)

To estimate the AOAs of mixed near-field and far-field sources, the singular decomposition ofC should
be implemented by

C = VΣVH =
K∑

k=1

µkvkv
H
k (15)

where Σ ∈ CK×K is a diagonal matrix which contains nonzero eigenvalues; V∈ C4L×K is the matrix of
eigenvectors; µk is nonzero eigenvalue; vk is its corresponding eigenvector. Hence Vs = [v1, v2, . . . , vk]
spans the signal subspace of C.

Similarly, Vs can also be divided into two vectors V1, V2 ∈ C2L×K

Vs =
[

V1

V2

]
(16)

It is obvious that Vs and B span the same signal subspace, and then the spatial linear transformation
can be described in following form as

Vs =
[

V1

V2

]
= BT =

[
B1T
B2T

]
(17)

where T is a K ×K full rank transformation matrix. It is noticed that B1 and B2 are vandermonde
matrices. In order to avoid the spatial spectrum search and improve the estimation accuracy, we divide
V1, V2, B1 and B2 as

V1 =
[

V1,F

last row

]
=

[
first row

V1,B

]

V2 =
[

V2,F

last row

]
=

[
first row

V2,B

]

B1 =
[

B1,F

last row

]
=

[
first row

B1,B

]

B2 =
[

B2,F

last row

]
=

[
first row

B2,B

]

(18)

According to Eq. (17), the following equations hold
V1,F = B1,FT
V1,B = B1,FΦ1T
V2,F = B2,FT
V2,B = B2,FΦ2T

(19)
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where Φ−d/2 and Φd/2 are K ×K diagonal matrixes

Φ1 = diag
[
ej2(α1−β1), ej2(α2−β2), . . . , ej2(αK−βK)

]

Φ2 = diag
[
ej2(α1+β1), ej2(α2+β2), . . . , ej2(αK+βK)

] (20)

Then, Eq. (19) can be expressed as

V1,B = V1,FT−1Φ1T = V1,FΨ1

V2,B = V2,FT−1Φ2T = V2,FΨ2

(21)

Based on the fact that V1 and V2 are column full rank matrices, and two transformation matrices Ψ1,
Ψ2 ∈ CK×K can be expressed as

Ψ1 =
(
VH

1,FV1,F

)−1
VH

1,FV1,B

Ψ2 =
(
VH

2,FV2,F

)−1
VH

2,FV2,B

(22)

The singular decomposition of Ψ1 and Ψ2 should be implemented by

Ψ1 = THΦ1T

Ψ2 = THΦ2T
(23)

Thus, αk and βk can be estimated by singular decomposition of Ψ1 and Ψ2 [20].
It must be noticed that when the k-th source is FF source, Φ1(k, k) = Φ2(k, k), but not for near

field source. Thus, this method can classify rapidly whether the k-th source is a NF source or FF source.
It is undeniable that the algebraic expression such as Eq. (24) can be used to estimate θk

θ̂k = arcsin
(

arg [Φ1(k, k)Φ2(k, k)]
−8πd/λ

)
(24)

After estimating the AOAs of all sources, it is obvious that the range parameter of NF sources can be
calculated by

r̂k =
4πd2 cos

(
θ̂k

)
/λ

arg [Φ2(k, k)/Φ1(k, k)]
(25)

4. DISCUSSION

4.1. Number of Array Elements and Sources

Based on the subspace theory, at least one eigenvector from eigendescomposition of constructed matrix
is needed to be reserved for spanning the noise subspace. Therefore, the number of processed sources
must be less than the minimal value between the number of rows and that of columns. Note that the
array is divided into two sub-arrays with 2L elements, and the dimension of fourth-order cumulant
matrix C1 and C2 is 2L. Therefore, the proposed algorithm can localize 2L − 1 sources at most by
using a ULA with 2L + 1 elements.

4.2. Estimation Accuracy

Based on the fourth-order cumulant algorithm, the kurtosis of Gaussian noise is 0. Therefore, the
estimation accuracy will increase as the influence of noise decreases.

4.3. Computational Complexity

Major computational loads involve cumulant matrix construction, eigendecomposition implementation,
ESPRIT algorithm. It is defined that the search step of DOA θ ∈ [−π/2, π/2] is ∆θ, and the search step
of r ∈ [0.62(D3/λ)1/2, 2D2/λ] is ∆r for K1 far-field sources. For Cum4MUSIC, the major computations
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are forming two (2L + 1)× (2L + 1) matrices, and to eigenvalue decompose the two matrix for spatial
searching. Thus, the computational complexity of Cum4MUSIC algorithm is

2(2L + 1)2M +
8
3
(2L + 1)3 + 2

π

∆θ
(2L + 1)2 + (K −K1)

2D2/λ− 0.62(D3/λ)1/2

∆r
(2L + 1)2

where M is the number of snapshots.
The major computational complexity of the proposed algorithm is to form three 2L × 2L fourth-

order cumulant matrices, and eigendecompose a 4L×4L matrix. Then, we use the ESPRITE algorithm
to estimate the DOAs with eigendecomposing two (2L−1)×(2L−1) matrices. Thus, the computational
complexity of proposed algorithm is

3(2L)2M +
4
3
(4L)3 +

8
3
(2L− 1)3

Therefore, it can be clearly seen that the proposed algorithm has lower computational cost.

4.4. Capacity for Localizing Mixed Near-Field and Far-Field Sources

From the above analysis, we can see that if the far-field source and near-field source have the same DOA
at the center of the array, the conventional MUSIC-like algorithm would be invalid. However, using the
proposed algorithm, the DOAs of each source at different phase reference points can be worked out,
and the FF and NF can be classified efficiently [21–23].

5. SIMULATION RESULT

Some simulation results are presented to evaluate the performance of the proposed algorithm. A ULA
of 7-elements with inter-element spacing d = λ/4 is taken into consideration. The input signal to noise
ratio (SNR) of the k-th source is defined as 10× log10(σ2

k/σ2
n), where σ2

k denotes the power of the k-th
source, and σ2

n denotes the noise power. Assume that all sources are with equal power and that the
number of sources is known as a prior. For comparison, the Cum4MUSIC and TSMUSIC would be
executed. The results shown following are evaluated by the estimated root mean square error (RMSE)
from the average results of 100 independent Monte Carlo experiments.

It is noticed that the estimation performance of the range parameters are only for near-field sources
experiment, and we would not give the estimation performance of the range parameters of far-field
sources. Because we believe that the range of far-field sources is infinite.

5.1. Mixed Far-Field and Near-Field Sources

We consider a scenario that one FF and one NF sources coexist, and the locations parameters are
fθ1 = −10◦, r1 = +∞g and fθ2 = 20◦, r2 = 2λg. The snapshot number is set as 1024, and the
signal-to-noise ratio (SNR) varies from −5 dB to 20 dB.

Under the given experimental conditions, the DOA estimation and range estimation spectrum is
shown by simulation.

Figure 1 shows the DOA spectra of TSMUSIC. It is clear that the algorithm needs spectra searching
twice, i.e., the FF and NF sources are estimated separately. After DOA estimating, the range is
calculated in algebraic way. Fig. 2 shows the DOA spectra of Cum4MUSIC, which shows that the FF
and NF sources are estimated by spectra searching once. After that, the range of NF source is searched
with estimated DOA of NF source as shown in Fig. 3.

From Fig. 4 and Fig. 5, it is shown that for both the FF and NF sources, the AOA performance
of proposed method is close to TSMUSIC and much better than Cum4MUSIC. However, the proposed
algorithm achieves the best DOA estimation performance for both far-field and near-field sources among
the three algorithms.

From Fig. 6, we can see that the proposed algorithm achieves better estimation accuracy of range
parameters than both TSMUSIC and Cum4MUSIC algorithms. This is because: 1) to estimate the
range parameters, the proposed algorithm is based on the higher accuracy AOA estimates than both
the TSMUSIC and Cum4MUSIC algorithms; 2) especially, the proposed algorithm avoids any spectral
searching which would yield additional error.
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Figure 1. The DOA spectra of TSMUSIC.

Figure 2. The DOA spectra of Cum4MUSIC.

Figure 3. The range spectra of Cum4MUSIC.
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Figure 4. RMSEs of 1-th source AOA estimation
versus SNR.

Figure 5. RMSEs of 2-th source AOA estimation
versus SNR.

Figure 6. RMSEs of 2-th source range estimation versus SNR.

5.2. Pure Near-Field Sources

We consider the case with only two near-field sources which are located at fθ3 = −10◦, r1 = 1.5λg and
fθ4 = −10◦, r2 = 2.6λg. It can be seen that the two sources have the same AOA. The snapshot number
is set as 1024, and the signal-to-noise ratio (SNR) varies from −5 dB to 20 dB.

Under the given experimental conditions, the DOA estimation and range estimation spectrum are
shown by simulation.

Figure 7 shows the DOA spectra of TSMUSIC, which contains the spectra of NF sources only. Fig. 8
shows the DOA spectra of Cum4MUSIC. It shows that the DOAs of two NF sources are estimated by
spectra searching once. After that, the ranges of two NF source are estimated as shown in Fig. 9.

In combination of Figs. 1–3 and Figs. 7–9, it is clear that TSMUSIC can classify the FF and NF
sources, but Cum4MUSIC must need all the sources as prior knowledge.

From Fig. 10, Fig. 11 and Fig. 12, it can be observed that for pure near-field sources scenario, the
proposed algorithm still outperforms TSMUSIC and Cum4MUSIC for both AOA and range estimation.
Besides, the RMSEs of both AOA and range estimates decrease monotonically as the SNR increases.
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Figure 7. The range spectra of TSMUSIC.

Figure 8. The DOA spectra of Cum4MUSIC.

Figure 9. The range spectra of Cum4MUSIC.
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Figure 10. RMSEs of 3-rd and 4-th sources AOA
estimation versus SNR.

Figure 11. RMSEs of 3-rd source range
estimation versus SNR.

Figure 12. RMSEs of 4-th source range
estimation versus SNR.

Figure 13. RMSEs of 5-th source range
estimation versus SNR.

The DOA and range parameters of the proposed algorithm are estimated without spatial spectrum
searching, so that it is inconvenient to give DOA and range spectrums for the proposed algorithm.

5.3. Pure Far-Field Sources

In the last experiment, only two far-field sources are considered, and the locations parameters are
fθ5 = −40circ, r1 = +∞g and fθ6 = 20◦, r2 = +∞g. The snapshot number is set as 1024, and the
signal-to-noise ratio (SNR) varies from −5 dB to 20 dB.

From Fig. 13 and Fig. 14, we can see that in the case of pure far-field sources, the estimation
accuracies of TSMUSIC and Cum4MUSIC are close to each other, while the proposed algorithm has
the best performance. Besides, the RMSEs of DOA estimations for these three algorithms decrease as
the SNR increases, which approaches the CRLB.
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Figure 14. RMSEs of 6-th source range estimation versus SNR.

6. CONCLUSION

Based on constructing a special fourth-order cumulant matrix and regrouping the source subspace, two
transformation matrices which contain the AOAs and ranges of all sources can be obtained. According
to aforementioned formulas, the two transformation matrices are constructed by first-order and second-
order terms in two different ways. Thus, the AOAs of both FF and NF sources can be calculated
without spectral search which implies a very high computational cost, as well as the range of NF
sources. Meanwhile, we can rapidly classify whether any source is NF source or FF source. Compared
with TSMUSIC and Cum4MUSIC algorithm, the proposed method is effective in sources location with
low computational cost, and rapid in sources classification.
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