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Enhanced Characteristic Basis Function Method for Solving
the Monostatic Radar Cross Section of Conducting Targets

Jinyu Zhu, Yufa Sun*, and Hongyu Fang

Abstract—In this paper, an enhanced characteristic basis function method (ECBFM) is proposed to
calculate the monostatic radar cross section (RCS) of electrical large targets efficiently. The enhanced
characteristic basis functions (ECBFs) are defined by combining improved primary-characteristic basis
functions (IP-CBFs) with the first level improved secondary-characteristic basis functions (IS-CBFs) for
each block. IS-CBFs are obtained by substituting IP-CBFs for PCBFs in Foldy-Lax multiple scattering
equation in which mutual coupling effects among all blocks can be included systematically. As a result,
a small number of incident plane waves (PWs) is sufficient when dealing with large scale targets. The
numerical results demonstrate that the computational efficiency in this paper is much higher than that
of the improved primary-characteristic basis function method (IP-CBFM) without losing any accuracy.

1. INTRODUCTION

The method of moments (MoM) [1] is accurate in the analysis of arbitrary three-dimensional
electromagnetic scattering. However, with the increase of the size of the targets under analysis, the
computational time and memory requirements of the conventional MoM are very expensive. Some fast
algorithms such as multilevel fast multipole algorithm (MLFMA) [2], adaptive integral method (AIM) [3]
and adaptive cross approximation (ACA) algorithm [4] are proposed to relieve this problem. However,
these iterative methods suffer from convergence problems of ill-conditional matrices for electrical large
targets. Moreover, when multiple incident plane waves (PWs) scattering problems are considered, the
iterative procedure must be repeated for each PW.

The characteristic basis function method (CBFM) [5] effectively reduces the dimension of impedance
matrix by dividing the target into several blocks, and high-level basis functions are generated to
represent the electromagnetic characteristics of these blocks. These basis functions are referred to
as the characteristic basis functions (CBFs), and the CBFs lead to a reduced matrix. Since the method
only requires the solution of small size matrix equations, the LU decomposition method [6] can be
applied to solve the reduced matrix directly instead of the conventional iterative solving method. In [7],
the excitation independent CBFM is proposed by obtaining a set of completely orthogonal primary
CBFs (PCBFs), and the set of completely orthogonal PCBFs is used to construct the reduced matrix.
This method is widely applied in many aspects, especially for monostatic RCS. Based on the excitation
independent CBFM, improved primary-characteristic basis function method (IP-CBFM) [8] is proposed
to reduce the number of PWs by combining secondary CBFs (SCBFs) and PCBFs to generate improved
primary CBFs (IP-CBFs) of each block. However, IP-CBFM still needs more PWs when dealing with
large scale targets, which lead to increasing the time of CBFs generation and reduced matrix filling.

In this paper, an enhanced characteristic basis function method (ECBFM) is proposed to improve
the efficiency of numerical calculation for the monostatic radar cross section (RCS). In ECBFM,
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enhanced characteristic basis functions (ECBFs) consist of IP-CBFs and the first level improved
secondary CBFs (IS-CBFs), where IS-CBFs are constructed by solving Foldy-Lax multiple scattering
equation [9, 10] in which mutual coupling effects among all blocks can be included systematically. As
both IP-CBFs and IS-CBFs are considered, a set of more complete CBFs can be obtained. As a result,
a small number of PWs is sufficient when using this set of more complete CBFs. In addition, adaptive
cross approximation-singular value decomposition (ACA-SVD) [11] is applied to compress these PWs
to reduce the time generation of CBFs in this paper. Numerical results show that ECBFM is more
efficient than IP-CBFM and without losing any accuracy.

2. FORMULATION

2.1. The IP-CBFM

The target is divided into M blocks, and the CBFs are composed of PCBFs and SCBFs in IP-
CBFM. PCBF is the self-interaction component inside a block. SCBF indicates the mutual interaction
component between block i and j (i = 1, 2, . . . ,M, j = 1, 2, . . . ,M). Let Nθ and Nϕ indicate the number
of PWs in θ and ϕ, respectively. Considering two kinds of polarization, the total number of PWs is

Np= 2NθNϕ, which are arranged in a matrix E
Np

ii . PCBF JP
ii for each block can be defined as follows:

Ze
iiJ

P
ii = E

Np

ii (1)

where Ze
ii is an N e

i × N e
i extended self-impedance matrix, and E

Np

ii is an N e
i × Np matrix. SCBF

JP
ij(i �= j) for each block can be expressed as

Ze
iiJ

P
ij = −Ze′

ijJ
P ′
jj (i �= j) (2)

where Ze′
ij is an N e

i × (Nj −Noverlaping
ij ) impedance matrix of mutual interaction between block i and

j, and Noverlaping
ij is the portion of the overlap between the extended block i and original block j.

According to Eqs. (1) and (2), IP-CBF JIP
ii can be obtained as
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where JIP
ii indicates roughly the correct current distribution of block i, and therefore, the number of

PWs can be reduced. It is assumed that all of the blocks contain the same number K of IP-CBFs after
ACA-SVD. Then, the dimension of reduced matrix is KM . In addition to the generation of IP-CBFs,
this method is the same as CBFM in [7].

2.2. The Formulation of the ECBFM

When dealing with large scale targets, the number of incident PWs required to obtained valid results
in IP-CBFM is still large. To solve this problem, IS-CBFs are added to construct ECBFs in IP-CBFM.
According to the Foldy-Lax multiple scattering equation, the traditional first level SCBFs JS

ii can be
calculated by replacing incident field with scattered field due to the PCBFs on the all blocks except
from itself.

Ze
iiJ

S
ii = −

M∑
j=1(j �=i)

ZijJ
P
jj (4)

IS-CBF is the improvement of the traditional SCBF which is calculated by replacing PCBFs with IP-
CBFs in the Foldy-Lax multiple scattering equation. By solving Eq. (5), the first level IS-CBFs JIS

ii
can be obtained as

Ze
iiJ

IS
ii = −

M∑
j=1(j �=i)

ZijJ
IP
jj (5)
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where JIP
ii and JIS

ii are the last retained CBFs, which are called as ECBFs JE
ii . As both IP-CBFs and

IS-CBFs are considered, ECBFs are a set of more complete CBFs which can indicate the correct current
distribution more accurately, and therefore, the number of PWs can be further reduced.

Let Hθ and Hϕ indicate the numbers of PWs in θ and ϕ, respectively. The total number of PWs

is Hp= 2HθHϕ(Hp � Np), which are arranged in a matrix E
Hp

ii (i = 1, 2, . . . ,M). Moreover, incidents
PWs with redundant information are used to calculate CBFs in IP-CBFM, which usually leads to
increasing the solving time of CBFs. To mitigate this problem, ACA-SVD is applied to remove the
redundancy of PWs as follows in this paper.

First, the ACA of E
Hp

ii is expressed as

E
Hp

ii � EUE
T
V (6)

Next, the QR decompositions [12, 13] of EU and EV are expressed as

EU = Qi1R1 (7)

EV = Qi2R2 (8)

Then, R1R
T
2 is recompressed by a truncated SVD

R1R
T
2 � UiSiV

T
i (9)

Substituting Eqs. (7)–(9) into Eq. (6)

E
Hp

ii � Qi1UiSi(Qi2Vi)
T (10)

where the product of Qi1Ui is the last retained excitations after a truncated ACA-SVD. Finally, PCBFs
JP
ii on the block i can be obtained as

Ze
iiJ

P
ii � Qi1Ui (11)

Substituting Eq. (11) into Eq. (3), the IP-CBFs JIP
ii can be obtained as

Ze
iiJ

IP
ii =Qi1Ui −

M∑
j=1
j �=i

Ze′
ijJ

P ′
jj (12)

Then, substituting JIP
ii into Eq. (5), JIS

ii can be obtained. For the sake of simplicity, it is assumed
that all of the blocks contain the same number KE of IP-CBFs after ACA-SVD. Thus, the number of
JE
ii is 2KE , and the dimension of reduced matrix is 2KEM(2KEM � KM). Moreover, in order to

reduce the time of CBFs generation, ACA-SVD is also used to compress incident PWs in IP-CBFM.
However, although compression of incident PWs is used in the two methods, ECBFM is more efficient
than IP-CBFM in CBFs generation, since it requires only a small number of incident PWs.

3. NUMERICAL RESULTS

In this section, several numerical examples were studied to demonstrate the accuracy and efficiency of
the proposed method. The ACA and SVD threshold are chosen to be 10-3. All the results are computed
on the Intel R© CoreTM i7-3820 3.60GHz, 64GB RAM PC. The compiler uses Code Blocks. The relative
error is defined as follows:

Err(%) = 100×
√∑

n

|RCSχ −RCSFEKO|2
/√∑

n

|RCSFEKO|2 (13)

where RCSχ are the results of IP-CBFM and ECBFM, and RCSFEKO are the simulation results of
the software FEKO.

First, the monostatic RCS of a PEC cylinder with 4m length and 0.25m radius at a frequency
of 400MHz is calculated. The geometry is divided into 2112 triangular patches, and the number of
unknowns is 5696, which is divided into 16 blocks, and each block is extended by 0.15λ in all directions.
The incidence angle is set to θ = 0◦–180◦, ϕ = 0◦. Incident PWs of PEC Cylinder are shown in Figure 1,
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Figure 1. Incident PWs of PEC Cylinder.

Table 1. The analysis conditions of two methods.

Method (Pθ, Pϕ) (Δθinc,Δϕinc) Number of PWS

IP-CBFM-1 (9, 4) (22.5◦, 90◦) 72

IP-CBFM-2 (9, 8) (22.5◦, 45◦) 144

ECBFM (9, 2) (22.5◦, 180◦) 36

and the analysis conditions of two methods are shown in Table 1. For convenience, Pθ, Pϕ are used to
denote the numbers of incident PWs in θ and ϕ, respectively. Δθinc,Δϕinc indicate angle intervals of
incident PWs. IP-CBFM-1 and IP-CBFM-2 represent the IP-CBFM with different numbers of incident
PWs.

The results of monostatic RCS in HH and VV polarizations are calculated by IP-CBFM, and the
proposed ECBFM and FEKO are shown in Figure 2 and Figure 3.
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Figure 2. HH polarization monostatic RCS of
Cylinder.
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Figure 3. VV polarization monostatic RCS of
Cylinder.



Progress In Electromagnetics Research M, Vol. 68, 2018 177

It can be seen in Figure 2, Figure 3 and Table 1 that IP-CBFM-1 with 72 PWs cannot obtain
valid results. The results of IP-CBFM-2 and ECBFM are in good agreement with those of FEKO. The
calculation time and relative error of the two methods are presented in Table 2.

Table 2. The calculation time and relative error of two methods.

Method

CBFs

generation

time (s)

Reduced

matrix

filling

time (s)

Total

time

(s)

Dimension

of reduced

matrix

Relative

error

in HH

polarization

(%)

Relative

error

in VV

polarization

(%)

IP-CBFM-1 - - - - 33.61 18.26

IP-CBFM-2 13.05 107.99 149.16 1215 5.96 4.21

ECBFM 6.78 59.12 88.68 886 5.17 2.95

It can be found easily from Table 2 that the proposed ECBFM outperforms the IP-CBFM
in computation time and accuracy. The dimension of reduced matrix is reduced by 27.1%, and
computational efficiency is increased by 40.5%.

Next, the monostatic RCS of 25 discrete PEC cubes with the length 1.0m and the spacing between
two cubes 1.0m at the frequency of 250MHz are computed and compared. The target is divided into
19000 triangular patches, and the number of unknowns is 28500. The target is just divided into 25
blocks. The incidence angle is set to θ = 0◦–180◦, ϕ = 0◦. Table 3 shows the analysis conditions of
two methods. The results of monostatic RCS in HH and VV polarizations calculated by IP-CBFM,
ECBFM and FEKO are shown in Figure 4 and Figure 5. The calculation time and relative error of two
methods are presented in Table 4.

Table 3. The analysis conditions of two methods.

Method (Pθ, Pϕ) (Δθinc,Δϕinc) Number of PWS

IP-CBFM-1 (20, 6) (9.5◦, 60◦) 240

IP-CBFM-2 (16, 9) (12◦, 40◦) 288

ECBFM (9, 2) (22.5◦, 180◦) 36

Table 4. The calculation time and relative error of two methods.

Method

CBFs

generation

time (s)

Reduced

matrix

filling

time (s)

Total

time (s)

Dimension

of reduced

matrix

Relative

error

in HH

polarization

(%)

Relative

error

in VV

polarization

(%)

IP-CBFM-1 - - - - 26.55 40.75

IP-CBFM-2 422.27 19594.14 20242.21 2809 7.07 11.93

ECBFM 209.83 6439.19 6815.69 1606 2.34 2.89

It can be seen in Figure 4, Figure 5 and Table 3 that IP-CBFM-1 with 240 PWs cannot obtain
valid results, and even the results of IP-CBFM-2 cannot be in good agreement with those of FEKO,
especially for VV polarization. However, the results of ECBFM are in good agreement with those of
FEKO.
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Figure 4. HH polarization monostatic RCS of
Discrete Cubes.

0 30 60 90 120 150 180

0

20

40

60

M
o

n
o

st
at

ic
 R

C
S

/d
B

sm

Scattering angle (θ=0°−180°, ϕ=0°)

 FEKO

 IP-CBFM-1

 IP-CBFM-2

 ECBFM

Figure 5. VV polarization monostatic RCS of
Discrete Cubes.

It can be easily seen from Table 4 that the proposed ECBFM performs better than IP-CBFM in
computation time and accuracy. Moreover, the dimension of reduced matrix is reduced by 42.8%, and
computational efficiency is increased by 66.3%.

To further prove the accuracy and efficiency of the proposed method, the monostatic RCS of a PEC
almond with 252.3744 mm at 6GHz has been calculated. The target is divided into 20 blocks, and each
block is extended by 0.2λ in all directions. The target is divided into 6236 triangular patches, and the
total number of unknowns is 23161. The incidence angle is set to θ = 90◦, ϕ = 0◦–180◦. The analysis
conditions of two methods are shown in the Table 5.

Table 5. The analysis conditions of two methods.

Method (Pθ, Pϕ) (Δθinc,Δϕinc) Number of PWS

IP-CBFM-1 (8, 6) (25.5◦, 60◦) 96

IP-CBFM-2 (9, 7) (22.5◦, 51.5◦) 126

ECBFM (6, 4) (36◦, 90◦) 48

The results of monostatic RCS in HH and VV polarizations calculated by IP-CBFM, proposed
ECBFM and FEKO are shown in Figure 6 and Figure 7. The calculation time and relative error of two
methods are presented in Table 6.

Table 6. The calculation time and relative error of two methods.

Method

CBFs

generation

time (s)

Reduced

matrix

filling

time (s)

Total

time (s)

Dimension

of reduced

matrix

Relative

error

in HH

polarization

(%)

Relative

error

in VV

polarization

(%)

IP-CBFM-1 150.98 853.89 1192.42 1379 4.92 9.27

IP-CBFM-2 191.65 1143.89 1540.11 1654 1.50 1.61

ECBFM 126.15 945.95 1259.83 1422 0.98 1.55
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Figure 6. HH polarization monostatic RCS of
Almond.
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Figure 7. VV polarization monostatic RCS of
Almond.

It can be seen in Figure 6, Figure 7 and Table 5 that IP-CBFM-1 with 96 PWs cannot obtain valid
results, especially for VV polarization. However, the results of IP-CBFM-2 and ECBFM are in good
agreement with those of FEKO. It can be easily seen from Table 6 that the proposed ECBFM performs
better than IP-CBFM in computation time and accuracy, especially for HH polarization.

4. CONCLUSION

In this paper, an ECBFM is proposed to solve the multiple incident PWs monostatic RCS of electrical
large targets rapidly. ECBFs are defined and consist of IP-CBFs and first level IS-CBFs according to
Foldy-Lax multiple scattering equation. The proposed method can reduce the time of CBFs generation
and reduced matrix filling significantly only with a small number of the incident PWs compared to
IP-CBFM without losing any accuracy. The numerical results demonstrate that the proposed method
is accurate and efficient.
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