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Unobservable Potentials to Explain a Quantum Eraser
and a Delayed-Choice Experiment

Masahito Morimoto*

Abstract—We present a new explanation for a quantum eraser. Mathematical description of
the traditional explanation needs quantum-superposition states. However, the phenomenon can be
explained without quantum-superposition states by introducing unobservable potentials which can be
identified as an indefinite metric vector. In addition, a delayed choice experiment can also be explained
by the interference between the photons and unobservable potentials, which seems like an unreal long-
range correlation beyond the causality.

1. INTRODUCTION

Quantum theory has paradoxes related to the reduction of the wave packet typified by “Schrödinger’s
cat” and “Einstein, Podolsky and Rosen (EPR)” [1, 2]. In order to interpret the quantum theory without
paradoxes, de Broglie and Bohm had proposed so called “hidden variables” theory [3, 4]. Although
“hidden variables” has been rejected at that time [5], the theory has been improved in a way that is
consistent with relativity and ontology [6–10]. However, the improvement has not been completed so
far.

Several experiments have demonstrated that Bell’s inequalities are always violated confirming the
quantum mechanics theory on the non-locality of the photon and demonstrating the absence of “hidden
variables” for the local representation [11–13].

However, the author has reported the alternative interpretation for quantum theory utilizing
quantum field formalism with unobservable potentials [14] that can be identified as “hidden variables”
similar to Aharonov-Bohm effect [15, 16] and rigorous mathematical treatment using tensor form in
keeping with the local representation, i.e., consistent with relativity. The interpretation can omit the
quantum paradoxes and be applicable to elimination of infinite zero-point energy, spontaneous symmetry
breaking, mass acquire mechanism, non-Abelian gauge fields and neutrino oscillation, which can lead
to the comprehensive theory.

The alternative interpretation gives completely the same calculation results using the traditional
quantum-superposition states because the mathematical tools involved in the calculations, such as
routine state vectors, operators, and inner products, are identical to those used in traditional quantum
theory. The difference between the alternative and traditional treatments is the introduction of
indefinite metric as a physical reality that contradicts “probabilistic interpretation”. In the alternate
interpretation, the inner product of the states which has been recognized as so called “probability
amplitudes” is unrelated to the probability but related to an amplitude of interferences. Hence the
“interference amplitudes” is preferable to “probability amplitudes”, though we will use the word
“probability amplitudes” in this paper according to traditional way. Although the calculation method
of the alternative interpretation in this paper using covariant quantization might be slightly more
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complicated than the traditional one without covariant quantization, the method is a straightforward
approach, and the result is an inevitable conclusion by the rigorous derivation.

In one example, the linear equations, e.g., Maxwell and Schrödinger equations, allow a superposition
of any eigenfunctions as a different solution. An eigenfunction can represent an eigenstate after
quantization, which describes non-divisible eigenstates such as single photon and electron. Although the
superposition states are allowed by the linearity of the equations, the non-divisible eigenstate should
not be divided after quantization, i.e., the coefficient so-called “probability amplitude” of the non-
divisible eigenstate must be integer. In other words, the eigenstates are just mode eigenfunctions derived
from the geometry (boundary condition of the equations), and the superposition states composed of
broken eigenstates should not be configured for an initial condition after quantization. Therefore, the
superposition of the eigenstates whose coefficients are not integer has to be recognized as a statistical
treatment in mixed states for the case that a lot of particles exist, e.g., the normalization of the
coefficients is obviously the statistical treatment which allows probabilistic interpretation.

However, in order to justify the phenomena looking like the quantum superposition states in the
case that few particles exist such as single particle, we need some infinitely divisible (i.e., arbitrary
coefficient) continuous body regardless of the quantization. The author find that the unobservable
(scalar) potentials must be just the thing which acts as a substitute for the superposition as an inevitable
result from the rigorous covariant quantization without any artificial treatment. The result is not a
matter of interpretation or the authors claims but just findings.

Here we introduce an example of the findings as reported in [14], and two-path single photon and
electron interference can be calculated without quantum-superposition state by introducing a substantial
(localized) photon or electron and the unobservable (scalar) potentials, which are expressed as following
Maxwell equations.(
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When the scalar potential of Eq. (1) is quantized, the photon annihilation operator Â′
0 expressing

the unobservable (scalar) potential can be expressed as follows.

Â′
0 =

1
2
γeiθ/2Â1 − 1

2
γe−iθ/2Â1, Â

′†
0 =

1
2
γe−iθ/2Â†

1 −
1
2
γeiθ/2Â†

1 (2)

where γ2 = −1 (i.e., γ corresponds to the square root of the determinant of Minkowski metric tensor√|gμν | ≡ √
g ≡ √−1 = γ) which stands for the requirement of indefinite metric; Â1 is the photon

annihilation operator obtained from quantization of the vector potentials in Eq. (1); θ is a phase
difference derived from a geometry. By using tensor form (covariant quantization), we can explicitly
identify these operators Â′

0 as the scalar potential and Â1 as the vector potentials. This description is
spontaneously obtained as described later.

The above Â′
0 is quite similar to the expression of Ξ̃ reported by Meis to investigate quantum

vacuum state as follows [17].
Ξ̃0kλ

= ξakλε̂kλe
iϕ + ξ∗a†kλε̂

∗
kλe

−iϕ (3)

where k, λ, ε, ξ and ϕ stand for k mode, λ polarization, a complex unit vector of polarization, a constant
and a phase parameter, respectively.

If we identify ξ and ξ∗ as 1
2γ and −1

2γ and introduce polarization vectors as described later in
Eq. (7), then Eq. (2) corresponds to Eq. (3).

When state vector |ζ〉, which represents the unobservable (scalar) potentials, is introduced in
Schrödinger picture as follows, the vector can be identified as an indefinite metric vector.

|ζ〉 ≡
(

1
2
γeiθ/2 − 1

2
γe−iθ/2

)
|1〉 (4)

where |1〉 represents a photon state. Therefore when there is no phase difference, the expectation value
of arbitrary physical quantity Â and probability (or more like “interference”) amplitude of |ζ〉 are zeros
(〈ζ|Â|ζ〉 = 0, 〈ζ|ζ〉 = 0), which means that the unobservable potentials cannot be observed alone in the
literature. More detailed treatment of these operators and vectors have been discussed in [14].
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Aharonov and Bohm have pointed out that the unobservable potentials can cause electron wave
interferences [16], and we should realize that all of the physical interactions are regulated by gauge fields
(gauge principle, the potentials are also gauge fields.), which cannot be observed alone [18–21].

In this paper, we show that the existence of the unobservable potentials can explain not only the
interferences but also the quantum eraser and delayed choice experiment. In addition, we also show that
the interference between photons and the unobservable potentials violates Bell’s inequalities in keeping
with the local representation, which is consistent with relativity. This fact is the most important novel
aspect of this paper that the violation of Bell’s inequalities cannot justify the non-locality of quantum
theory and the absence of “hidden variables” because the unobservable potentials which propagate
through space at the speed of light, i.e., “local action” or “locality”, can act as “hidden variables”.

2. TRADITIONAL EXPLANATION FOR QUANTUM ERASER

Figure 1 shows a typical setup for the quantum eraser [22]. When there are no polarizers, an interference
pattern composed of dark and bright fringes can be observed on the screen because light passing on the
left of the wire is combining, or “interfering,” with light passing on the right-hand side. In other words,
we have no information about which path each photon went.

When polarizers 1 and 2, which are called “which-path markers”, are positioned right behind the
wire as shown in Figure 1, the launched light polarized in 45◦ direction from the Laser is polarized in
perpendicular (x-polarized and y-polarized) by these polarizers. Then the interference pattern on the
screen is erased because “which-path makers” have made available the information about which path
each photon went.

When polarizer 3 is inserted in front of the screen with the polarization angle +45◦ or −45◦ in
addition to “which-path makers”, the interference pattern reappears because polarizer 3 has made the
information of “which-path makers” unusable.

We can produce a mathematical description of the erasure and reappearance of the interference
pattern as follows. The x- and y-polarized photons passing through polarizers 1 and 2 can be expressed
by the quantum-superposition states as follows.

|x〉 =
1√
2
|+〉 +

1√
2
|−〉 (5)

and
|y〉 =

1√
2
|+〉 − 1√

2
|−〉 (6)

where “+” and “−” represent polarizations +45◦ and −45◦ with respect to x.
The photons pass through polarizers 1 and 2 are polarized at right angles to each other as seen in

the left-hand side of Eqs. (5) and (6), which prevent the interference pattern. In other words, “which-
path makers” have made available the information about which path each photon went. Although there
are same polarized states in the right-hand side of Eqs. (5) and (6), the interference patterns consisting
of bright and dark fringes made by +45◦ and −45◦ polarized states are reverted images and annihilate
each other. Therefore, sum total of the images has no interference pattern.

When polarizer 3 is inserted with the polarization angle +45◦ or −45◦, only |+〉 or |−〉 can pass
through polarizer 3. Then the interference pattern made by either |+〉 or |−〉 of both Eqs. (5) and (6)
reappears, which means that we cannot identify which-path the photons had passed through, i.e.,
polarizer 3 has made the information of “which-path makers” unusable.

3. NEW EXPLANATION FOR QUANTUM ERASER

The mathematical description of the photon states passing through polarizers 1 and 2 used in the
traditional explanation requires the quantum-superposition states in Eqs. (5) and (6), respectively.

If Maxwell equations are deemed to be classical wave equations whose electromagnetic fields obey
the superposition principle, then the description is valid. However, applying the superposition principle
to particle image, e.g., inseparable single photon, leads to quantum paradoxes such as the reduction of
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the wave packet. These paradoxes are great problems not only with the traditional explanations but
also for true nature of physics.

Although tensor form (covariant quantization) is a rigorous treatment as we will describe later, here
we conveniently take advantage of the unobservable potentials that can eternally populate the whole
space as waves independent of existence of the substantial photons. Therefore, we can replace the photon
state |x〉 with |x〉 + |ζ〉, where |ζ〉 is a state representing the unobservable potentials whose probability
(or more like “interference”) amplitudes 〈ζ|ζ〉 = 0 in initial states as described in Eq. (4) (when there
is no difference in phase and polarization angle as described below.). The unobservable potentials can
be polarized by the polarizers because these potentials obey Maxwell equations and populate the whole
space-time. Therefore, we should introduce the polarization terms with unobservable potentials.

Then the following states, which are identified as Eq. (4) introducing polarization terms similar to
Eq. (3), can generate the same interference as the quantum-superposition states in Eqs. (5) and (6).

|x〉 + |ζφ,x〉 = |x〉 +
1
2
γeiφeiθ/2|x〉 − 1

2
γe−iφe−iθ/2|x〉

|y〉 + |ζφ+ 1
2
π,y〉 = |y〉 +

1
2
γei(φ+ 1

2
π)e−iθ/2|y〉 − 1

2
γe−i(φ+ 1

2
π)eiθ/2|y〉

(7)

where γ2 = −1, φ and θ are the indefinite metric, the polarization angle of polarizer 3 measured from
x-axis and phase difference between left and right paths, respectively.

Therefore, when we observe only |x〉 with polarizer 3, i.e., θ = 0, the intensity of the interference
〈I〉 can be calculated as follows.

〈I〉∝(〈x|+〈ζφ,x|) (|x〉+|ζφ,x〉)=〈x|x〉−1
2
〈x|x〉+1

2
〈x|x〉 cos(2φ+θ)=

1
2
+

1
2

cos(2φ+θ)=
1
2
+

1
2

cos(2φ) (8)

Hence the output intensity by rotation angle of polarizer 3 is reproduced correctly.
When we observe |x〉 and |y〉 with polarizer 3, the intensity is obtained as follows.

〈I〉 ∝
(
〈x| + 〈ζφ,x| + 〈y| + 〈ζφ+ 1

2
π,y|

) (
|x〉 + |ζφ,x〉 + |y〉 + |ζφ+ 1

2
π,y〉

)
(9)

Because 〈x|y〉 = 〈y|x〉 = 0,

〈I〉 ∝ (〈x| + 〈ζφ,x|) (|x〉 + |ζφ,x〉) +
(
〈y| + 〈ζφ+ 1

2
π,y|

)(
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2
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(10)

By using Eq. (8), we can obtain the following result.

〈I〉 ∝ 1
2

+
1
2

cos (2φ+ θ) +
1
2

+
1
2

cos (2φ+ π − θ) = 1 +
1
2

cos (2φ+ θ)− 1
2

cos (2φ− θ) (11)

When φ = ±π, ±1
2π, 〈I〉 ∝ 1 and φ = ±1

4π, then 〈I〉 ∝ 1 ± sin θ, which reproduces the interference
correctly.

In this new explanation, the polarization of substantial photons is fixed, and the photons cannot pass
through the polarizer which has a different polarization angle. However, the unobservable potentials
create the same interference as the superposition states of |+〉 and |−〉 as described above. In the
case of x-polarized single photon, the interference can be calculated by Eq. (7) replacing |y〉 with |0〉.
Then 〈I〉 ∝ 1 + 1

2 cos(2φ + θ) − 1
2 cos(2φ − θ) is obtained. Note that when we calculate the single

photon interference by using photon number operator n1 = Â†
1Â1, we can obtain exact expression

〈I〉 ∝ 1
2 + 1

2 cos(2φ+ θ) because 〈0|0〉 = 1 �= 〈0|n1|0〉 = 0, where Â1 is the photon annihilation operator
obtained from the vector potentials in Eq. (1) [14].

The above calculations are based on Schrödinger picture. We can obtain the same results based
on Heisenberg picture. In Heisenberg picture, the photon number operator should be replaced by
n = (Â†

1 + Â†
p)(Â1 + Âp) [14], where Â1 and Âp (p : polarization = x, y, . . ., etc.) are the photon

annihilation operators obtained from the vector and scalar potentials in Eq. (1), respectively, which
represent the substantial photons and modified operator introducing the polarization terms in Eq. (2),
i.e., the polarized unobservable potentials, as follows.

Âx =
1
2
γeiφeiθ/2Â1 − 1

2
γe−iφe−iθ/2Â1, Â†

x =
1
2
γe−iφe−iθ/2Â†

1 −
1
2
γeiφeiθ/2Â†

1 (12)
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We can calculate Eq. (8) in Heisenberg picture as follows.

〈I〉=
〈
n

∣∣∣(Â†
1+Â†

x

) (
Â1+Âx

)∣∣∣n〉
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2
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1
2
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1
2
+

1
2

cos(2φ) (13)

Note that the x-polarized photon annihilation operator should be represented by Â1 + Âx instead of
Â1 in Heisenberg picture [14]. When there are x- and y-polarized photons, the operator should be
represented by (Â1 + Âx) + (Â2 + Ây), where Â2 is a photon annihilation operator obtained from the
quantization of y-polarized vector potential, and Ây can be obtained by replacing φ with φ + 1

2π and
Â1, Â

†
1 with Â2, Â

†
2 in Eq. (12). Then we can calculate Eq. (9) in Heisenberg picture as follows.

〈I〉 = 〈n|(Â†
1 + Â†

x + Â†
2 + Â†

y)(Â1 + Âx + Â2 + Ây)|n〉
= 〈n|n1|n〉 + 〈n|Â†

xÂx|n〉 + 〈n|n2|n〉 + 〈n|Â†
yÂy|n〉 ∝ 1 +

1
2

cos (2φ+ θ) − 1
2

cos (2φ− θ) (14)

where we identify 〈n|n1|n〉 ≡ 〈n|Â†
1Â1|n〉 = 〈n|n2|n〉 ≡ 〈n|Â†

2Â2|n〉 = n assuming that there are the
same number (n) of x- and y-polarized photons. Under the assumption |n〉 ≡ |n〉x+ |n〉y where |n〉x, |n〉y
are the x- and y-polarized n photon states, respectively, we can calculate Â1|n〉 = Â1|n〉x + Â1|n〉y =√
n|n − 1〉x and Â2|n〉 = Â2|n〉x + Â2|n〉y =

√
n|n − 1〉y . In addition, 〈n|Â†

1Â2|n〉 = 〈n|Â†
2Â1|n〉 = 0 is

calculated.
The new explanation can describe that Âp or |0〉 + |ζ〉 which can be identified as vacuum, creates

and annihilates the substantial photons through the interference.
Loosely speaking, the unobservable potentials are oriented by the polarizers such as Eq. (7) or

Eq. (12). Then the substantial photons surf on the sea of the oriented potentials which can change into
substantial photons through the interference.

Figure 1. Typical setup for the quantum eraser.
Pol1 and Pol2 are fixed linear polarizers with
polarizing axes perpendicular (x and y). Pol3 is a
revolvable linear polarizer.

Figure 2. Typical setup for the delayed choice
quantum eraser. QWP1 and QWP2 are quarter-
wave plates aligned in front of the double slit
with fast axes perpendicular. Pol1 is a linear
polarizer. BBO (β − BaB2O4) crystal generates
entangled photons by spontaneous parametric
down-conversion [23].

4. NEW EXPLANATION FOR DELAYED CHOICE QUANTUM ERASER

In this section, we show new explanation for Delayed Choice Quantum Eraser as shown in Figure 2 which
consists of an entangled photon source and two detectors. The delayed choice has been demonstrated
when the distance from BBO to polarizer 1 is longer than that from BBO to the double slit [23].

Here we should take particular note of the fact that the polarization angle of polarizer 1 has been
chosen before the entangled photons are generated. Walborn et al. [23] have pointed out that “the
experiment did not allow for the observer to choose the polarization angle in the time period after
photon s was detected and before detection of p”. From the principle of causality, their point will be
reasonable.
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However, mathematical description for the phenomenon requires entangled state such as

|ψ〉 =
1√
2

(|x〉s|y〉p + |y〉s|x〉p) (15)

The entangled state declares that the state of the whole system is a quantum-superposition state
consisting of |x〉s|y〉p and |y〉s|x〉p. Therefore, when the state of one photon (s or p) is observed and
determined to be |x〉, that of the other photon (p or s) suddenly changes from the quantum-superposition
state into |y〉 even if the photons separate from each other, which postulates the existence of long-range
correlation beyond the causality (spooky action at a distance). This postulate represents a critical
defect and serious problem with the traditional explanations as pointed out in a paper by “Einstein,
Podolsky and Rosen (EPR)” [2].

Hence we grapple with a strange physical phenomenon from the moment that we choose the
polarization angle of polarizer 1 to the moment that BBO generates the entangle photon pairs.

The unobservable potentials, which can change from the potentials into substantial photons,
eternally populate the whole space not forgetting the space between BBO and polarizer 1 independent
of substantial photons. Hence, the space will be populated by the unobservable potentials which are
oriented by polarizer 1 as described above. More precisely, the potentials determine the polarization of
substantial photons in the space in advance depending on the polarization angle of polarizer 1.

For example, if we choose the polarization angle of polarizer 1 to φ which is measured from the
polarization angle ψ of created photons, then the unobservable potential is oriented to |0〉 + |ζφ〉 =
|0〉 + 1

2γe
i(φ−ψ)eiθ/2|0〉 − 1

2γe
−i(φ−ψ)e−iθ/2|0〉 at polarizer 1 and propagates to BBO. BBO is forced to

generate the photon pair with polarization p: φ and s: φ± 1
2π according to the arrival potentials. The

mathematical description is as follows. By applying a photon creation operator Âψ
†

to the polarized
potentials, i.e.,

Âψ
†|0〉 + Âψ

†|ζφ〉 = |ψ〉 +
1
2
γei(φ−ψ)eiθ/2|ψ〉 − 1

2
γe−i(φ−ψ)e−iθ/2|ψ〉 (16)

Equation (16) can be calculated as the created photon state at BBO. Then the intensity of the created
photon can be calculated in this setup (θ = 0) as follows.

〈I〉 ∝ 1
2

+
1
2

cos (2φ− 2ψ) (17)

In order to create a photon, i.e., 〈I〉 = 1, ψ = φ will be required.
Then the polarization of the photon pair is fixed by the unobservable potentials instead of the

entangle state in Eq. (15). Therefore, when the polarization angle is set to the fast axis of QWP
(Quarter-wave plate) 1 or 2, the interference pattern can be observed.

In this case, we are not aware of the determination of the polarization of the photon pair by the
unobservable potentials. This is the reason that the state seems to be “entangled”, and the choice of
the polarization angle of polarizer 1 seems to be “delayed”.

In order to confirm the new explanation, we should make experiments with a shutter between BBO
and polarizer 1 as follows. First, close the shutter not to make a definite orientation of the unobservable
potentials. After the entangled photon pairs are generated, open the shutter. When the photon s is
detected by Ds, close the shutter again. After a time period, we excite BBO to generate the next
entangled photon pairs. When the next pairs are generated, open the shutter again. By repeating these
procedures, we can make a comparison between the traditional results and new result. If the definite
orientation of the unobservable potentials as mentioned above is valid, no interference pattern can be
observed even if the polarization angle of polarizer 1 is set to the fast axis of QWP 1 or 2 throughout
the experiment.

Note that because the unobservable potentials obey Maxwell equations propagate at the speed of
light, the above time period that prevents the unobservable potentials from being oriented should be
longer than the distance between BBO and the shutter divided by the speed of light.

The above new explanation is based on the preselected polarization by the setup. However, even
if the polarizations of the photon pair are randomly selected, the measurement results seem to have
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the long-range correlation beyond the causality as follows. From Eq. (7), the measurement results of
photons s and p are expressed as follows.

〈Is〉 ∝ 1
2

+
1
2

cos(2φ), 〈Ip〉 ∝ 1
2
− 1

2
cos(2φ) (18)

There is no such a classical correlation. The above results are identical to the traditional quantum-
mechanical predictions and violate Bell’s inequalities. Therefore, the long-range correlation associated
with the interference between the photons and unobservable potentials is observed in all the experimental
setups presented here. This is the answer to the so called “setting-independence loophole” [24].

Therefore, the confirmation method for the preselected polarization case described above has to be
carefully implemented. When there are no polarizers, the polarization is randomly selected. Hence, a
detection frequency of photons by Dp proportional to the intensity of measured photon will be extremely
lower than the case when there are polarizers. The difference of the detection frequency will be the only
way to distinguish the new explanation from traditional one.

5. TENSOR FORM OF THE ELECTROMAGNETIC FIELDS

We have introduced the operator by using γ2 = −1 such as Eq. (12), which expresses the unobservable
potentials for convenience in calculation in the above. When we use tensor form of the electromagnetic
fields, the operator and results can be spontaneously obtained in following manner. The following is
almost the same as the description for the single photon interference in [14].

The electromagnetic potentials are expressed as following four-vector in Minkowski space.
Aμ =

(
A0, A1, A2, A3

)
= (φ/c,A) (19)

The four-current is also expressed as following four-vector.
jμ =

(
j0, j1, j2, j3

)
= (cρ, i) (20)

When we set the axes of Minkowski space to x0 = ct, x1 = x, x2 = y, x3 = z, Maxwell equations with
Lorentz condition are expressed as follows.

�Aμ = μ0j
μ, ∂μA

μ = 0 (21)
In addition, the conservation of charge div i + ∂ρ/∂t = 0 is expressed as ∂μj

μ = 0, where
∂μ = (1/c∂t, 1/∂x, 1/∂y, 1/∂z) = (1/∂x0, 1/∂x1, 1/∂x2, 1/∂x3), and � stands for the d’Alembertian:
� ≡ ∂μ∂

μ ≡ ∂2/c2∂t2 − Δ.
The transformation between covariance and contravariance vectors can be calculated by using the

simplest form of Minkowski metric tensor gμν as follows.

gμν = gμν =

⎡
⎢⎣

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎤
⎥⎦

Aμ = gμνA
ν , Aμ = gμνAν

(22)

The following quadratic form of four-vectors is invariant under a Lorentz transformation.
(x0)2 − (x1)2 − (x2)2 − (x3)2 (23)

The above quadratic form applying a minus sign expresses the wave front equation and can be described
by using metric tensor.

−gμνxμxν = −xμxμ = x2 + y2 + z2 − c2t2 = 0 (24)

This quadratic form which includes minus sign is also introduced to inner product of arbitrarily vectors
and commutation relations in Minkowski space.

The four-vector potential satisfies Maxwell equations with vanishing four-vector current which can
be expressed as following Fourier transform in terms of plane wave solutions [25].

Aμ(x) =
∫
dk̃

3∑
λ=0

[
a(λ)(k)ε(λ)

μ (k)e−ik·x + a(λ)†(k)ε(λ)∗
μ (k)eik·x

]
(25)
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k̃ =
d3k

2k0(2π)3
k0 = |k| (26)

where the unit vector of time-axis direction n and polarization vectors ε(λ)
μ (k) are introduced as n2 = 1,

n0 > 0, and ε(0) = n, ε(1) and ε(2) are in the plane orthogonal to k and n

ε(λ)(k) · ε(λ′)(k) = −δλ,λ′ λ, λ′ = 1, 2 (27)

ε(3) is in the plane (k, n) orthogonal to n and normalized

ε(3)(k) · n = 0, [ε(3)(k)]2 = −1 (28)

Then ε(0) can be recognized as a polarization vector of scalar waves, ε(1) and ε(2) of transversal
waves and ε(3) of a longitudinal wave. Then we take these vectors as the following easiest forms.

ε(0) =

⎛
⎜⎝

1
0
0
0

⎞
⎟⎠ ε(1) =

⎛
⎜⎝

0
1
0
0

⎞
⎟⎠ ε(2) =

⎛
⎜⎝

0
0
1
0

⎞
⎟⎠ ε(3) =

⎛
⎜⎝

0
0
0
1

⎞
⎟⎠ (29)

When the Fourier coefficients of the four-vector potentials are replaced by operators as Âμ ≡∑3
λ=0 â

(λ)(k)ε(λ)
μ (k), the commutation relations are obtained as follows.[

Âμ(k), Â†
ν(k

′)
]

= −gμνδ(k − k′) (30)

The time-axis component (corresponds to μ, ν = 0 scalar wave, i.e., scalar potential because ε(0)μ (k) =
0 (μ �= 0)) has the opposite sign of the space axes. Because 〈0|Â0(k)Â

†
0(k

′)|0〉 = −δ(k − k′),

〈1|1〉 = −〈0|0〉
∫
dk̃|f(k)|2 (31)

where |1〉 =
∫
dk̃f(k)Â†

0(k)|0〉. Therefore, the time-axis component is the root cause of indefinite
metric. Note that the products of the operators replaced from the four-vectors must introduce the same
formalism.

Â†Â = −gμνÂμ†Âν (32)

In order to utilize the indefinite metric as follows, Coulomb gauge that removes the scalar potentials
should not be used.

Here we can recognize the potentials before passing through polarizers 1 and 2 as

Aμ = (A0, A1, A2, 0) (33)

where, we neglect the longitudinal wave which is considered to be unphysical presence, i.e., A3 = 0
for simplicity. When there are an x-polarized photon and scalar potential which pass through each
polarizer, the potentials passing through the polarizers can be expressed as

A(x pol 1)μ =
(

1
2
eiθx/2A(x)0, A(x)1, 0, 0

)
, A(x pol 2)μ =

(
1
2
e−iθx/2A(x)0, 0, 0, 0

)
(34)

When these scalar potentials undergo a |φ| phase shift, i.e., the angle of polarizer 3, by passing through
polarizer 3, the phase terms will be shifted to ±i(|φ|+ θx/2). Here we identify the number operators as
〈1|A†

0A0|1〉 = 〈1|A†
1A1|1〉 = 〈1|A†

2A2|1〉 = 1 because of the Lorentz invariance. Hence the single photon
interference in Eq. (8) or (18) is obtained as followings.

A(x pol 1, 2→3)μ ≡ A(x pol 1→3)μ +A(x pol 2→3)μ =
(

cos
(
|φ| + θx

2

)
A(x)0, A(x)1, 0, 0

)
(35)

〈Is〉 ∝ 〈1|A†
(x pol 1, 2→3)A(x pol 1, 2→3)|1〉 =

1
2
− 1

2
cos(2|φ| + θx) (36)
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Similarly, in the case of a y-polarized photon

A(y pol 1)μ =
(

1
2
eiθy/2A(y)0, 0, 0, 0

)
, A(y pol 2)μ =

(
1
2
e−iθy/2A(y)0, 0, A(y)2, 0

)
(37)

A(y pol 1, 2→3)μ ≡ A(y pol 1→3)μ +A(y pol 2→3)μ =
(

cos
(
|φ| + θy

2

)
A(y)0, 0, A(y)2, 0

)
(38)

Then
〈Ip〉 ∝ 〈1|A†

(y pol 1, 2→3)A(y pol 1, 2→3)|1〉 =
1
2
− 1

2
cos(2|φ| + θy) (39)

By choosing θ ≡ θx = −(θy+π), i.e., the potentials undergo π phase shift and the relatively-same phase
shift at polarizers 1 and 2 when being divided,

〈Is〉 ∝ 1
2
− 1

2
cos(2|φ| + θ), 〈Ip〉 ∝ 1

2
+

1
2

cos(2|φ| − θ) (40)

Hence, we should choose θ = θ + π to correct the reversed signs, which is attributed to the difference
between using γ2 = −1 and tensor form.

In case of both polarization photons exist, the potentials just before polarizer 3 will be expressed
by summation of Eqs. (34) and (37). Then the potentials that undergo a |φ| phase shift by polarizer 3
can be expressed as follows.

A(x,y pol 1, 2→3)μ =
(
A(x)0 cos

(
|φ| + θx

2

)
+A(y)0 cos

(
|φ| + θy

2

)
, A(x)1, A(y)2, 0

)
(41)

Therefore, the photon number operator of the output of polarizer 3 can be calculated as follows.

A†
(x,y pol 1, 2→3)A(x,y pol 1, 2→3)

= −A†
(x)0A(x)0 cos2

(
|φ| + θx

2

)
−A†

(y)0A(y)0 cos2

(
|φ| + θy

2

)

+A†
(x)1A(x)1 +A†

(y)2A(y)2 − (A†
(x)0A(y)0 +A†

(y)0A(x)0) cos
(
|φ| + θx

2

)
cos

(
|φ| + θy

2

)
(42)

Then by choosing θ ≡ θx = −(θy + π),

〈1|A†
(x,y pol 1, 2→3)A(x,y pol 1, 2→3)|1〉 = 1 − 1

2
cos(2|φ| + θ) +

1
2

cos(2|φ| − θ)

−〈1|(A†
(x)0A(y)0+A†

(y)0A(x)0)|1〉 cos
(
|φ|+ θ

2

)
sin

(
|φ|− θ

2

)
(43)

Here we should recognize |1〉 = (|1〉x + |1〉y) as mentioned above, and A(x)0 and A(y)0 annihilate x and
y-polarized photon, respectively, i.e., A(x)0|1〉 = |0〉x and A(y)0|1〉 = |0〉y. Because x〈0|0〉y = 0,

−
〈
1
∣∣∣(A†

(x)0A(y)0 +A†
(y)0A(x)0

)∣∣∣ 1
〉

= 0 (44)

Hence Eq. (43) corresponds to Eqs. (11) and (14) except the π phase shift of θ.

6. DISCUSSION

In this paper, we have taken advantage of the indefinite metric property of scalar potentials. Here we
discuss what the scalar field represents.

Usually in quantum optics, we can split the electric field and current density by using Coulomb
gauge as follows [26].

E = ET + EL, ∇ ·ET = 0, ∇× EL = 0

i = iT + iL, ∇ · iT = 0, ∇× iL = 0
(45)
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where the indexes “T” and “L” stand for “Transverse” and “Longitudinal”, respectively. By using
electromagnetic potentials, “Transverse”components of Maxwell equations can be described as follows.

∇× ET = −∂B
∂t
, ∇× B =

1
c2
∂ET

∂t
+ μ0iT

ET = −∂A
∂t

, ∇ · B = 0
(46)

where B is the magnetic field. We can also obtain following “Longitudinal” components.

EL = −∇φ, ∇ ·EL =
ρ

ε0

iL = ε0∇∂φ

∂t
= −ε0∂EL

∂t

(47)

Hence the transverse component seems associated with the magnetic field variation, and the longitudinal
component seems associated with charges as the regular scalar potential.

However, these associations are justified in a particular coordinate system, i.e., “relative
associations”. When the coordinate system is changed according to Lorentz transformation,
“Transverse” and “Longitudinal” components are mixed. Then the associations have no meaning
which is the important assertion of relativity [27]. This is why we equate scalar potentials with vector
potentials, i.e., identify the number operators as 〈1|A†

0A0|1〉 = 〈1|A†
1A1|1〉 = 〈1|A†

2A2|1〉 = 1 by Lorentz
invariance. In addition, the Coulomb gauge removes the explicit covariance of Maxwell equations.
Hence we would better use Maxwell equations (21) with Lorentz gauge. By utilizing the linearity of
Equation (21), we can express Maxwell equations with Lorentz condition as follows.

�Aμ = �
(
Aμ(mat) +Aμ(vac)

)
= μ0j

μ

∂μA
μ = ∂μ

(
Aμ(mat) +Aμ(vac)

)
= 0

(48)

where index “mat” and “vac” mean “matter” associated with four-current and “vacuum”, respectively.
If we naturally assume that there are no four-current in vacuum, then Aμ(mat) and Aμ(vac) obey the
following Maxwell equations respectively.

�Aμ(mat) = μ0j
μ, ∂μA

μ
(mat) = 0 (49)

�Aμ(vac) = 0, ∂μA
μ
(vac) = 0 (50)

Equation (49) will express substantial photon excited by the four-current. Note that when we
consider the spatial domain far from and exclude the four-current, Equation (50) replacing Aμ(vac) with
Aμ

(mat)
can express the motion of the potentials in the domain associated with the four-current.

In contrast, Equation (50) expresses the motion of the potentials unrelated to “matter” in vacuum.
Therefore, we can imagine that vacuum is the sea filled with unobservable potentials, which evokes
the concept of an ether. Although the static ether has been rejected by special relativity [27], the
above filling potentials are not static entity but propagate at the speed of light. Aharonov-Bohm
effect clearly presents that the unobservable potentials without electromagnetic field can cause electron
interference [16, 28, 29]. By the same token, the filling potentials in Eq. (50) can cause interference
with substantial photon, Eq. (49) as if it were a local oscillator for homodyne detection attached to
space-time as discussed in [14].

We generally calculate photon related phenomena using Aμ in Eq. (48) unconsciously, i.e., without
separation into “matter” and “vacuum”. However, we cannot distinguish Aμ(mat) from Aμ(vac), which is
very much like distinguish sea spray from seawater. Indeed, no separation will be required because
both are ever-changing potentials derived from the same Maxwell equation (48). Therefore, the filling
potentials in vacuum can expel and incorporate the potentials associated with “matter”, which makes
us imagine that vacuum can create and annihilate substantial photon.

The scalar field used in this paper correspond to the scalar component of this filling potentials in
the literature.

Although we estimate that the origin of the filling potentials might be the fabric of space-time from
the above consideration, the investigation will be a subject for a further study.
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7. CONCLUSIONS

We have presented that the quantum eraser can be explained without quantum-superposition states
by introducing the unobservable (scalar) potentials whose probability (or more like “interference”)
amplitudes are zero. The explanation presents the concept that vacuum can create and annihilate the
substantial photons.

We have also investigated the delayed choice experiment under the assumption that the polarization
of the photon pairs is determined by the unobservable (scalar) potentials which are oriented by the
setup of the experiment in advance. Moreover, we show that the interference between the photons and
unobservable potentials makes the long-range correlation beyond the causality that does not really exist
in nature but seems to exist regardless of the assumption. In addition to these discussions based on
a method for convenience in calculation, we have shown rigorous mathematical treatment using tensor
form (covariant quantization).

The new explanations obtained in the present paper are more general and physically consistent
than traditional explanations which require paradoxical quantum-superposition states and entangled
states.

The other experiments and considerations have been reported, which seem like paradoxes [11–
13, 24, 30–32]. We believe that the paradoxes can be avoided by the new explanation. Moreover, we
should investigate whether engineering applications based on wave packet reduction or entangled states
are feasible technologies or not, because an inevitable conclusion by the rigorous derivation described
in this paper can remove the paradoxical base concepts of the applications.

The new explanation presented here and [14] compel a restructuring of the traditional standard
quantum theory. However, this is the real natural law without the enigmatic and paradoxical thought
processes such as quantum-superposition and entanglement based on the “probabilistic interpretation”.
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