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Implementation of the Parallel Higher-Order FDTD
with Convolution PML

Yawen Liu1, 2, *, Pin Zhang2, and Yiwang Chen2

Abstract—In this paper, a parallel Higher-order FDTD (HO-FDTD) algorithm is described. Moreover,
a novel implementation of convolution PML (CPML) is presented for the HO-FDTD method. A
printed microstrip patch antenna is designed to analyze the feasibility of the parallel algorithm and
the absorbing performance of the CPML. Moreover, the proposed algorithm is used to deal with the
large-scale computational model of the vaulted tunnel. The simulation results show that the adopted
parallel strategy is feasible, and the CPML performs well in the HO-FDTD scheme.

1. INTRODUCTION

The HO-FDTD [1–12] is an efficient numerical algorithm in the time-domain. Compared with the long
established FDTD method [13], HO-FDTD method shows a highly-linear dispersion performance. So
with the same accuracy, larger targets can be simulated with the HO-FDTD method. However, owing to
the limitation of the computer memory, the calculation can be only implemented in a finite area. So, for
the intensive computation and storage, there are some challenges for its practical implementation when
dealing with the electrically large and complex electromagnetic structures. To overcome the computation
power and storage requirement bottlenecks, this paper focuses on the parallel implementation of the HO-
FDTD(2, 6). As the Message Passing Interface (MPI) [14] is becoming the new international standard
for parallel programming, the MPI library is employed to exchange the electric and/or magnetic fields.
For the sake of simplicity and compactness, a parallel HO-FDTD algorithm for the mode based on the
one-dimension domain decomposition method is presented.

The CPML [15] is introduced to the HO-FDTD algorithm, and a planar microstrip-type structure
in a 3-D case is analyzed with the parallel implementation and CPML. Furthermore, a computation
model of the vaulted tunnel is established, and the impact of metallic door on the field cross-section
distribution of the ultra-wideband electromagnetic pulse in the model is studied. Numerical results
validate the feasibility of the parallel algorithm and the good absorbing effectiveness of the CPML.

2. PARALLEL HO-FDTD ALGORITHM

Just as the FDTD, HO-FDTD is also nearly inherently parallel in nature since only local information
is needed for updating the fields at each time increment. Parallel HO-FDTD can be seen as a kind of
algorithm that the whole computational domain is divided into several sub-domains, and each node only
handles for the corresponding sub-domains calculation. Therefore, the requirement of computational
storage and CPU time is reduced several times, which implies that the parallel HO-FDTD is faster than
a serial counterpart almost by a factor n, where n is the number of processors.
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Figure 1. Two adjacent sub-domains.

The domain decomposition method (DDM) is shown in Fig. 1, and this method uses an MPI
function to send the Hx,y(:, :, nk1−1), Hx,y(:, :, nk1−2), Hx,y(:, :, nk1−3) and Ex,y(:, :, nk1−1), Ex,y(:
, :, nk1−2) from the processor N to N + 1, and to calculate the Ex,y(:, :, nk0), Ex,y(:, :, nk0 + 1),
Ex,y(:, :, nk0 + 2) and Hx,y(:, :, nk1 − 1), Hx,y(:, :, nk1 − 2) in processor N + 1. The MPI function
is once again to send the Ex,y(:, :, nk0), Ex,y(:, :, nk0 + 1), Ex,y(:, :, nk0 + 2) and Hx,y(:, :, nk1 − 1),
Hx,y(:, :, nk1 − 2) from the processor N + 1 to N .

3. APPLICATION OF CPML TO HO-FDTD METHOD

Following the implementation procedure described in [15], the formulation in the CPML layer is posed
in the stretched coordinate space. In this work, a lossy medium is assumed for the sake of generality
example. The x-projection of Ampere’s law is thus specified as

jωεEx + σEx =
1
sy

∂

∂y
Hz − 1

sz

∂

∂z
Hy, (1)

where si is the stretched-coordinate metric and defined as
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, i = x, y, z (2)

where αi > 0, σi > 0, κi ≥ 1.
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where δ(t) is the unit impulse function and u(t) the step function. Inserting Eq. (4) into Eq. (1), then
transform Eq. (1) into time domain:
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The discrete impulse response for ζi(t) can be defined as
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Then, inserting Eqs. (6) and (7) into Eq. (5), and according to the wavelet-Galerkin scheme based
on Daubechies’ compactly supported wavelets, the MRTD equation for Ex can be obtained as following
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are the coefficients for the fields and the auxiliary

variables expansions in terms of scaling functions which are equal to the corresponding fields. The
indexes i, j, k, and n are the discrete space and time indices related to the space and time coordinates
via x = iΔx, y = jΔy, z = kΔz, and t = nΔt, where Δx, Δy, Δz, and Δt represent the space and
time discretization intervals in x-, y-, z- and t-directions. Defining that
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Then the following equations can be easily obtained:
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and ai is given by Eq. (7). Then Eq. (8) can be rewritten as
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From Eq. (14), we can see that the explicit time-marching schemes for the fields are obtained at the
(n+1) time step. It is obvious that the CPML implementation is independent of the material medium,
and the CPML implementation requires only two auxiliary variables per field component, which is less
than that reported PML and APML [16, 17]. The coefficients a(l) are defined as [11]

a (l) =
(−1)l

2 (l + 1/2)2
[(2L− 1)!!]2

(2L− 2 − 2l)!! (2L+ 2l)!!
(17)

For simplicity, here we define L = 3, and the coefficients for 0 ≤ l ≤ L− 1 are shown in Table 1. The
coefficients a(l) for l < 0 are given by the symmetry relation a(−1 − l) = −a(l).

Table 1. The coefficients a(l).

l a(l)

0 1.171875000

1 −0.065104167

2 0.004687500

Moreover, we use perfectly electric conductor (PEC) walls to terminate the CPML regions. Since
the HO-FDTD scheme does not allow localized boundary conditions, as shown in Fig. 2, the image
technique is applied to the PEC boundaries.

PEC

E

Original Fields Image Fields

H

PEC

Original Fields Image Fields

Figure 2. Original and image fields of the HO-FDTD lattice with respect to PEC boundary.
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Equations for Ey and Ez are as follow:
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The other set of equations for updating H can be obtained by duality.

4. NUMERICAL RESULTS

4.1. Computation Model of the Microstrip Patch Antenna

To check whether the parallel implementation is feasible or not, comparison between serial HO-FDTD
and parallel HO-FDTD is executed to analyze a printed microstrip patch antenna, whose geometry is
shown in Fig. 3.

Figure 3. Geometry and dimensions of the microstrip patch antenna.

A HO-FDTD mesh of 14× 43× 62 cells with Δx = 0.265 mm, Δy = 0.83 mm, Δz = 1.0 mm is used
here. A ten-layer CPML is used to truncate both the HO-FDTD and lattices. The time discretization
interval used for the HO-FDTD scheme is 0.3 ps scheme. We use the serial HO-FDTD and parallel
HO-FDTD (4 PC nodes) to compute the case and then compare the S11 values. As shown in Fig. 4, we
can conclude that parallel HO-FDTD gives the same result as serial HO-FDTD does, which validates
the feasibility of the parallel HO-FDTD and the availability of the CPML. However, the serial HO-
FDTD will be helpless when huge grids are involved in the computation domain, and then only parallel
HO-FDTD can work.

4.2. Computation of the Vaulted Tunnel with Metallic Door

The compendious model of the tunnel and metallic door is illustrated in Fig. 5, Fig. 6 and Fig. 7(a).
The tunnel is 100 m, whose dimensions are shown in Fig. 7(a). The metallic door is installed at the
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Figure 4. The magnitude of the S11 for the microstrip patch antenna.

Figure 5. The computational model of the tunnel.

Figure 6. The computation model of the metallic door.
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(a) (b)

Figure 7. Profile of the computation model. (a) The cross-section of the tunnel. (b) The conformed
vault of the tunnel.

place of z = 50.0 m. The source is placed near the CPML. For the purposes of this study, constitutive
parameters for soil are assumed, giving σs = 0.004, εr = 9.0. The constitutive parameters for the
wall and arris of the straight part can be defined as εeq = 9.0, σeq = σs/2 and εeq = (3ε0εr + ε0)/4,
σeq = 3σs/2.

The constitutive parameters for the wall and arris of the crooked part can be defined via the
conformal technique [18]. The conformed vault of the tunnel is shown in Fig. 7(b).

In the waveguide system [13], the excitation source is usually introduced robustly according to
propagation model such as TE10 and TM11. Though in this case we cannot get the analytical model of
the wave propagation, the way that the excitation sources induced in the waveguide system can still be
employed here, which can be shown as follows

En+1
tan (i, j, ks) = En

tan(i, j, ks) + f(i, j, ks)g(t) (20)
where the subscript ‘tan’ denotes the E-field distributed in a transverse cross section at z = ksΔz
of the tunnel structure in Fig. 5, f(i, j, ks) the function of the field distribution, and g(t) the time
function determining the bandwidth of the sources. Here we set f(i, j, ks) to follow the model of TM11

propagation in waveguide with the size of a× b = 4.0m × 6.0m approximately, though the model does
not satisfy the boundary condition of the tunnel, we can believe that after some length propagation,
the model will be in a steady state which approaches TM11 propagation model of the tunnel itself.

TM11 propagation model is defined as
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g(t) in Eq. (20) is defined as a differential Gaussian electric pulse that g(t) = E0(t −
t0) exp(4π(t− t0)2

/
τ2) with τ = 3.0 ns, E0 = 1000V/m and t0 = τ . The space is discretized with
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an FDTD lattice with Δx = Δy = Δz = 0.0399 m, and ten-cell-thick PML layers terminate the grid.
This results in a 170×129×2650 cell lattice, and time step is Δt = 57.589 ps. f(i, j, ks) is located at the
x-y plane with z = 0.2 m, and the sampling cross-section is located at the x-y plane with z = 49.9867 m
and z = 51.0 m. The simulation have been performed for 10000 time steps.

To get a rather efficiently absorbing ability, the parameters of CPML can be shown as⎧⎪⎪⎪⎨
⎪⎪⎪⎩

σi = σmax

(
u− u0

dPML

)m
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m+ 1

150π
√
εrΔs

, κi = 1 + (κmax − 1)
( |u− u0|
dPML

)m (22)

where u = u0 is the boundary between computation domain and absorbing boundary and dPML the
thick of PML. In CPML, α can be set as a constant.

Figures 8(a) to 8(f) denote the cross-section distribution of the field of Ex, Ey and Ez excited by
the TM11 propagation in the tunnel. “49.9867 m (265.0 ns)” means the filed value at the cross-section
at the place of z = 49.9867 m when the time step reaches 265.0 ns, and the other is analogous.

(a) (b)

(c) (d)
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(e) (f)

Figure 8. The filed cross-section distribution. (a) Ex (V/m), 49.9867 m (265.0 ns). (b) Ex (V/m),
51.0 m (269.0 ns). (c) Ey (V/m), 49.9867 m (265.0 ns). (d) Ey (V/m), 51.0 m (269.0 ns). (e) Ez (V/m),
49.9867 m (265.0 ns). (f) Ez (V/m), 51.0 m (269.0 ns).

Observing the results, it is seen that Ex field basically distributes at the vault and the base of the
tunnel, and Ey field mainly distributes at the two sides, whereas Ez field principally distributes around
the tunnel. So it can be concluded how the filed gets into the space behind the metallic door: Ex field
mainly circuitously propagates through the vault and the base, Ey filed through the two sides, and Ez

field through circumambience of the metallic door. We can also summarize that along with the augment
of the pulse propagation time, the energy of TM11 propagation model is centralized at the middle of
the tunnel gradually.

5. CONCLUSION

In this paper, we present a parallel HO-FDTD approach. Details about the implementations of the
domain decomposition, message passing between the neighboring processors are also provided, and the
CPML is employed into the HO-FDTD method. It is shown that the CPML method requires only two
auxiliary variables per discrete field component, which is less than that of the traditional PML and
APML. Furthermore, two computation models of the microstrip patch antenna and the vaulted tunnel
with metallic door are established Numerical results show that the parallel algorithm is feasible, and
the CPML can provide a quite satisfactory absorbing boundary condition.
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