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Generalised Random Binned Antenna Arrays

Giovanni Buonanno* and Raffaele Solimene

Abstract—In binned arrays, radiators are classically located according to a uniform probability
distribution. By doing so, it has been shown that they have the same mean radiation pattern as
totally random arrays (i.e., the ones for which the radiators’ positions are continuous independent and
identically distributed random variables defined over the whole array aperture) but a lower variance. In
this paper, we introduce a new class of generalised binned arrays by generalising the rule for assigning the
radiators’ positions. These new binned arrays, while maintaining the aforesaid advantage (in terms of
the variance behaviour), allow to set the mean radiation pattern according to some design requirements.
The achievable performance is estimated by measuring how much the radiation pattern deviates from
the desired mean radiation pattern by resorting to the up-crossing theory. In particular, the study
is developed for the case of symmetric arrays, which allows for easier maths. The paper includes an
extensive numerical analysis which allows to check the developed theory. In particular, it focuses on
the comparison between the generalised binned array and the totally random ones. A comparison with
the nonuniform arrays coming from the density tapering approach is also presented. The latter appears
natural in view of the new bins selection rule, which, as will be shown, is a sort of density-tapering in
which the role of the reference current is played by the radiators’ position density distribution.

1. INTRODUCTION

Random arrays are those for which the positions of radiators are chosen according to some probabilistic
law. This naturally leads to a nonuniform element arrangement (with probability one) which has a
number of appealing features. Indeed, it is well known that nonuniform arrays are in principle free from
grating-lobes and allow for large scan angles and/or wide frequency ranges; actually, the bandwidth-
steerability product can be made much larger than for conventional equally-spaced arrays. Moreover,
the number of radiators (especially for large aperture) can be reduced to a large extent (compared to
the uniform arrangement) without significant degradation in the achievable resolution. This makes the
problem of mutual coupling less severe. Finally, non-uniformly deploying the elements over the array
aperture allows to control the side-lobe level without the need to taper the excitation currents. As a
consequence, the amplifiers’ working points can be optimised and the costs connected to the need for
solid-state T/R modules that work under arbitrary excitations and power outputs are reduced.

However, nonuniform arrays are much more difficult to analyse and synthesise than the uniform
ones: this is because standard Fourier series tools cannot be employed. In particular, for random arrays
the analysis and the synthesis must be pursued within the framework of stochastic processes and the
achievable performance expressed in terms of probabilistic metrics.

Much of the work on random arrays dates back to the seminal paper by Lo [1] who was the
first that systematically developed the theory for the case whereby radiators’ positions are continuous
i.i.d. random variables supported over the entire array aperture. This kind of random arrays is now
called totally random arrays (TRAs). Other different kinds of random arrays have also been proposed
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in literature (see [2] for a recent comparative study). Among them, we mention the binned arrays
(BAs) [3] that are of particular interest for the present paper.

The characterisation of random arrays is usually achieved in terms of the mean array factor and its
variance. The latter allows to foresee, for each observation angle, how much the array factor deviates
from its average. A much more difficult question is the estimation of the side-lobe level (SLL). Actually,
this is still an open problem since a rigorous and general procedure for SLL estimation has not been
developed yet. This is due to the difficulty in determining the probability distribution of the array factor
magnitude maximum in the side-lobe region (SLR). However, a number of approximate approaches have
been proposed and found to be satisfactory [4–9]. Among them we mention the beam-pattern sampling
approach, the up-crossings’ count and the extreme value theory. These approaches lead to tractable
and relatively easy formulas only when the array factor is assumed weakly stationary. However, this
assumption does not rigorously hold, especially for the SLR near the main beam. This problem is
overcome, and the SLL estimated with better accuracy, if the radiators are symmetrically deployed
(still according to a random law) with respect to the array aperture centre [10].

The synthesis problem amounts to selecting the array’s parameters in order to shape the radiation
pattern so as to be “close” to the desired one (reference pattern). The goodness of the design process can
then be estimated by measuring the mismatch between the reference and the obtained radiation patterns
(design error) according to some common metric. This framework of course also applies to the case of
random arrays. In particular, for the TRAs it is relatively easy to make the average radiation pattern
close to the reference one. To this end, it is sufficient to choose the radiators’ position probability
density function equal to the continuos current (supported over the array aperture) that gives the
desired radiation pattern. Accordingly, the design error measures how much the random radiation
pattern deviates from its average. Such an error can be estimated under the L2 norm by employing the
Karhunen-Loeve expansion [1]. This however requires computing the eigenspectrum of the radiation
pattern covariance function, which in general cannot be obtained in closed form. Moreover, different
metrics like the design error magnitude could be of interest as well. Regardless of the metric one may
want to adopt, for sure, a key role is played by the radiation pattern variance. One would like to have
the variance as low as possible, for each observation angle, so that the random radiation pattern is close
to the average one. In this regard, BAs are shown to be better than TRAs. More in detail, it was shown
that, for the case of the radiators’ locations chosen according to a uniform distribution, BAs have a
lower variance than TRAs. This is particularly true for the side-lobes close to the main beam. Hence,
for that region the radiation pattern basically coincides to the average one. The point is that, due to
the uniform distribution, the average pattern exhibits a sinc-like behaviour. Therefore, the question
arising is to devise BAs which retain the afore mentioned variance behaviour but at the same time allow
to freely choose the mean radiation pattern according to some design requirements.

The latter is just the main aim of this contribution. Herein, we develop a procedure that allows
to obtain BAs which exhibit a desired mean radiation pattern and still have lower variance than
TRAs. To this end, the probabilistic law for the elements’ allocation needs to be generalised: for
this reason we address these new BAs as generalised BAs (GBAs). Remarkably, it is found that the
new procedure for generating the GBAs is closely related to the density-tapering approach, which is
a common deterministic way to synthesise nonuniform equally excited arrays [12, 13]. In particular, it
is shown that the role of the continuos reference current in the density-tapering is here played by the
radiators’ position probability density function.

In order to measure how much the radiation pattern deviates from the average one, we measure the
mismatch (between the random radiation pattern and its average) magnitude. The latter is estimated
by exploiting the up-crossing method upon assuming a Poisson distribution for the up-crossing process.
Furthermore, the study focuses on the case of symmetric arrays which, as mentioned above, lead to
more tractable maths.

The theory is checked by an extensive numerical analysis. In particular, the GBAs are compared to
the TRAs but also with the density-tapering approach in view of the foregoing link between the GBAs
and this method.
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2. BASICS ABOUT RANDOM ARRAYS

In this section, the basic theory concerning the Totally Random Arrays (TRAs) and the Binned Arrays
(BAs) is briefly recalled in order to establish the framework and introduce the necessary notation.

2.1. Totally Random Arrays

Consider a linear array of equally-excited isotropic radiators arranged over a line of length L (in
wavelength). The corresponding (normalised) array factor reads as

F (u) =
1
N

N∑
n=1

ej2πXnu = F�(u) + jF�(u) (1)

where

• N is the number of radiators;
• Xn is the position of the n-th radiator measured in wavelength;
• θ and θ0 are the observation and the steering angles, respectively, both measured from the broadside

direction;
• u = sin θ − sin θ0. Though for a fixed steering angle the visible interval is [−1 − sin θ0; 1 − sin θ0],

in the sequel the full scan range u ∈ [−2; 2] will be considered;
• F�(u) and F�(u) are the real and imaginary parts of the array factor.

If the positions {Xn}N
n=1 are assigned according to a probabilistic rule, then the array factor

is a stochastic process. Accordingly, the probability theory is needed for describing/studying the
array radiation properties. In this framework, the mean patter φ(u) = E[F (u)] and the variance
E[|F (u)|2] − |φ(u)|2 are generally rather easy to compute. For TRAs the positions {Xn}s are assumed
independent and identically distributed (i.i.d.), then the mean and the variance of the array factor read
as [1]

φ(u) =
∫ L/2

−L/2
f(X)ej2πXudX (2)

and

σ2(u) =
1 − |φ(u)|2

N
(3)

where f(X) is the common pdf of the radiators’ positions. Note that f(X) is just supported over the
array aperture [−L/2, L/2]. At this juncture, it is useful to highlight an obvious fact that descends from
Eq. (2). It can be noted that the relationship between f(X) and φ(u) is the same as that connects a
continuous current and its radiation pattern. Therefore, as mentioned above, the mean array factor can
be easily set by choosing the {Xn}s’ pdf which has the desired Fuourier transform. Of course, this does
not assure that the array factor fulfils the synthesis requirements because it can deviate from its mean
patter according to the variance behaviour. Also, one is not free to choose f(x) arbitrarily because it
needs to be a probability density function.

The array factor is also commonly characterised in terms of its magnitude A(u) = |F (u)|. Although
herein we do not dwell on this aspect, it is however important to recall the basics aspects because they
are relevant to the error computation which is shown subsequently. Determining the distribution of
A(u) requires finding the cumulative distribution (cdf) P (A(u) < ξ). This is in general a hard task.
However, it is somehow simplified when the number of radiators is large. In this case, the Central
Limit Theorem [11] allows to consider F� and F� to be jointly normal [1]. Moreover, if f(X) is
even (as it is commonly assumed) [1] then the imaginary part of the mean pattern φ�(u) = 0 and
F�(u) and F�(u) become uncorrelated (and hence independent) for each value of u. In other words,
F (u) ∼ N [φ(u), 0, σ2

R(u), σ2
I (u)] and of course FR(u) ∼ N [φ(u), σ2

R(u)] and FI(u) ∼ N [0, σ2
I (u)], N
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denoting the normal distribution. Accordingly, the cumulative distribution function of the array factor
magnitude is

P (A(u) < ξ) =
∫∫

e
−
{

[FR−φ(u)]2

2σ2
R

(u)
+

F2
I

2σ2
I
(u)

}
2πσR(u)σI(u)

dFRdFI

|F (u)|<ξ

(4)

Equation (4) is a generalised non central chi-square distribution with two degrees of freedom. As well
known, it cannot be computed in closed form even though some approximations can be employed to
simplify the calculation [14].

2.2. Binned Arrays

For BAs, the following generation rule is used for determining the radiators’ positions

Xn = −L

2
+ (n − 1)

L

N
+ Yn; n = 1, 2, . . . , N (5)

where {Yn}N
n=1 are independent continuous random variables defined over the interval [0, L/N ]. This

type of arrays are known as Binned Arrays because the array aperture is divided into equal non-
overlapping intervals, called bins, and in each of them a single radiator is located. The statistical
properties of this kind of random arrays was studied in [3] where the positions {Yn}N

n=1 were assumed to
be uniformly distributed over [0, L/N ] (i.e., f(Yn) = U(0, L/N) ∀n). For such a case, the mean pattern
φBA(u) and the variance σ2

BA(u) are given by

φBA(u) =
1
N

N∑
n=1

E
[
ej2πXnu

]
=

1
L

∫ L/2

−L/2
ej2πXu dX = φU (u) (6)

and

σ2
BA(u) =

1 − ∣∣E[ej2πY u]
∣∣2

N
= σ2

U (u/N) (7)

Here, φU (u) and σ2
U (u) are the corresponding mean and variance of the array factor of a TRA when in

Eqs. (2) and (3) the common pdf of the elements’ positions is assumed uniform over [−L/2, L/2] (i.e.,
U(−L/2, L/2)). First, it is observed that for both types of arrays the maximum possible aperture is
L. This entails that the achievable resolution (in terms of the width of the main beam) is basically the
same. Also, Eq. (6) shows that the BAs have the same mean array factor as the TRAs. Therefore, for
this simple case (i.e., {Yn} uniformly distributed) a clear connection (as for TRAs) exists between the
mean pattern and the positions’ pdf . Finally, the BAs are in general better than TRAs because the
variance increases more slowly as u moves away from the main beam region (see (7)). This means that
the BA factor is “closer” (statistically) to its mean factor over a larger range (in u) than the TRAs.
However, the array factor magnitude characterisation becomes more complicated. Indeed, the Central
Limit Theorem still allows to consider a Gaussian probability distribution for the array factor. However,
looking at the cross-covariance between F�(u) and F�(u), which is given by

Cov[F�, F�;u] =
1

N2

N∑
n=1

{
E[sin(4πXnu)]

2
− E[cos(2πXnu)]E[sin(2πXnu)]

}
(8)

it can be observed that F�(u) and F�(u) are in general not independent. Hence, while computing (4),
the correlation coefficient must be taken into account.

We remark that the difficulties encountered for the computation of Eq. (4) are completely overcome
if the random arrays are symmetric [10]. We will return to this point later because it is also relevant to
the present study.
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3. GENERALISED BINNED ARRAYS

In the previous section, we have shown that BAs and TRAs have the same mean array factor, but BAs
are somehow better because the variance increases more slowly while moving away from the main beam
region. This result has been established according to the Hendricks’s work [3] by assuming the radiators’
positions as i.i.d. uniform random variables. Unfortunately, for such a case the mean radiation pattern
is bound to be a sinc-like function. In this section, we aim at generalising the probabilistic law for
generating the radiators’ positions in order to have BAs whose mean pattern can be set according to
some requirement; at the same time the advantage in terms of the variance behaviour must be retained.

Let us start by reinterpreting the assigning rule in Eq, (5). Denote as x̃n = −L
2 + (n − 1) L

N
for n = 1, 2, . . . , N + 1. Hence, the array aperture results partitioned into the N equal bins
[x̃1, x̃2] ∪ [x̃2, x̃3] ∪ . . . ∪ [x̃n−1, x̃n] ∪ . . . ∪ [x̃N , x̃N+1]. In each bin the element position is chosen
according to a uniform distribution. In particular, for the n-th bin Xn ∼ U [x̃n, x̃n+1]. Now consider
f(X) = U(−L/2, L/2). It then results that the pdfs of the BA elements are related to f(X) as follows

f(Xn) = N f(X)Π

⎛
⎜⎝X − x̃n + x̃n+1

2
x̃n+1 − x̃n

⎞
⎟⎠ (9)

where Π[(X − a)/b] is the window function centred in a with extension equal to b. Hence, f(Xn)s are
obtained from f(X) through a partitioning and rescaling procedure, and this, as shown above, assures
that φBA(u) = φU (u). This result strictly holds for the case of uniform distribution and needs to be
generalised for a more general f(X). In particular, as we are going to show, a nonuniform f(X) entails
a nonuniform allocation of the x̃n.

Say φD(u) the desired mean radiation pattern and let fD(X) the pdf supported over [−L/2, L/2]
whose Fourier transform returns φD(u). Define the f(Xn) as in Eq. (9). It then follows that
φGBA(u) = φD(u), that is

φGBA(u) =
1
N

N∑
n=1

E
[
ej2πXnu

]
=

1
N

N∑
n=1

∫ L/2

−L/2
f(Xn)ej2πXnudXn

=
1
N

N∑
n=1

∫ x̃n

x̃n−1

NfD(X)ej2πXudX =
∫ L/2

−L/2
fD(X) ej2πXudX = φD(u) (10)

as long as ∫ L/2

−L/2
f(Xn)dX =

∫ x̃n

x̃n−1

NfD(X)dX = 1 (11)

Indeed, Eq. (11) assures that f(Xn)s are normalised, and hence that they are actually probability density
functions. Also, it provides the law needed to choose the x̃n. In particular, consider the cumulative
function

FD(x) =
∫ x

−L/2
fD(X)dX (12)

for which of course holds that FD(−L/2) = 0 and FD(L/2) = 1. Then, Eq. (11) entails dividing the
range of FD(x) into N intervals of size 1/N . Accordingly, the N + 1 x̃n are determined as

x̃1 = −L/2 = F−1
D (0); x̃2 = F−1

D (1/N); . . . x̃n+1 = F−1
D (n/N); . . . x̃N+1 = F−1

D (1) = L/2 (13)

so that the array aperture results divided into N non-equal intervals [x̃1, x̃2]∪ [x̃2, x̃3] . . .∪ [x̃n−1, x̃n] . . .∪
[x̃N , x̃N+1] and within each of them the radiator’s position is fixed according to Eq. (9).

It is interesting to remark that the partition rule in Eq. (13) is basically the same as the one used for
the synthesis of deterministic nonuniform arrays according to the density-tapering approach proposed
by Doyle in [12] and then discussed by Skolnik in [13]. In particular, here the roles of the positive
and real continuous reference current and the so-called cumulative distribution current are respectively
played by fD(X) and FD(x).

Summarising, the steps for obtaining a GBA are the following:
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(i) fix fD(X) according to the desired mean radiation pattern;
(ii) determine the x̃ns according to the distribution function FD(x) as shown in Eq. (13);
(iii) finally choose the Xn pdf using fD(X) in Eq. (9).

As remarked, this procedure allows to have the desired mean radiation pattern. As to the variance,
it yields

σ2
GBA(u) = E[|FGBA(u)|2] − |φGBA(u)|2

=
1

N2

N∑
n=1

N∑
m=1

E[ej2πXnu e−j2πXmu] − 1
N2

N∑
n=1

N∑
m=1

E[ej2πXnu]E[e−j2πXmu]

=
1
N

− 1
N2

N∑
n=1

|E[ej2πXnu]|2 =
1
N

−
N∑

n=1

∣∣∣∣∣
∫ x̃n

x̃n−1

fD(X) ej2πXu dX

∣∣∣∣∣
2

(14)

from which, recalling Eq. (3), it can easily be seen that the variance is lower than the one corresponding
to a TRA when fD(X) is used for generating the elements’ positions.

Also for GBAs one can still say that both the real and imaginary parts of the array factor FGBA(u)
are asymptotically normal, but the same difficulties mentioned above persist while determining the
distribution of the array factor magnitude. To mitigate this inconvenient, we propose to introduce the
symmetry requirement in order to exploit the simplifications arising.

3.1. Symmetric Generalised Binned Antenna Arrays

First, the desired pdf fD(X) is assumed even with respect to the centre of the array aperture. This
assumption guarantees that the bins, provided by Eq. (13), are symmetric as well. However, this does
not entail that the resulting array is already symmetric. To this end, we need to enforce that for each
radiator located at Xn > 0 a symmetric radiator is put at −Xn. In essence, one starts from fD(X) and
determines the bins only for positive x. In this case, x̃1 = 0 and x̃N/2+1 = L/2. Then, in each of these
bins Xn is selected. Finally, the array is completed by putting elements also at −Xn. In particular,
in the sequel we consider only arrays with an even number of radiators. This is done for the sake of
simplicity and has no practical impact on arrays consisting of a large number of elements.

The array factor of a symmetric GBA can be written as

FGBAs(u) =
2
N

N/2∑
n=1

cos(2πXnu) (15)

whereas the mean and variance are yielded by

φGBAs(u) = E[FGBAs(u)] =
2
N

N/2∑
n=1

E[cos(2πXnu)] =
2
N

N/2∑
n=1

∫ x̃n+1

x̃n

f(Xn) cos(2πXu) dX

=
2
N

N/2∑
n=1

∫ x̃n+1

x̃n

N fD(X) cos(2πXu) dX = 2
∫ L/2

0
fD(X) cos(2πXu) dX = φD(u) (16)

and

σ2
GBAs(u) =

1
N

+
2

N2

N/2∑
n=1

E[cos(4πXnu)] − 4
N2

N/2∑
n=1

E2[cos(2πXnu)]

=
1
N

[1 + φD(2u)] − 4
N2

N/2∑
n=1

E2[cos(2πXnu)] (17)

If the number of elements is sufficiently large, by the Central Limit Theorem, the array factor pdf
can be considered normal, FGBAs(u) ∼ N [φGBAs(u), σ2

GBAs(u)]. Moreover, as opposed to the general
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asymmetric case, the cdf of the array factor magnitude, AGBAs(u) = |FGBAs(u)|, is obtained in closed
form without any approximations. Indeed, say ξ ∈ R

+, it yields [10]

P{AGBAs(u) ≤ ξ} = P{−ξ ≤ FGBAs(u) ≤ ξ} =
∫ ξ

−ξ

1√
2πσ2

GBAs(u)
e
− [FGBAs−φGBAs (u)]2

2σ2
GBAs (u) dFGBAs

= Q

(
−ξ + φGBAs(u)

σ2
GBAs(u)

)
− Q

(
ξ − φGBAs(u)

σ2
GBAs(u)

)
(18)

where Q(x) = (1/
√

2π)
∫∞
x e−ξ2/2 dξ is related to the so-called error function that can be obtained in

closed form with a small error making use of the analytical approximation in [15], which holds for
positive arguments. A further clear advantage with respect to the asymmetric arrays is that also the
mean and variance of the magnitude array factor can be evaluated in closed form [10]. Indeed, the array
factor magnitude density can be easily evaluated after a simple transformation as

f(AGBAs , u) =
1√

2πσ2
GBAs(u)

⎧⎨
⎩e

− [AGBAs−φGBAs (u)]2

2σ2
GBAs (u) + e

− [AGBAs+φGBAs (u)]2

2σ2
GBAs (u)

⎫⎬
⎭ (19)

and then
φAGBAs (u) = E [AGBAs(u)]

= φGBAs(u)
[
Q

(
−φGBAs(u)

σGBAs(u)

)
− Q

(
φGBAs(u)
σGBAs(u)

)]
+

√
2
π

σGBAs(u) e
−

φ2
GBAs (u)

2σ2
GBAs (u) (20)

σ2
AGBAs (u) = σ2

GBAs(u) + φ2
GBAs(u) − φ2

AGBAs (u) (21)

3.2. Error Estimation

As stated at the beginning of this paper, we are also interested in estimating how the radiation
pattern deviates from φD(u). To this end, we obviously need the statistic characterisation of the error
process magnitude |ε(u)| = |FGBAs(u) − φD(u)|. The latter is a simple task if we note that the error
process coincides with the magnitude of the centred array pattern process, i.e., ε(u) ∼ N [0, σ2

GBAs(u)]
Accordingly, under the assumption of symmetric radiators’ positions, the distribution P (|ε(u)| < ξ) is
easily found by considering a zero mean pattern in the results reported in the previous section. However,
this would only regard a “punctual” (i.e., for each separated u) characterisation of the error. Indeed,
to globally estimate the error the supremum of ε = maxu∈[0,2]{|ε(u)|} must be studied, where only the
interval [0, 2] has been considered in virtue of the evenness of the radiation pattern. Basically, this
entails finding the following distribution

P{ε ≤ ξ} = P{|ε(u)| ≤ ξ ∀ u ∈ [0, 2]} (22)
Finding the ε distribution is clearly linked to the estimation of the side-lobes of the centred radiation

pattern. As such, it is a hard and in general an open problem. However, a number of approximate
methods have been proposed in the literature. In this paper we employ the up-crossing approach. In
detail, say ξ the level with respect to which the number of up-crossings has to be estimated and say
Nξ the random variable that counts how many times |ε(u)| up-crosses ξ (i.e., crosses ξ with a positive
slope). Accordingly, ε can be estimated by finding the threshold ξ for which the probability of no
crossing is one. This is equivalent to estimating P (Nξ ≥ 1), i.e., that at least there is one up-cross.
This task is greatly simplified if we content to find an upper bound for P (Nξ ≥ 1) (resp. a lower bound
for P (Nξ = 0)). To this end, E[Nξ] can be exploited. Indeed, according to Rice’s formula [16]

E [Nξ] =
∫ 2

0
du

∫ ∞

0
|ε|′f|ε||ε|′(ξ, |ε|′;u)d|ε|′ (23)

where f|ε||ε|′(|ε|, |ε|′;u) is the joint pdf between the error and its derivative |ε|′ = d|ε|
du . Note that Eq. (23)

admits a nice closed form expression if |ε(u)| is assumed stationary [7]. In this case ε�, ε�, ε′� and ε′� are
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uncorrelated and Gaussian hence their joint pdf fε�ε�ε′�ε′� can be readily obtained by multiplying the
marginal distributions. Then, f|ε||ε|′(|ε|, |ε|′;u) is obtained from fε�ε�ε′�ε′�(ε�, ε�, ε′�, ε′�;u). However, in
general |ε(u)| is not stationary and the computation of E[Nξ] requires performing a multidimensional
numerical integration. In the case of symmetric random arrays this matter is greatly simplified [10].
In fact, since ε(u) is a real process, determining the up-crossings of |ε(u)| is equivalent to simultaneous
study the up-crosses of ε(u) and ε̃(u) = −ε(u) for the given level ξ > 0. Since ε(u) and ε′(u), and of
course ε̃(u) and ε̃′(u), are jointly Gaussian, then the mean number of up-crossings can be written as

E{Nξ} =
∫ 2

0
du

∫ +∞

0
ε′fεε′(ξ, ε′, u)dε′ +

∫ 2

0
du

∫ +∞

0
ε̃′fε̃ε̃′(ξ, ε̃′, u)dε̃′

= 2
∫ 2

0
du

∫ ∞

0
ε′

e
− 1

2[1−ρ2(u)]

[
ξ2

σ2
ε (u)

− 2ρ(u)ξε′
σε(u)σ

ε′ (u)
+ ε′2

σ2
ε′ (u)

]

2πσε(u)σε′(u)
√

1 − ρ2(u)
dε′ (24)

Note that σ2
ε (u) = σ2

GBAs(u), whereas σ2
ε′(u) is the variance of ε′(u) and ρ(u) =

E[ε(u), ε′(u)]/(σε(u)σε′(u)) is the correlation coefficient that can be computed as shown in [10].
Once E[Nξ] has been computed the Markov inequality can be invoked to get

P{Nξ ≥ 1} ≤ E [Nξ] (25)

or equivalently
P{Nξ = 0} ≥ 1 − E [Nξ] (26)

Of course, Eq. (25) or (26) is meaningful only when E[Nξ] ≤ 1. Accordingly, ε can be estimated
as the value of ξ for which E[Nξ] is sufficiently lower than 1.

A direct estimation of P{ε ≤ ξ} can still be obtained in terms of E[Nξ] if the occurrence of the
up-crossing points is assumed to be a random point Poisson process [8]. In this case it can be shown
that

P{ε ≤ ξ} ≈ e−E[Nξ] (27)

Eventually, the latter is the ε estimation that will be used in the sequel.

4. NUMERICAL RESULTS

In this section, some numerical results are shown in order to assess the theory presented in the previous
sections. To this end, two different kinds of desired radiation patterns are considered: the first one is
the cosine distribution

fD1(X) =
π

2L
cos
(

π X

L

)
(28)

which provides the following mean radiation pattern

φD1(u) =
cos(πLu)
2 + 4Lu

+
cos(πLu)
2 − 4Lu

(29)

the second one is a Taylor distribution of parameters n̄ = 80 and SLL = 0.1

fD2(X) =

⎡
⎣1 + 2

n̄−1∑
p=1

φD2(p/L)

⎤
⎦

L
(30)

with

A =
cosh−1(1/SLL)

π
; (31)

σ =
n̄√

A2 + (n̄ − 1/2)2
(32)
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to which the following mean radiation pattern corresponds

φD2(u) =
sin(πLu)

πLu

n̄−1∏
n=1

[
1 −
(

u

un

)2
]

n̄−1∏
n=1

[
1 −
(

u

n/L

)2
] (33)

with the nulls at

un = ±σ
√

A2 + (n − 1/2)2

L
(34)

Say FGBAi(u) and FT RAi(u), with i = 1, 2, the generalised BA and TRA random radiation patterns
corresponding to the mentioned pdfs. Also, both classes of arrays are assumed symmetric (in the sense
explained above) even though the superscript s (as in Section 3.1) has been skipped for simplicity of
notation. Finally, the wavelength λ is fixed at 1m.

In Figs. 1–3 and 4–6, we start by showing the variance behaviour and the effect it has on the
radiation patterns for the distribution fD1 and fD2, respectively. The number of radiators has been fixed
at N = 200 but the case where they are deployed over array apertures of different sizes is considered. In
particular, for the three considered cases, the average distance between two consecutive radiators, defined
as L/N , is 0.5λ, λ and 2.5λ. In each figure, the top diagram reports the magnitude of the mean array
factor (blue line), i.e., the desired |φDi(u)|, and the normalised, with respect to maxu∈[0,2]{σ2

T RA(u)},
variances behaviours; the red line is for σ2

T RA(u) whereas the magenta line refers to σ2
GBA(u). As can be

seen, the advantages of the binned arrays shown in [3] are also confirmed for the case at hand where the
positions of the elements do not have uniform pdf distribution within each subinterval. More in detail,
as expected, σ2

GBA(u) increases in a much slower way than σ2
T RA(u), even though as the element average
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Figure 1. The case of cosine distribution. The number of radiators is N = 200 and are deployed over
an aperture of L = 100. The top diagram reports the desired mean radiation pattern along with the
normalised (to max{σ2

T RA}) variance behaviours, whereas the bottom ones illustrate the comparison
between φD1(u) and GBA and TRA sample (realisation) patterns.
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Figure 2. The case of cosine distribution. The number of radiators is N = 200 and are deployed over
an aperture of L = 200. The top diagram reports the desired mean radiation pattern along with the
normalised (to max{σ2

T RA}) variance behaviours, whereas the bottom ones illustrate the comparison
between φD1(u) and GBA and TRA sample (realisation) patterns.
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Figure 3. The case of cosine distribution. The number of radiators is N = 200 and are deployed over
an aperture of L = 500. The top diagram reports the desired mean radiation pattern along with the
normalised (to max{σ2

T RA}) variance behaviours, whereas the bottom ones illustrate the comparison
between φD1(u) and GBA and TRA sample (realisation) patterns.
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Figure 4. The case of Taylor distribution. The number of radiators is N = 200 and are deployed over
an aperture of L = 100. The top diagram reports the desired mean radiation pattern along with the
normalised (to max{σ2

T RA}) variance behaviours, whereas the bottom ones illustrate the comparison
between φD2(u) and GBA and TRA sample (realisation) patterns.
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Figure 5. The case of Taylor distribution. The number of radiators is N = 200 and are deployed over
an aperture of L = 200. The top diagram reports the desired mean radiation pattern along with the
normalised (to max{σ2

T RA}) variance behaviours, whereas the bottom ones illustrate the comparison
between φD2(u) and GBA and TRA sample (realisation) patterns.
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Figure 6. The case of Taylor distribution. The number of radiators is N = 200 and are deployed over
an aperture of L = 500. The top diagram reports the desired mean radiation pattern along with the
normalised (to max{σ2

T RA}) variance behaviours, whereas the bottom ones illustrate the comparison
between φD2(u) and GBA and TRA sample (realisation) patterns.

spacing increases, both variances reach their maximum value more quickly. For the TRAs this can be
easily explained since a larger aperture corrisponds to a narrower first-null beam-width (see Eq. (3)).
A similar reasoning also applies for the GBAs since the larger the array aperture the larger the bin
extensions and hence the first-null beam-width of each terms in the summation of Eq. (14). In any
case, even by increasing the average spacing between antenna elements the growth of variance of GBAs
becomes faster, and the relative advantage over the TRAs is maintained, because the bins are always
smaller than the whole aperture, although for both array types the region of randomness†, within the
visible space, becomes larger.

The bottom diagrams reported in each figure instead show a comparison between the desired
mean radiation pattern (blue lines) and the corresponding |FGBAi | (red lines) and |FT RAi | (green lines)
realisations. As can be seen, while for TRAs the radiation pattern manifests a random structure nearly
immediately, the |FGBAi |s follow well the desired radiation pattern in the near main beam zone, and in
general stay closer to φDi(u) than the TRAs.

We now move to assess the validity of Eq. (27) for estimating the error ε. In particular, in Fig. 7,
the error probability distribution returned by Eq. (27) is compared with empirical results obtained via a
Monte Carlo procedure. In particular, for the Monte Carlo analysis, the array factors were sampled with
a step equal to λ/(10L), that is five times finer than the Nyquist step corresponding to the bandwidth of
the array square magnitudes. Moreover, each empirical distribution was built by running (generating)
10000 trials (for each case). As can be seen, the obtained results are amazing for both the considered
pdfs. Hence, Eq. (27) can be safely used to estimate the maximum error as the one for which the
probability is one.

Finally, as mentioned above, in view of the similarity between the bin generation rule and the
density-tapering, it makes sense to compare the error returned by the GBAs and the Doyle-Skonlink
synthesis. Say FDT (u) the radiation pattern arising from the density-tapering procedure. As above,
† The full-scan range portion in which the variance assumes the (constant) maximum value.



Progress In Electromagnetics Research C, Vol. 78, 2017 141

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
N=200, L=100

ξ

P
{ε

<
ξ
}

 

 

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
N=200, L=200

ξ

P
{ε

<
ξ
}

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
N=200, L=500

ξ

P
{ε

<
ξ
}

 

 

(a)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
N=200, L=100

ξ

P
{ε

<
ξ
}

 

 

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ξ

P
{ε

<
ξ
}

N=200, L=200

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ξ

P
{ε

<
ξ
}

N=200, L=500

empirical distribution of ε 
theoretical distribution of ε(b)

Figure 7. Illustrating the validity of (27). Panel (a) reports the comparison between the theoretical ε
distributions and the corresponding empirical ones for the case of fD1. Panel (b) is the same as panel
(a) but for the Taylor distribution fD2. The number of radiators is N = 200 whereas three aperture
sizes, L = 100, L = 200 and L = 500 are considered.
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we define the error as δ = maxu∈[0,2] |FDTi(u) − φDi(u)|. In particular, we compare the two methods
by reporting the probability that the GBAs give a lower error than FDT (u), that is P{ε ≤ δ}. Some
results corresponding to the configurations already exploited in the previous examples are shown in
the following tables. These results clearly show that as the average distance between the elements
increases, with high probability, the GBAs are better than the density-tapering arrays. In this regard,
it is worth remarking that the GBAs error measure can be considered as a tool for a priori estimating
the performance achievable by the synthesis of density-tapered arrays.

Table 1. Cosine density function.

N L δ P{ε ≤ δ}
200 100 0.1007 0
200 200 0.3070 0.9954
200 500 0.3121 0.9851

Table 2. Taylor density function.

N L δ P{ε ≤ δ}
200 100 0.1283 0
200 200 0.2664 0.9596
200 500 0.2687 0.8478

5. CONCLUSIONS

In this paper, we introduce a method for obtaining binned arrays which allows to use any desired pdf
for the radiators’ positions. We name this class of binned arrays “generalised binned arrays” since
they actually expand the repertoire of this kind of arrays and generalise the classical binned array
theory [3] which implicitly assumes a uniform pdf . In particular, one can make the mean radiation
pattern coincident to the one corresponding to a generic real and positive current defined over the
whole array aperture. This was possible by noticing that the bins generation rule coincides to the bins
density procedure when the chosen pdf is equal to the reference current.

This result sheds new light on the possibility offered by the binned arrays. Indeed, through
the GBAs one can shape the mean radiation pattern (which does not necessarily need to be a sinc-
like function anymore) according to some design constraints. At the same time GBAs retain the
advantage, over the totally random ones, in terms of the variance behaviour. The latter entails that the
corresponding random array radiation pattern is closer to the average one over a larger region around
the main beam than TRAs are, and in this sense GBAs always outperform TRAs.

For the sake of convenience, the study has been thoroughly developed for the case of symmetric
arrays. More in detail, the maximum of the mismatch between the random pattern and the desired
mean one has been estimated in closed form by resorting to the up-crossing theory. Finally, GBAs
also appear advantageous compared to the density-tapered arrays when the average spacing between
radiators is greater than λ/2. Finally, we want to emphasise the fact that since the generalised binned
arrays and density-tapered arrays are tied by sharing the same bins, the framework used to analyze the
former can also be used for a priori analysis of the latter, even before any synthesis procedures.
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