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Harmonically Time Varying, Traveling Electromagnetic Fields
along a Laminate Approximated by a Homogeneous,

Anisotropic Block with Infinite Length

Birger Marcusson* and Urban Lundin

Abstract—Analytical expressions that include arbitrarily directed fields on all laminate boundaries
can be used for calculation of the fields inside the laminate when the boundary fields are known from,
e.g., measurements. A linear laminate block could be used in non-destructive testing for comparisons
between different laminates. This article contains derivation of Fourier series of harmonically time
varying, traveling electromagnetic fields in homogeneous, anisotropic approximations of laminates. The
component of the magnetic field strength in the stacking direction is used as a source term in two-
dimensional Poisson equations for the magnetic field strength in other directions. This approximation
is here used in three dimensions under the precondition that the conductivity is much smaller in the
laminate stacking direction than in the other directions. Sine interpolation and different choices of types
of boundary conditions are discussed. Different alternative subdivisions of the Poisson boundary value
problems are treated. Shorted derivations of simple analytical expressions are given for both traveling
and standing waves in two dimensions. Results from Fourier series in the three-dimensional case are
compared with results from finite element calculations.

1. INTRODUCTION

For a simple geometry like an infinitely long laminate block, analytical expressions of the electromagnetic
fields combined with measured boundary fields can be used as an alternative to analyses with
numerical softwares, such as finite element programs. The analytical expressions can therefore also
be used during verification of numerical softwares. Another application of the analytical expressions
could be field calculation as a complement to non-destructive testing with sweeping electromagnetic
fields for comparisons between laminates. Such tests can be of special interest for laminate plates
intended to be located in the end regions of electric machines and plate packages where the eddy
current losses are relatively large because of magnetic leakage fields. Sweeping field tests would
complement the IEC 60404-2 standard Epstein frame tests since the latter use alternating magnetic
fields with a negligible component perpendicular to the lamination planes. The main purpose of
this work is to find mathematical expressions for traveling magnetic and electric field components
for a laminate approximated by a homogeneous, anisotropic block. To approximate a laminate by
a single, homogeneous, anisotropic piece of material is common in finite element analyses (FEA) of
electric machines with a magnetic core [1]. The anisotropic approximation can to a high extent reduce
the amount of calculations by analytical expressions as well as by FEA since there can be up to a
few thousand lamination layers of electrical steel in a core. With the laminate approximated by a
homogeneous block, it is sufficient to measure or calculate spatial averages of the boundary fields in
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the stacking direction as long as the laminate end effects are considered. The anisotropic material can
be defined to have effective permeabilities [2, 3] and equivalent, zero or near zero conductivity in the
stacking direction [4–6]. The equivalent conductivity in the stacking direction goes to zero when the
laminate sheet thickness divided by the laminate width goes to zero [4]. In this article, the derivation of
Fourier series of magnetic and electric field components in the three-dimensional (3-D) case is done under
the precondition that the conductivity in the stacking direction is much smaller than the conductivity
in any direction perpendicular to the stacking direction.

Above a letter, ¯ denotes a complex quantity, ˜ denotes a Fourier coefficient, and ̂ denotes an
amplitude. Vectors and matrices are denoted by bold letters. Subscript c is used in the notation of
Fourier coefficients that correspond to cosine eigenfunctions. The other Fourier coefficients correspond
to sine eigenfunctions.

Section 2 contains fundamental assumptions and equations. In Section 2.1, Fourier series of fields
in a laminate of width W and thickness T are derived. After a short derivation of the wave equation
for the z component of the magnetic field strength, H̄, two-dimensional (2-D) Poisson equations for
H̄x and H̄y are derived. The components of H̄ are the sums of two contributions, each corresponding
to a subproblem of a boundary value problem. The boundary value problem for H̄x is divided into
two subproblems in three alternative ways that are compared. For H̄y, only one alternative is chosen.
The choice of types of boundary conditions is motivated. Boundary conditions, eigenfunctions and
propagation factors are determined. The Fourier series of H̄z are given. The most complicated
subproblems for H̄x are solved. The solutions of the other subproblems are just subsets of the most
complicated. Simple subproblems for H̄y are solved. As a consequence of the 2-D Poisson equation,
one of the two contributions of H̄x and H̄y is completely determined by H̄z. The Fourier series of the
components of Ē are expressed with Fourier coefficients of the components of H̄. Section 2.1.1 shows
how the Fourier coefficients of Neumann boundary functions can be calculated. Section 2.2 contains
shorted derivations of field expressions, amplitude relations, phase relations and eddy current density
for traveling and standing waves along an infinite laminate with only one end surface. These cases could
be of interest for both magnetic shielding and losses caused by magnetic leakage flux. Section 2.3 treats
a slightly more general traveling wave case where the laminate thickness is arbitrary. In Section 3, FEA
is compared to Fourier series in the 3-D case. Section 4 is mainly about sine interpolation and results
of the 2-D cases.

2. DERIVATION OF HARMONICALLY TIME VARYING MAGNETIC AND
ELECTRIC FIELD COMPONENTS

The z direction is the stacking direction, and the laminate is infinitely long in the x direction in all
studied cases. Electromagnetic waves are assumed to sweep along the laminate in the x direction. In
this direction the waves have the angular frequency, ω, the wave length, λ, and the wave propagation
constant

k =
2π
λ

. (1)

Maxwell’s equations in complex form are
∇ · (εĒ) = ρ, (2)

∇ · B̄ = 0, (3)
∇× Ē = −jωB̄, (4)
∇× H̄ = J̄ + jωεĒ (5)

where ε is the permittivity, ρ is the volume charge density, B̄ is the magnetic flux density, and J̄ is the
current density. Anisotropic versions of relations of Ohm’s law and between B̄ and H̄ are

J̄ = σxx̂Ēx + σyŷĒy + σzẑĒz. (6)
B̄ = μxx̂H̄x + μyŷH̄y + μzẑH̄z (7)

where μi and σi for i = x, y or z are scalar, effective or assumed values of permeabilities and
conductivities. The relations (6) and (7) are valid in the special case of diagonal conductivity and
permeability tensors.
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2.1. A Laminate with Width W and Thickness T in the Stacking Direction

Figure 1 shows a cross section of an anisotropic approximation of a laminate.

y

z

μx=μy,  μz , σx = σy >> σzT
W

Figure 1. Cross section of an anisotropic approximation of a laminate of width W and thickness T .
The relations μx = μy and σx = σy � σz are introduced in the derivation of equations whereas μz can
be arbitrary.

Equations (5), (6) and (7) give that the z component of Eq. (4) can be written as

ẑ · (∇× Ē
)

= −jωμzH̄z =
1

σy + jωε

(
∂2H̄x

∂x∂z
− ∂2H̄z

∂x2

)
− 1

σx + jωε

(
∂2H̄z

∂y2
− ∂2H̄y

∂y∂z

)
(8)

In the special case where μx = μy and σx = σy, Eqs. (3) and (8) give the wave equation

Q

(
∂2H̄z

∂x2
+

∂2H̄z

∂y2

)
+

∂2H̄z

∂z2
= γ̄2H̄z (9)

where Q = μx/μz, and
γ̄2 = −ω2μxε + jωμxσy. (10)

Uncoupled wave equations for H̄x and H̄y can not be obtained as easily as for H̄z because of the
anisotropy. A way to get approximative values of H̄x and H̄y is to use the solution of Eq. (9) as a source
term in simplified equations for H̄x and H̄y. These simplified equations are derived next. Eqs. (5), (6)
and (7) give that the x component of Eq. (4) multiplied by σz + jωε can be written as

x̂ · (∇× Ē)(σz + jωε) = −jωμx(σz + jωε)H̄x =
(

∂2H̄y

∂x∂y
− ∂2H̄x

∂y2

)
− σz + jωε

σy + jωε

(
∂2H̄x

∂z2
− ∂2H̄z

∂x∂z

)
(11)

Under the conditions that σy � σz, σy � ωε, and that all terms in Eq. (11) that contain the factor
σz + jωε can be neglected, Eq. (11) can be approximated by

∂2H̄y

∂x∂y
=

∂2H̄x

∂y2
. (12)

With use of Eqs. (3), (7) and μx = μy, the derivative ∂H̄y

∂y on the left hand side of Eq. (12) can be
replaced, and Eq. (12) can be written as

∂2H̄x

∂x2
+

∂2H̄x

∂y2
= − 1

Q

∂2H̄z

∂x∂z
(13)

which is a 2-D Poisson equation for H̄x with H̄z known from the solution of Eq. (9). The Poisson
equation can be considered to be 2-D since there is no differentiation with respect to z on the left hand
side. Similarly,

∂2H̄y

∂x2
+

∂2H̄y

∂y2
= − 1

Q

∂2H̄z

∂y∂z
. (14)

The geometry in Fig. 1 is such that there can be two pairs of boundaries with non-periodic
inhomogeneous boundary conditions. In this case, each field component, Hi, with i = x, y or z, can be
written as a sum of two contributions, Hi1 and Hi2, that each satisfies the conditions for use of Fourier’s
method, as in the case with isotropic plates [7]. Following the separation of each field component into
two contributions is the separation of each of Eqs. (13) and (14) into two equations such that their sum
is equal to Eq. (13) or (14). (Three contributions and equations per field component can be used if the
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source term is treated in a separate problem [8].) Equations from three alternative divisions of Eq. (13)
are

∇2
xyH̄x1 = − 1

Q

∂2H̄z1

∂x∂z
∇2

xyH̄x2 = − 1
Q

∂2H̄z2

∂x∂z
(15)

∇2
xyH̄x1 = − 1

Q

∂2H̄z

∂x∂z
∇2

xyH̄x2 = 0 (16)

∇2
xyH̄x1 = 0 ∇2

xyH̄x2 = − 1
Q

∂2H̄z

∂x∂z
(17)

where ∇2
xy = ∂2/∂x2+∂2/∂y2. The orthogonality of eigenfunctions can be used to simplify determination

of Fourier coefficients of H̄x1 and H̄x2 if at least partly the same eigenfunctions are used on the left hand
sides as on the right hand sides of Eqs. (15)–(17). Eq. (15) offers the most advantage of the orthogonality.
Eqs. (16) and (17) give integral expressions that are relatively time consuming to calculate. If H̄x1 is
chosen to have y dependent eigenfunctions, alternative (17) has the advantage of giving H̄x1 = 0.
Eq. (14) can be divided in the same way as Eq. (13) but only

∇2
xyH̄y1 = − 1

Q

∂2H̄z1

∂y∂z
∇2

xyH̄y2 = − 1
Q

∂2H̄z2

∂y∂z
(18)

is used in this article. For each of the equations in Eqs. (15) and (18), there are two possible combinations
of Dirichlet and Neumann conditions that allow mode-wise identification between the left hand side and
the right hand side. That gives a total of four possible combinations for H̄ since the choices for H̄i1

and H̄i2 are independent, i = x, y or z. For each H̄ component, one choice, here called Choice 1, is
to use Neumann conditions on every boundary surface to which the H̄ component is tangential and
Dirichlet conditions on the other boundary surfaces. This choice turns out to give excellent H̄ field
agreement between Fourier series and FEA but makes Ēx and Ēy discontinuous at z = 0 and T because
of z dependent sine eigenfunctions. This defect can be fixed by replacement of the Ēx and Ēy values
at z = 0 and T by extrapolated values. Since there is no differentiation of H̄x and H̄y with respect to
z in Eqs. (13) and (14), inhomogeneous boundary conditions on H̄x and H̄y at constant z can be used
only indirectly or not at all in order not to overdetermine H̄x and H̄y. Indirect use in this case means
that boundary conditions on H̄x and H̄y are used in the calculation of the inhomogeneous boundary
conditions on H̄z. Advantages of Choice 1 are that inhomogeneous boundary conditions on H̄x and H̄y

at constant z are not needed, and no H̄ component is forced to zero by sine eigenfunctions on any edge.
However, in order to give Ēx and Ēy z dependent cosine eigenfunctions, another choice of boundary
conditions will be used below. This choice gives better Ē field agreement between Fourier series and
FEA but extrapolation of the ν̄ dependent part of Ēy may still be required unless boundary field values
are very accurate. The H̄ components satisfy the periodic boundary conditions

H̄i(x, y, z) = H̄i(x + λ, y, z)
∂H̄i(x, y, z)

∂x
=

∂H̄i(x + λ, y, z)
∂x

, i = x, y or z. (19)

The non-periodic boundary conditions are

∂H̄x1

∂y
(x, 0, z) = 0

∂H̄x1

∂y
(x,W, z) = 0 (20)

∂H̄x2

∂y
(x, 0, z) = F̄ y=0

x (z)e−jkx ∂H̄x2

∂y
(x,W, z) = F̄ y=W

x (z)e−jkx (21)

H̄x1(x, y, 0) = f̄ z=0
x (y)e−jkx H̄x1(x, y, T ) = f̄ z=T

x (y)e−jkx (22)
H̄x2(x, y, 0) = 0 H̄x2(x, y, T ) = 0 (23)
H̄y1(x, 0, z) = 0 H̄y1(x,W, z) = 0 (24)

H̄y2(x, 0, z) = f̄y=0
y (z)e−jkx H̄y2(x,W, z) = f̄y=W

y (z)e−jkx (25)

H̄y1(x, y, 0) = f̄ z=0
y (y)e−jkx H̄y1(x, y, T ) = f̄ z=T

y (y)e−jkx (26)
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H̄y2(x, y, 0) = 0 H̄y2(x, y, T ) = 0 (27)
∂H̄z1

∂y
(x, 0, z) = 0

∂H̄z1

∂y
(x,W, z) = 0 (28)

∂H̄z2

∂y
(x, 0, z) = F̄ y=0

z (z)e−jkx ∂H̄z2

∂y
(x,W, z) = F̄ y=W

z (z)e−jkx (29)

∂H̄z1

∂y
(x, y, 0) = F̄ z=0

z (y)e−jkx ∂H̄z1

∂y
(x, y, T ) = F̄ z=T

z (y)e−jkx (30)

∂H̄z2

∂y
(x, y, 0) = 0

∂H̄z2

∂y
(x, y, T ) = 0 (31)

where f̄ and F̄ are boundary functions. A Fourier series of H̄z1 with terms of the form
X̄m(x)Ȳn(y) ¯̃Zm,n(z) inserted in Eq. (9) gives

Q
X̄ ′′

m

X̄m
+ Q

Ȳ ′′
n

Ȳn
+

¯̃Z ′′
m,n

¯̃Zm,n

= γ̄2 (32)

where all terms on the left side must be constants since they are independent and have a constant sum.
Eq. (32) can therefore be separated into the three equations

X̄ ′′
m(x) + ϑ2

mX̄m(x) = 0 Ȳ ′′
n (y) + K2

nȲn(y) = 0 ¯̃Z ′′
m,n(z) = η̄2

m,n
¯̃Zm,n(z). (33)

where ϑm = mk and Kn = nπ/W are eigenvalues. The general solution of the last equation in Eq. (33)
is ¯̃Zm,n = C̄m,neη̄z + D̄m,ne−η̄z. (34)
The equations in Eq. (33) inserted in Eq. (32) give

η̄2
m,n = γ̄2 + Q

(
ϑ2

m + K2
n

)
am,n = Q

(
ϑ2

m + K2
n

)− ω2μxε b = ωμxσy (35)

where am,n is the real part and b is the imaginary part of η̄2
m,n. A Fourier series of H̄z2 with terms of

the form X̄m(x) ¯̃Yl,m(y)Z̄l(z) inserted in Eq. (9) gives

Q
X̄ ′′

m

X̄m
+ Q

¯̃Y ′′
l,m

¯̃Yl,m

+
Z̄ ′′

l

Z̄l
= γ̄2 (36)

which can be separated into the three equations

X̄ ′′
m(x) + ϑ2

mX̄m(x) = 0 Z̄ ′′
l (z) + κ2

l Z̄l(z) = 0 ¯̃Y ′′
l,m(y) = ν̄2

l,m
¯̃Yl,m(y) (37)

where κl = lπ/T is an eigenvalue. The equations in Eq. (37) inserted in Eq. (36) give

ν̄2
l,m =

γ̄2 + κ2
l

Q
+ ϑ2

m cl,m = ϑ2
m +

1
Q

(
κ2

l − ω2μxε
)

d =
ωμxσy

Q
(38)

where cl,m is the real part and d is the imaginary part of ν̄2
l,m. The mathematical expressions for the

eigenfunctions X̄m, Ȳn and Z̄l expressed as functions of ϑm, Kn, κl and coordinates are the same as
for plates with isotropic materials [7]. Also the expressions for the real and imaginary parts of η̄m,n in
terms of am,n and b, and of ν̄l,m in terms of cl,m and d, are the same as in the isotropic cases. The form
of a Fourier coefficient expressed with hyperbolic functions depends on the types of the inhomogeneous
boundary conditions on one subset of boundaries whereas the eigenfunctions depend on the types of
the homogeneous boundary conditions on the other boundaries. The solutions of Eq. (9) with Eqs. (19)
and (28)–(31) are

H̄z1(x, y, z) = e−jkx
∞∑

n=0

(
¯̃F z=T
z,c,n cosh η̄nz − ¯̃F z=0

z,c,n cosh η̄n(T − z)
) cos Kny

η̄n sinh η̄nT
, (39)

H̄z2(x, y, z) = e−jkx
∞∑
l=0

(
¯̃F y=W
z,c,l cosh ν̄ly − ¯̃F y=0

z,c,l cosh ν̄l(W − y)
) cos κlz

ν̄l sinh ν̄lW
. (40)
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A Fourier series of H̄x1 that satisfies Eq. (20) and can give term-wise equality in the first equation in
Eq. (15) is

H̄x1(x, y, z) = e−jkx
∞∑

n=0

¯̃Hx1,c,n(z) cos Kny (41)

Equations. (39)–(41) inserted in the equation for H̄x1 in Eq. (16) give
∞∑

n=0

¯̃Hx1,c,n(z)(−k2 − K2
n) cos Kny =

jk

Q

∞∑
n=0

(
¯̃F z=T
z,c,n sinh η̄nz + ¯̃F z=0

z,c,n sinh η̄n(T − z)
) cos Kny

sinh η̄nT

+
jk

Q

∞∑
l=1

(
¯̃F y=0
z,c,l cosh ν̄l(W−y)− ¯̃F y=W

z,c,l cosh ν̄ly
) κl sin κlz

ν̄l sinh ν̄lW
.(42)

It can be noted that the left hand side of Eq. (42) is written as a Fourier series because of the particular
combination of coordinate dependence and 2-D Poisson equation. The orthogonality can now be used
to extract a single term, e.g., for mode n = n0 in the series in Eq. (42). Multiplication of Eq. (42) by
cos Kn0y followed by integration from y = 0 to W gives

¯̃Hx1,c,n(z)=
−jk

(k2+K2
n)Q sinh η̄nT

(
¯̃F z=T
z,c,n sinh η̄nz+ ¯̃F z=0

z,c,n sinh η̄n(T − z)
)
− 2Īxz2(z)

(k2+K2
n)(1+δn,0)W

(43)

where mode index n is used instead of n0 for compactness, δn,0 = 1 if n = 0, δn,0 = 0 if n �= 0, and

Īxz2,n(z) =
jk

Q

∫ W

0

∞∑
l=1

(
¯̃F y=0
z,c,l cosh ν̄l(W−y) − ¯̃F y=W

z,c,l cosh ν̄ly
) κl sinκlz

ν̄l sinh ν̄lW
cos Kny dy. (44)

It is clear from Eq. (43) that the source term alone determines ¯̃Hx1,c,n completely, without explicit use of
inhomogeneous boundary conditions on H̄x1,n. However, ¯̃F z=T

z,c,n and ¯̃F z=0
z,c,n depend on the inhomogeneous

boundary conditions on H̄x1,n and H̄y1,n. This is shown in Section 2.1.1. In case of Eq. (15), ¯̃Hx1,c,n is
given by Eq. (43) without Īxz2,n. In case of Eq. (17), the right hand side of Eq. (42) is zero which, with
use of the orthogonality, gives ¯̃Hx1,c,n = 0. A Fourier series of H̄x2 that satisfies Eq. (23) and can give
term-wise equality in the second equation in Eq. (15) is

H̄x2(x, y, z) = e−jkx
∞∑
l=1

¯̃Hx2,l(y) sin κlz (45)

Equations (39), (40) and (45) inserted in the equation for H̄x2 in Eq. (17) give
∞∑
l=1

(
−k2 ¯̃Hx2,l(y) + ¯̃H ′′

x2,l(y)
)

sinκlz =
jk

Q

∞∑
n=0

(
¯̃F z=T
z,c,n sinh η̄nz + ¯̃F z=0

z,c,n sinh η̄n(T − z)
) cos Kny

sinh η̄nT

+
jk

Q

∞∑
l=1

(
¯̃F y=0
z,c,l cosh ν̄l(W−y)− ¯̃F y=W

z,c,l cosh ν̄ly
) κl sin κlz

ν̄l sinh ν̄lW
. (46)

Multiplication of Eq. (46) by sinκl0z followed by integration from z = 0 to T gives

−k2 ¯̃Hx2,l(y) + ¯̃H ′′
x2,l(y) = jkḠl(y) +

2Īxz1,l(y)
T

(47)

where mode index l is used instead of l0 for compactness, and

Ḡl(y) = κl

¯̃F y=0
z,c,l cosh ν̄l(W − y) − ¯̃F y=W

z,c,l cosh ν̄ly

Qν̄l sinh ν̄lW
(48)

Īxz1,l(y) =
jk

Q

∫ T

0

∞∑
n=0

(
¯̃F z=T
z,c,n sinh η̄nz + ¯̃F z=0

z,c,n sinh η̄n(T−z)
) cos Kny

sinh η̄nT
sin κlz dz

=
∞∑

n=0

Īxz1,l,n cos Kny. (49)
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A particular solution of Eq. (47) can be written as a sum. Each term in the sum corresponds to one of
the terms in Eq. (48) or (49). The general solution of Eq. (47) is

¯̃Hx2,l(y) = C̄x,le
ky + D̄x,le

−ky +
jkḠl(y)
ν̄2

l − k2
− 2

T

∞∑
n=0

Īxz1,l,n

k2 + K2
n

cos Kny (50)

where the two first terms satisfy the homogeneous equation obtained from Eq. (47) by replacement of
the right hand side by 0, and C̄x,l and D̄x,l are determined below. Fourier series of Eq. (21) with the
eigenfunctions of Eq. (45) are

∂H̄x2

∂y
(x, 0, z) = e−jkx

∞∑
l=1

¯̃F y=0
x,l sin κlz

∂H̄x2

∂y
(x,W, z) = e−jkx

∞∑
l=1

¯̃F y=W
x,l sin κlz. (51)

Equations (48), (45), (50) and (51) give

C̄x,l =
Δ̄y=W

xz,l − Δ̄y=0
xz,l e

−kW

2 sinh kW
D̄x,l =

Δ̄y=W
xz,l − Δ̄y=0

xz,l e
kW

2 sinh kW
(52)

where

Δ̄y=0
xz,l =

¯̃F y=0
x,l

k
− jκl

¯̃F y=0
z,c,l

(k2 − ν̄2
l )Q

Δ̄y=W
xz,l =

¯̃F y=W
x,l

k
− jκl

¯̃F y=W
z,c,l

(k2 − ν̄2
l )Q

. (53)

In case of Eq. (15), ¯̃Hx2,l is given by Eq. (50) without Īxz1,l,n. In case of Eq. (16), ¯̃Hx2,l is given by
Eq. (50) without Ḡl and Īxz1,l,n. In the absence of Ḡl, terms with ¯̃Fz,l are absent from Eq. (53).

A Fourier series of H̄y1 that satisfies Eq. (24) and can give term-wise equality in the first equation
in Eq. (18) is

H̄y1(x, y, z) = e−jkx
∞∑

n=1

¯̃Hy1,n(z) sin Kny (54)

Equations (39) and (54) inserted in the first equation in Eq. (18) give
∞∑

n=1

¯̃Hy1,n(z)
(−k2 − K2

n

)
sin Kny =

1
Q

∞∑
n=1

(
¯̃F z=T
z,c,n sinh η̄nz + ¯̃F z=0

z,c,n sinh η̄n(T − z)
) Kn sinKny

sinh η̄nT
(55)

Multiplication of Eq. (55) by sinKn0y followed by integration from y = 0 to W gives, after replacement
of symbol n0 by n,

¯̃Hy1,n(z) = −
Kn

(
¯̃F z=T
z,c,n sinh η̄nz + ¯̃F z=0

z,c,n sinh η̄n(T−z)
)

(k2 + K2
n)Q sinh η̄nT

(56)

A Fourier series of H̄y2 that satisfies Eq. (27) and can give term-wise equality in the second equation
in Eq. (18) is

H̄y2(x, y, z) = e−jkx
∞∑
l=1

¯̃Hy2,l(y) sin κlz (57)

Equations (40) and (57) inserted in the second equation in Eq. (18) give
∞∑
l=0

(
−k2 ¯̃Hy2,l(y) + ¯̃H ′′

y2,l(y)
)

sin κlz =
1
Q

∞∑
l=1

(
¯̃F y=W
z,c,l sinh ν̄ly + ¯̃F y=0

z,c,l sinh ν̄l(W−y)
) κl sin κlz

sinh ν̄lW
. (58)

Multiplication of Eq. (58) by sinκl0z followed by integration from z = 0 to T gives, after replacement
of symbol l0 by l,

k2 ¯̃Hy2,l(y) − ¯̃H ′′
y2,l(y) = Ḡ′

l(y) (59)

The general solution to Eq. (59) is

¯̃Hy2,l(y) = C̄y,le
ky + D̄y,le

−ky +
Ḡ′

l(y)
k2 − ν̄2

l

(60)
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where the last term is a particular solution, and C̄y,l and D̄y,l are determined below. Fourier series of
Eq. (25) with the eigenfunctions of Eq. (57) are

H̄y2(x, 0, z) = e−jkx
∞∑
l=1

¯̃
fy=0

y,l sin κlz H̄y2(x,W, z) = e−jkx
∞∑
l=1

¯̃
fy=W

y,l sin κlz. (61)

Equations (48), (57), (60) and (61) give

C̄y,l =
Δ̄y=W

yz,l − Δ̄y=0
yz,l e

−kW

2 sinh kW
D̄y,l =

Δ̄y=0
yz,l e

kW − Δ̄y=W
yz,l

2 sinh kW
(62)

where

Δ̄y=0
yz,l = ¯̃fy=0

y,l − κl
¯̃F y=0
z,c,l

(ν̄2
l − k2)Q

Δ̄y=W
yz,l = ¯̃fy=W

y,l − κl
¯̃F y=W
z,c,l

(ν̄2
l − k2)Q

. (63)

Equations (5), (39), (40), (41), (43), (45), (50), (54), (56), (57) and (60) give that the Ē field
contributions can be written as

Ēxη(x, y, z) =
e−jkx

σx+jωε

∞∑
n=1

(
¯̃F z=0
z,c,n cosh η̄n(T−z)− ¯̃F z=T

z,c,n cosh η̄nz
)(

1− η̄2
n

(k2+K2
n)Q

)
Kn sin Kny

η̄n sinh η̄nT
(64)

Ēxν(x, y, z) =
e−jkx

σx + jωε

{ ¯̃F y=W
z,c,0 sinh ν̄0y + ¯̃F y=0

z,c,0 sinh ν̄0(W−y)
sinh ν̄0W

−
∞∑
l=1

[(
C̄y,le

ky + D̄y,le
−ky
)

κl +
(

κl

k2 − ν̄2
l

+
Q

κl

)
Ḡ′

l(y)
]

cos κlz

}
(65)

Ēyη(x, y, z) =
jke−jkx

σy+jωε

∞∑
n=0

(
¯̃F z=0
z,c,n cosh η̄n(T−z)− ¯̃F z=T

z,c,ncosh η̄nz
)( η̄2

n

(k2+K2
n)Q

−1
)

cos Kny

η̄n sinh η̄nT
(66)

Ēyν(x, y, z) =
jke−jkx

σy + jωε

{ ¯̃F y=W
z,c,0 cosh ν̄0y − ¯̃F y=0

z,c,0 cosh ν̄0(W − y)
ν̄0 sinh ν̄0W

+
∞∑
l=1

[(
C̄x,le

ky + D̄x,le
−ky
)

κl +
(

κl

ν̄2
l − k2

− Q

κl

)
jkḠl(y)

]
cos κlz

}
(67)

Ēz(x, y, z) =
ke−jkx

σz + jωε

∞∑
l=0

((
D̄x,l − jD̄y,l

)
e−ky − (C̄x,l + jC̄y,l

)
eky
)

sin κlz (68)

where Ēxη + Ēxν = Ēx and Ēyη + Ēyν = Ēy. The average eddy current loss density during a cycle is

p =
1
2
J̄ · Ē∗ =

1
2

(
σxÊ2

x + σyÊ
2
y + σzÊ

2
z

)
. (69)

2.1.1. Determination of Neumann Boundary Functions

Ampère’s law and tangential Ē components can be used for determination of normal derivatives of
tangential H̄ components, such as H̄x2 and H̄z2 at y = 0 and W , as described in [7]. The normal
derivative of a normal H̄ component, such as H̄z1 at z = 0 and T , can be calculated from Eqs. (3), (7)
and the boundary values of the tangential H̄ components. Fourier series of Ēx2(x, 0, z), Ēx2(x,W, z),
Ēz2(x, 0, z), and Ēz2(x,W, z) with eigenfunctions that can give term-wise identification of Fourier
coefficients in Ampère’s law are

Ēx2(x, 0, z) = e−jkx
∞∑
l=0

¯̃gy=0
x,c,l cos κlz Ēx2(x,W, z) = e−jkx

∞∑
l=0

¯̃gy=W
x,c,l cos κlz (70)

Ēz2(x, 0, z) = e−jkx
∞∑
l=1

¯̃gy=0
z,l sin κlz Ēz2(x,W, z) = e−jkx

∞∑
l=1

¯̃gy=W
z,l sinκlz (71)
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Equations (5), (40), (51), (61), (70) and the orthogonality of the eigenfunctions give
¯̃F y=0
sz,c,l = κs,l

μa,y

μs,y

¯̃
fy=0

ay,l + (σs,x + jωεs)¯̃g
y=0
x,c,l

¯̃F y=W
sz,c,l = κs,l

μa,y

μs,y

¯̃
fy=W

ay,l + (σs,x + jωεs)¯̃g
y=W
x,c,l (72)

¯̃F y=0
sx,l = −jk

μa,y

μs,y

¯̃
fy=0

ay,l − (σs,z + jωεs)¯̃g
y=0
z,l

¯̃F y=W
sx,l = −jk

μa,y

μs,y

¯̃
fy=W

ay,l − (σs,z + jωεs)¯̃g
y=W
z,l (73)

where subscript s denotes the laminate material, a an ambient material. In FEA results, all field values
can be taken from material s. In that case, Eqs. (72) and (73) are valid with subscript a replaced by
subscript s. For μx = μy, Eqs. (3) and (7) give

∂H̄z1

∂z
= −Q

(
∂H̄x1

∂x
+

∂H̄y1

∂y

)
. (74)

Equations (74), (22), (26), and the orthogonality of the eigenfunctions give
¯̃F z=0
z,c,n = Q

(
jk

¯̃
f z=0

x,c,n − Kn
¯̃
f z=0

y,n

)
¯̃F z=T
z,c,n = Q

(
jk

¯̃
f z=T

x,c,n − Kn
¯̃
f z=T

y,n

)
(75)

where material subscripts have been skipped because of the continuity across the material interfaces.

2.2. A Laminate from 0 to Infinity in the Stacking Direction and Infinite in Other
Directions

Figure 2 shows a cross section of an anisotropic, homogeneous approximation of a laminate with only
one boundary.

y

z

μx μz σy

∞

−∞∞

Figure 2. Cross section of an anisotropic approximation of a laminate with infinite extension in the y
direction and extending from 0 to ∞ in the z direction. The only needed components of permeability
and conductivity are μx, μz and σy.

The following simplifying constraints are added:

1. Neither Ē nor H̄ depend on y.
2. Hy = constant.

Constraint 1 and 2 and Eqs. (5) and (6) imply that Ēx = Ēz = 0 and

Ēy =
1

σy + jωε

(
∂H̄x

∂z
− ∂H̄z

∂x

)
(76)

Constraint 2, Eqs. (4) and (7) give

−jω
(
x̂μxH̄x + ẑμzH̄z

)
= −x̂

∂Ēy

∂z
+ ẑ

∂Ēy

∂x
(77)

Constraint 2, Eqs. (3) and (7) give

∇ · B̄ = μx
∂H̄x

∂x
+ μz

∂H̄z

∂z
= 0 (78)

Equations (76) and (78) inserted in Eq. (77) give the wave equation

Q
∂2H̄i

∂x2
+

∂2H̄i

∂z2
= γ̄2H̄i, i = x or z (79)
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2.2.1. Traveling Wave in x Direction

The periodic boundary conditions are (19). Dirichlet conditions, with H̄z arbitrarily chosen to have
phase angle 0 at x = 0, are

H̄x(x, 0) = Ĥxe
j(ϕ−kx) H̄z(x, 0) = Ĥze

−jkx, (80)
H̄i(x,∞) is limited, i = x or z. (81)

Just as for plane waves [9], the wave equations for different components are independent and satisfied
with any phase angle ϕ and amplitudes Ĥx and Ĥz, but Faraday’s law (77) imposes additional conditions
that determine the phase differences and amplitude relationships of the electromagnetic field components
as shown below. A Fourier series with terms of the form ¯̃Zm(z)X̄m(x) inserted in Eq. (79) together with
the orthogonality of the eigenfunctions X̄m(x) give (32) without the y dependent term. The real part,
a, and the imaginary part, b, of η̄2 are

a = Qk2 − ω2εμx b = ωμxσy. (82)

The mathematical expressions of the real part, α, and the imaginary part, β, of η̄ expressed in a and b
are the same as in three dimensions and isotropic materials [7]. Since Eq. (81) requires C̄m,n in Eq. (34)
to be zero, and the conditions in Eq. (80) allow only the mode m = −1, the Fourier series of H̄x and
H̄z contain only one term each and are given by

H̄x(x, z) = Ĥxe
−η̄zej(ϕ−kx) H̄z(x, z) = Ĥze

−η̄ze−jkx. (83)

Equations (76) and (83) imply that Ēy(x, z) can be expressed as

Ēy(x, z) = Êye
−η̄zej(φ−kx). (84)

Since Ĥx, Ĥz and Êy are positive by definition, Eqs. (83), (84) and the z component of Eq. (77) imply
that φ = 0 and

Êy

Ĥz

=
ωμz

k
. (85)

Hence, Ēy and H̄z are in phase. This together with Eqs. (83), (84) and the x component of Eq. (77)
give

ϕ = θ +
π

2
(86)

where θ = arg η̄, and
Êy

Ĥx

=
ωμx

η
=

ωμx

[(Qk2 − ω2μxε)2 + (ωμxσy)2]
1/4

. (87)

Equations (85) and (87) give
Ĥx

Ĥz

=
μzη

μxk
. (88)

Equations (84), (85), (87) and (69) with B̂x = μxĤx and B̂z = μzĤz give

p =
σy

2
Ê2

ye−2αz =
σyω

2

2η2
B̂2

xe−2αz = 2σyτ
2
p f2B̂2

ze−2αz (89)

where f is the electrical frequency, and τp is the pole pitch equal to λ/2.

2.2.2. Standing Wave in x Direction

The boundary conditions (19) and (81) are valid also in this case but (80) is replaced by the standing
wave boundary conditions

H̄x(x, 0) = Ĥx
ej(kx−ϕ) + e−j(kx−ϕ)

2
ejΨ H̄z(x, 0) = Ĥz

ejkx + e−jkx

2
. (90)
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The solutions of Eq. (79) with boundary conditions contain the forward and backward going modes
m = −1 and m = 1. The solutions are

H̄x(x, z) = ĤxejΨ−η̄z cos(kx − ϕ) H̄z(x, z) = Ĥze
−η̄z cos kx. (91)

Equations (76) and (91) give

Ēy(x, z) =
e−η̄z

σy + jωε

(
−η̄ĤxejΨ cos(kx − ϕ) + kĤz sin kx

)
(92)

Also in this case Faraday’s law, Eq. (77), imposes additional conditions that determine the phase
differences and amplitude relationships of the electromagnetic field components. The x or z component
of Eq. (77) implies that ϕ = π/2 since Eq. (77) is valid for any kx. With this and the x or z component
of Eq. (77) Ĥxe

jΨ in Eq. (92) can be replaced by an expression with Ĥz. Therefore

Ēy(x, z) =
e−η̄z

σy + jωε

(
−η̄ĤxejΨ + kĤz

)
sin kx = −j

ωμz

k
Ĥze

−η̄z sin kx = Êye
−η̄zejΓ sin kx (93)

which with positive amplitudes implies that Γ = −π/2 and that the amplitude quotient Êy/Ĥz is again
given by Eq. (85). Hence, Ēy is lagging H̄z by π/2, and

Ēy(x, z) = −jÊye
−η̄z sin kx. (94)

The x or z component of Eq. (77) used for replacing Ĥz by ĤxejΨ in Eq. (93) gives

Ēy(x, z) = −j
ωμx

η̄
Ĥxe

jΨ−η̄z sin kx (95)

which with positive amplitudes and Eq. (94) gives that the amplitude quotient Êy/Ĥx is again given
by Eq. (87), and

Ψ = arctan
β

α
= θ. (96)

Hence,
H̄x(x, z) = Ĥxejθ−η̄z sin kx. (97)

Equations (84), (87) and (85) with B̂z = μzĤz give that the time average of the eddy current loss
density is

p =
σy

2
Ê2

ye−2αz sin2 kx = 2σyτ
2
p f2B̂2

ze−2αz sin2 πx

τp
. (98)

The only difference between (89) and (98) is the factor sin2 kx. The time averaged loss density in
Eq. (98) averaged with respect to x is

p = σyτ
2
p f2B̂2

ze−2αz. (99)

A comparison between Eq. (89) and Eq. (99) shows that the average eddy current loss density in the
case of a standing wave is half as large as in the case of a traveling wave.

2.3. A Laminate with Thickness 2T in the Stacking Direction and Infinite Extension in
Other Directions

Figure 3 shows a cross section of an anisotropic approximation of laminate with thickness 2T and infinite
extension in the y direction. A symmetry plane is assumed at z = T .

This case is a slight generalization of the case in Section 2.2.1. The laminate, that could be either
the whole simplified stator core or just one simplified plate package, is assumed to be subjected to
symmetrical magnetic field waves such that there is a symmetry plane half way through the thickness.
Condition (81) is therefore replaced by

∂H̄x(x, T )
∂z

= 0 H̄z(x, T ) = 0. (100)
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y

z

   

μx μz σy 2T

∞ −∞

Figure 3. Cross section of an anisotropic approximation of a laminate from 0 to 2T in the z direction
and infinite extension the other directions. The only needed permeability and conductivity components
are μx, μz and σy.

Equation (34) multiplied by the only eigenfunction, e−jkx, allowed by Eq. (80) gives
H̄x(x, z) =

(
C̄xeη̄z + D̄xe−η̄z

)
e−jkx H̄z(x, z) =

(
C̄ze

η̄z + D̄ze
−η̄z
)
e−jkx. (101)

Equations (101), (80) and (100) give

C̄x =
Ĥxejϕ−η̄T

eη̄T + e−η̄T
D̄x =

Ĥxe
jϕ+η̄T

eη̄T + e−η̄T
(102)

C̄z = − Ĥze
−η̄T

eη̄T − e−η̄T
D̄z =

Ĥze
η̄T

eη̄T − e−η̄T
. (103)

Equations (102) and (103) in Eq. (101) give

H̄x(x, z) = Ĥxej(ϕ−kx) cosh η̄(z − T )
cosh η̄T

(104)

H̄z(x, z) = Ĥze
−jkx sinh η̄(T − z)

sinh η̄T
. (105)

Equations (76), (104) and (105) imply that Ēy is

Ēy(x, z) =
sinh η̄(z − T )e−jkx

σy + jωε

(
Ĥxη̄ejϕ

cosh η̄T
− jkĤz

sinh η̄T

)
= Êy

sinh η̄(T − z)
sinh η̄T

ej(Φ−kx) (106)

where Êy = |Ēy(x, 0)|, and Φ is an angle to determine such that it agrees with Êy being a real positive
number. The expression after the last equality sign in Eq. (106) is just a compact way of writing Ēy(x, z)
concluded from the other part of Eq. (106). Eqs. (105), (106) and the z component of Eq. (77) imply
that Φ = 0 and that the amplitude quotient Êy/Ĥz is given by Eq. (85). The x component of Eq. (77)
together with Eqs. (104) and (106) give

Êy

Ĥx

=
ωμx

η
| tanh η̄T |ej(ϕ−π

2
−θ+arg tanh η̄T ) =

ωμx

η
| tanh η̄T | =

ωμx

η

√
cosh 2αT − cos 2βT

cosh 2αT + cos 2βT
(107)

where the second equality follows from the phase angle, ϕ, being determined such that the amplitude
quotient is real and positive. Hence the exponent is zero, and

ϕ = θ +
π

2
− arg tanh η̄T = θ +

π

2
− arctan

sin 2βT

sinh 2αT
. (108)

Equations (85) and (87) give

Ĥx

Ĥz

=
Êy

Ĥz

Êy

Ĥx

=
μzη

μxk| tanh η̄T | =
μzη

μxk

√
cosh 2αT + cos 2βT

cosh 2αT − cos 2βT
(109)

The quotients Ĥx/Ĥz, Êy/Ĥx and the angle ϕ approach the values in Section 2.2.1 when T approaches
∞. Eqs. (85), (69) and (106) with Φ = 0 and B̂z = μzĤz give

p =
σy

2
Ê2

yχ(z, T ) = 2σyτ
2
p f2B̂2

zχ(z, T ) (110)

where
χ(z, T ) =

cosh 2α(z − T ) − cos 2β(z − T )
cosh 2αT − cos 2βT

→ e−2αz when T → ∞. (111)
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3. COMPARISONS BETWEEN FOURIER SERIES AND FEA FOR THE LAMINATE
OF WIDTH W AND THICKNESS T

The methods of comparisons are mainly the same as for isotropic materials [7], but in the anisotropic
3-D cases sine interpolation has been used because of difficulties encountered with the accuracy of Ē.
Fig. 4 shows the FE model except the air or vacuum that is assumed to enclose the laminate with
thickness 10 mm in the z direction and width 30 mm in the y direction. The model spans 90 mm, which
is one half wave length, in the x direction. The air gap is 12 mm from the primary magnetic field source
to the laminate. The primary source has 18 current bars with amplitude 100 A and 10◦ phase difference
from one bar to the next.

Figure 4. FE model of the geometry of a laminate and a primary magnetic field source.

The laminate is assumed to have stacking factor k = 0.95 and to consist of varnish insulated
sheets of cold worked stainless steel 201 L with thickness ts = 0.5 mm, conductivity 1.5 MS/m
and relative permeability μr,s = 36 [10]. These data give varnish thickness tv = ts/k − ts. In
directions tangential to the sheet planes, the effective permeance can be defined as the sum of the
permeances of the layers of steel and varnish. This gives the effective relative laminate permeability
μr,xy = (μr,sts + μr,vtv)/(ts + tv) = 34.25 in the tangential directions if the relative permeability of the
varnish is μr,v = 1. The effective reluctance in the stacking direction can be defined as the sum of the
reluctances of the layers of steel and varnish. This gives the effective relative laminate permeability
μr,z = (ts + tv)/(ts/μr,s + tv/μr,v) ≈ 13.09 in the stacking direction [2]. The relative permeability in the
source core is 8000. An effective conductivity calculated similarly to μr,xy could have been used, but
the conductivity parallel to the laminate planes was simply chosen to be 1.5 MS/m. The conductivity
σz was chosen to be 2 S/m which is low enough to satisfy σz � σx and high enough to give a not too
noisy Ēz with the used mesh. According to FEA, Ēz changes more abruptly near z = 0 and T the
lower σz is. This abrupt change requires a fine mesh at the surface for accurate calculation of Ēz there.
On the other hand, this is not important for the eddy current losses since Jz � J if σz is small enough
to make Ēz noisy. The boundary values were taken from the FE model, inside the laminate, 100 nm
from the boundaries at z = 0 and T , and at y = 0.8 mm instead of y = 0, and from y = 29.2 mm
instead of y = 30 mm because of the bad accuracy of the FEA closest to the edges of the magnetic
plate. Therefore, W = 28.4 mm in the analytical expressions. Finite elements of higher order than
default were used to get smoother Ē. The amplitudes of components of H̄ and Ē along selected lines
in the plates are shown in Figs. 5 and 6 respectively. The values of Ēy, especially close to z = 0 and T ,
are not so accurate because of numerical cancellation between the about 30 times larger Ēyη and Ēyν .
A remedy for this is to replace the Ēyν values closest to z = 0 and T by Ēyν values interpolated and
extrapolated from internal points along the same line of evaluation. Fig. 6 shows results where this has
been done. Another way is to use higher accuracy in the determination of the boundary functions, but
that has hardly been possible with ANSYS and the used computer. The lines of evaluation of results
have been chosen to be not so close to any boundary, so that the results are completely dominated by
the values at a single boundary. The time averaged eddy current loss density along the evaluation lines
is shown in Fig. 7.

4. DISCUSSION

If a field component expressed as a sine Fourier series is not zero where all the eigenfunctions are zero,
the sine series suffer from bad accuracy because of the Gibbs phenomenon, but this can be avoided by
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Figure 5. Amplitudes of components of magnetic
field strength versus (a) y at z = 2 mm, and (b)
z at y = 5 mm. The continuous curves show the
values of Fourier series. The discrete plot symbols
show FEA results.
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Figure 6. Amplitudes of components of electric
field strength versus (a) y at z = 2 mm, and (b)
z at y = 5 mm. The continuous curves show the
values of Fourier series. The discrete plot symbols
show FEA results.

sine interpolation. Trigonometric interpolation coefficients can be calculated with the discrete Fourier
transform if the eigenfunctions are of the exponential form suitable for periodic signals [11, 12]. However,
the eigenfunctions depending on y and z in this article are either sine or cosine functions because of
the boundary conditions. For a function approximated by a truncated sine Fourier series containing
the n first modes, the truncated series interpolates the function in n equidistant, internal points if
the Fourier coefficients are approximated by use of the trapezoidal rule. A proof of this is given in
appendix. A truncated cosine series with Fourier coefficients approximated with the trapezoidal rule
does not interpolate the function and, according to FEA, does not in general give better accuracy than
a truncated cosine series with Fourier coefficients calculated with almost exact integration. For cosine
series, the trapezoidal rule is still a good choice because it allows a high speed of calculation compared
to almost exact integration with the integral function in MATLAB.

In the 2-D cases, treated in Sections 2.2 and 2.3, the conductivity in the stacking direction does not
matter, and the expressions for fields and loss density are relatively simple. The 2-D case expressions
predict fields that decrease exponentially into the material. This can only be approximately true in
laminates with finite width and thickness. One reason for that is that the boundaries and the fields
on these give rise to field modes that can give local maxima of field components and eddy current loss
density, as demonstrated by the results in Section 3. Real electric machines have finite size, but the
last expression in Eq. (89) seems to indicate that a machine with a large α and a small τp is desirable
for making the eddy current losses low. Decreasing τp affects α very little until τp becomes very small
so that a � b. For a given machine size it may therefore be advantageous to have many poles if it is
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Figure 7. Time average of eddy current loss density versus (a) y at z = 2mm, and (b) z at y = 5 mm.
The continuous curves show the values of Fourier series. The discrete plot symbols show FEA results.

important to keep the eddy current losses low in the core. A simple estimation with a homogeneous
B̄z indicates that this could be true also for a conventional synchronous machine for the same reason
that lamination reduces eddy current loss, i.e., the combined loss caused by n small eddies is smaller
than the loss caused by one large eddy. The reason for this is that the eddy current density is roughly
proportional to the eddy radius, and the loss density is proportional to the square of the eddy current
density. However, other losses, such as, e.g., those caused by hysteresis, friction, and resistance in
windings will also, in general, be affected by an increased number of poles.

5. CONCLUSIONS

The derived mathematical expressions make it possible to calculate spatially smoothed out, time
harmonic, traveling electric and magnetic fields within a laminate from measured or calculated field
values on the boundaries of the laminate. With the z direction as the stacking direction, and the
material isotropic in the directions perpendicular to the stacking direction, the spatially smoothed H̄z

can be determined from the wave equation with boundary conditions. With this H̄z used as a source
term in 2-D Poisson equations with boundary conditions, it is possible to estimate the other magnetic
and the electric field components in a laminate approximated by a homogeneous, anisotropic block if
the conductivity in the z direction is negligible. Sufficient conditions for the complete determination of
the spatially smoothed electric and magnetic field within the laminate are knowledge of 1: the values of
H̄ on the end planes at constant z, and 2: three of the six Cartesian components of the magnetic and
electric field on each boundary surface perpendicular to the lamination planes. These three components
that must be known on the latter boundary surfaces depend on the choice of combination of Neumann
and Dirichlet boundary conditions. Without knowledge of H̄x and H̄y at the end planes at constant
z, excellent H̄ field agreement between Fourier series and FEA is still possible. However, in that case,
the differential equations with Dirichlet and Neumann conditions imply that the ν̄ dependent Fourier
series of Ēx and Ēy become sine series that are discontinuous at the end planes at constant z. The
discontinuities lead to the Gibbs phenomenon and therefore lower accuracy. The accuracy can be
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increased with sine interpolation.
The average eddy current loss density during a cycle in an infinite laminate with one boundary

plane parallel to the laminate sheets is proportional to the square of the product of the longitudinal
wave length, the frequency and the amplitude of the normal component of the magnetic flux density.
In this case, the spatial average of the eddy current loss density is twice as large for a traveling wave as
for a standing wave.
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APPENDIX A. THEOREM OF INTERPOLATION BY A TRUNCATED SINE
FOURIER SERIES

Theorem: A truncated sine Fourier series, g(x), that approximates a function, f(x), at x ∈ [0, c]
interpolates f in n internal points if the following conditions are satisfied:
1. g(x) contains the n first modes.
2. g(0) = g(c) = 0.
3. The Fourier coefficients are approximated by use of the trapezoidal rule.
4. The n + 2 points, including the two end points, are equidistant.
Proof: Conditions 1 and 2 give

g(x) =
n∑

ν=1

aν sin ν
π

c
x (A1)

where the Fourier coefficient according to conditions 3 and 4 is given by

aν =
2

n + 1

n∑
i=1

fi sin ν
iπ

n + 1
. (A2)

With the Fourier coefficients collected in a vector, Eq. (A2) can be expressed as
a = Af (A3)

where

a =

⎡⎣a1
...

an

⎤⎦ , A =
2

n + 1

⎡⎢⎢⎢⎢⎣
sin

π

n + 1
. . . sin

nπ

n + 1
...

. . .
...

sin
nπ

n + 1
. . . sin

n2π

n + 1

⎤⎥⎥⎥⎥⎦ , f =

⎡⎣f1
...

fn

⎤⎦ . (A4)

A function h(x) of the same form as g(x) is

h(x) =
n∑

ν=1

bν sin ν
π

c
x. (A5)

The requirement that h must interpolate f in n points leads to the equation system Ab = f with
solution

b = A−1f (A6)
where

A =

⎡⎢⎢⎢⎢⎣
sin

π

n + 1
. . . sin

nπ

n + 1
...

. . .
...

sin
nπ

n + 1
. . . sin

n2π

n + 1

⎤⎥⎥⎥⎥⎦ , b =

⎡⎢⎢⎢⎣
b1

...

bn

⎤⎥⎥⎥⎦ . (A7)
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A comparison between Eqs. (A3) and (A6) gives that b = a if A−1 = A, or, equivalently, AA = I
where I is the identity matrix. With δ = (i−k)π

n+1 , and σ = (i+k)π
n+1 , an arbitrary element in AA is

(AA)i,k =
2

n + 1

n∑
p=1

sin k
pπ

n + 1
sin p

iπ

n + 1
=

1
n + 1

Re

⎧⎨⎩
n∑

p=1

(
ejpδ − ejpσ

)⎫⎬⎭ = sδ − sσ (A8)

where sδ and sσ are geometric sums. For i �= k,

sδ =
1

n + 1
Re

{
(ejδ)n+1 − ejδ

ejδ − 1

}
=

1
n + 1

Re

{
((−1)i−k − ejδ)(e−jδ − 1)

(ejδ − 1)(e−jδ − 1)

}
= −1 + (−1)i−k

2(n + 1)
. (A9)

For all i and k,

sσ =
1

n + 1
Re

{
(ejσ)n+1 − ejσ

ejσ − 1

}
= −1 + (−1)i+k

2(n + 1)
= −1 + (−1)i−k

2(n + 1)
. (A10)

Equations (A8), (A9) and (A10) give (AA)i,k = 0 for i �= k. For i = k, Eq. (A8) gives that sδ = n
n+1

which together with Eq. (A10) gives (AA)i,i = n
n+1 + 1

n+1 = 1. Hence, b = a, and the approximation,
g, of a truncated Fourier series interpolates the function f . This concludes the proof.
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