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DOA Estimation with Sparse Array under Unknown
Mutual Coupling

Sheng Liu, Jing Zhao*, and Zhengguo Xiao

Abstract—In this paper, we propose a direction-of-arrival (DOA) estimation algorithm under unknown
mutual coupling with a sparse linear array (SLA). We employ an SLA composed of two uniform linear
arrays (ULA), and the element spacing of one of the subarrays is large enough to neglect the effect of the
mutual coupling (MC). The fourth-order-cumulants (FOCs) of the received data from partial elements
of the first subarray and all elements of the second subarray are exploited to construct a high-order FOC
matrix. Then, the DOAs of incident signals are estimated by dealing with this high-order matrix. The
array aperture is extended greatly due to the sparse structure. Hence, the proposed method shows much
better performance than some classical blind DOA estimation methods in accuracy and resolution. We
also propose some simulation results to prove the effectiveness of our method.

1. INTRODUCTION

Antennas play a very important role in wireless communication systems. The design method for smart
antennas [1] and planar array [2] has been presented and shown improved performance in some aspects.
Direction-of-arrival (DOA) estimation of incident signals is a momentous embranchment of array signal
processing, and it also has received widespread concern in wireless communication [3]. Many classical
DOA estimation techniques such as subspace-based methods [4–6], sparse reconstruction algorithms [7, 8]
and support vector classification-based algorithm [9] were proposed by scholars in succession. However,
most of these algorithms are conditional on that mutual coupling (MC) between sensors is ignored or
known. In fact, MC exists unavoidably, particularly between the elements with small spacing, and it
can affect the structure of array manifold. So the methods [4–9] are difficult to achieve satisfactory
estimation performance in practice

Recently, in order to eliminate the effect of MC, many calibration algorithms [10–18] have been
presented. Iterative method [10–12] is a commonly used technology to estimate MC coefficients (MCCs),
but this method cannot estimate the DOA directly. The authors in [13] constructed a cost function,
where the MCCs were separated from this cost function. Then, the directions of incident signals can
be estimated by minimizing this cost function under unknown MCC (For convenience, we called this
method as MCCS method). Though this method can eliminate the calculation burden by estimating
the MCC, the performance of this method will decline sharply under low SNR or small angle interval
environment. In [15], only the middle subarray (MS) of a ULA is utilized, and the DOA can be
estimated without knowing the MCC (For convenience, we call this method as MS method). This
technique was also applied to an L-shaped array in [16] and coherent signals in [17]. However, an
obvious shortcoming of MS method is aperture loss. Moreover, the performances of these methods
degrade when the incident direction is close to 90◦. In [18], an MS method based on FOC (FOC-
MS) was proposed, but the computational complexity of this algorithm is very large. Some sparse
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arrays [19, 20] with reduced mutual coupling have been proposed, but these arrays cannot contribute to
eliminating mutual coupling.

In this paper, we employ two different uniform linear arrays (ULAs) to constitute a sparse linear
array, which can be seen as a special two-level nested array [21–23]. The element spacing of the second
ULA is far larger than the half-wavelength of incident signals. Hence, the effect of MC on this subarray
can be neglected, and the array aperture is extended greatly. The received data from the second ULA
and middle subarray of the first ULA are used to reconstruct an extended FOC matrix. Then, we
can get the estimation of DOA by the traditional subspace-based algorithm [4]. The proposed method
has much higher accuracy and resolution than the MCCS, MS and FOC-MS methods. It is worthy
to mention that the computational complexity of the proposed algorithm is lower than the FOC-MS
method.

2. DATA MODEL

Assume that MC only exists between the elements with space distance less than m
2 λ, where λ is the

wavelength of incoming signals. We consider a nonuniform linear array consisting of two uniform linear
arrays, and the array architecture is shown in Fig. 1. d = λ

2 is the distance between adjacent elements
of the first subarray. The element spacing of the second subarray is (M − 2m + 2)d. Hd is the distance
between the two subarrays, where (M − 2m + 2) ≥ m and H ≥ m. Suppose that the first sensor of the
first subarray is the reference element. Consider K narrowband incoherent and non-Gaussian signals
s1(t), . . . , sK(t) coming from the directions θ = [θ1, . . . , θK ]. Assume that M is an odd number and
J = M − 2m + 2 and L = M−2m+1

2 .
Let x1(t) = [x1,1(t), . . . , x1,M (t)]T ∈ CM×1, x2(t) = [x2,1(t), . . . , x2,2(t), x2,N (t)]T ∈ CN×1 be the

received vectors of two subarrays, and the vectors can be expressed as

x1(t) = CA1(θ)s(t) + n1(t) (1)

x2(t) = A2(θ)s(t) + n2(t) (2)

where s(t) = [s1(t), . . . , sK(t)]T ∈ CK×1 is the non-Gaussian signal vector; A1(θ) =
[a1(θ1), . . . , a1(θK)] ∈ CM×K , A2(θ) = [a2(θ1), . . . , a2(θK)] ∈ CN×K , a1(θk) = [1, . . . , e−jπ(M−1) sin θk ]T ∈
CM×1, a2(θk) = [e−jπ(M−1+H) sin θk , e−jπ(M−1+H+J) sin θk , . . . , e−jπ(M−1+H+(N−1)J) sin θk ]T ∈ CN×1;
n1(t) = [n1,1(t), . . . , n1,M (t)]T ∈ CM×1 and n2(t) = [n2,1(t), . . . , n2,N (t)]T ∈ CN×1 are additive white
Gaussian noise vectors; C is the MC matrix (MCM) with the structure as [13, 15, 17]

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c1 . . . cm 0 0 . . . 0
...

. . .
...

. . . . . . . . .
...

cm . . . c1 . . . cm
. . . 0

0
. . .

...
. . .

...
. . . 0

0
. . . cm . . . c1 . . . cm

...
. . . . . . . . .

...
. . .

...
0 . . . 0 0 cm . . . c1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3)

Let J = [0(2L+1)×(m−1), I2L+1, 0(2L+1)×(M−2L−m)] with M−2m+1
2 = L as [17], then we have

x̃1(t) = Jx1(t)

= C̃A1(θ)s̃(t) + C̃n1(t)

= Ã1(θ)s̃(t) + ñ1(t)

where Ã1(θ) = [ã1(θ1), . . . , ã1(θK)] ∈ C(2L+1)×K , ã1(θk) = [ejπL sin θk , . . . , 1, . . . , e−jπL sin θk ]T ∈
C(2L+1)×1s̃(t) = [s̃1(t), s̃2(t), . . . , s̃K(t)]T , c(θk)sk(t) = s̃k(t), c(θk) = cme−jπL sin θk + . . . +
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Figure 1. Framework of sparse linear array.

c1e
−jπ(L+m−1) sin θk + . . . + cme−jπ(L+2m−2) sin θk , k = 1, 2, . . . ,K; x̃1(t) = [x̃1,1(t), . . . , x̃1,J(t)]T ∈ CJ×1,

ñ1(t) = [ñ1,1(t), . . . , ñ1,J(t)]T ∈ CJ×1, and C̃ can be expressed as

C̃ =

⎡
⎣ cm . . . c1 . . . cm . . . 0

...
. . .

...
. . .

...
. . .

...
0 . . . cm . . . c1 . . . cm

⎤
⎦ (4)

3. ALGORITHM DESCRIPTION

3.1. The Reconstruction of FOC Matrix

In this subsection, a high-order FOC matrix R ∈ CJN×JN is constituted by the FOC of received data.
Let Ruv = cum{x2u2 , x̃

∗
1(J−u1+1), x

∗
2v2

, x̃1(J−v1+1)} be the element of the uth row and vth column of R,
and u1, u2, v1, v2 are determined uniquely by u, v according to{

u = u1 + u2J

v = v1 + v2J
(5)

where 1 ≤ u1, v1 ≤ J , 0 ≤ u2, v2 ≤ N − 1.
From Eq. (5), we have

Ruv = cum
{

x2u2 , x̃
∗
1(J−u1+1), x

∗
2v2

, x̃1(J−v1+1)

}

= cum

{
K∑

k=1

e−jπ[M−1+H+(u2−1)J ] sin θksk + n2,u2(t),

K∑
k=1

ejπ(J−u1−L) sin θk s̃∗k + ñ∗
1,u1

(t),

K∑
k=1

ejπ[M−1+H+(v2−1)J ] sin θks∗k + n∗
2,v2

(t),

K∑
k=1

e−jπ(J−v1−L) sin θk s̃k + ñ1,v1(t)

}
(6)

It is easy to know that

cum{sk, s̃
∗
k, s

∗
k, s̃k} = cum{sk(t), c∗(θk)s∗k(t), s

∗
k, c(θk)sk(t)}

= |c(θk)|2 cum{sk(t), s∗k(t), s
∗
k, sk(t)} (7)
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Because the FOC of Gaussian noise is 0, Eq. (6) can be rewritten as

Ruv =
K∑

k=1

pke
−jπ(u−v) sin θk

+cum{n2,u2(t), ñ
∗
1,u1

(t), n∗
2,v2

(t), ñ1,v1(t)}

=
K∑

k=1

pke
−jπ(u−v) sin θk (8)

where pk = |c(θk)|2cum{sk, s̃
∗
k, s

∗
k, s̃k}

According to Eq. (8), we have
R = BSBH (9)

where S = diag{p1, p2, . . . , pK}; B(θ) = [b(θ1), b(θ2), . . . , b(θK)] ∈ CJN×K; b(θk) =
[1, . . . , e−jπ(JN−1) sin θk ]T ∈ CJN×1, k = 1, 2, . . . ,K.

EVD of matrix R yields
R = EsDsE

H
s + EnDnEH

n (10)

where Ds = diag{λ1, . . . , λK}, and λ1, . . . , λK are the K largest eigenvalues. At last, we can get the
estimation of θ by MUSIC [4].

3.2. Complexity Analysis

In this subsection, we only compare the computational complexity of the proposed method with FOC-MS
method [18]. The major computational complexity of the proposed algorithm is O{9(NJ)2T +(NJ)3 +
P (NJ)2(NJ −K)}, where J = M −2m+2 and P is the scanning times. For the FOC-MS method [18],
the major computational complexity is O{9J4

1 T + J6
1 + PJ4

1 (J2
1 − K)}, where J1 = M + N − 2m + 2.

Obviously, the complexity of proposed method is lower than FOC-MS method. In addition, the proposed
method and FOC-MS method have higher computational complexity than the second order statistics-
based methods [13, 15].

Figure 2. Space spectrum of four algorithms
([θ1, θ2, θ3] = [20◦, 40◦, 60◦]).

Figure 3. Space spectrum of four algorithms
([θ1, θ2, θ3] = [25◦, 40◦, 55◦]).
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4. SIMULATION RESULTS

In this section, we perform several simulations to assess the performance of presented method, MCCS
method [13], MS method [15] and FOC-MS method [18]. We assume that M = 9, N = 5,H = 5.
Meanwhile, we employ a 14-element ULA with half-wavelength element spacing for the MCCS method,
MS method and FOC-MS method. Let m = 3, c1 = 1, c2 = 0.9 + 0.4i, c3 = 0.5 − 0.3i, and scanning
interval ω = 0.1◦ in the simulations below. Define the root mean square error (RMSE) as

RMSE =

√√√√ 1
100K

100∑
j=1

K∑
k=1

(θ̂kj − θk)2 (11)

where θ̂kj is the estimation of θk in the jth Monte Carlo trial.
Firstly, some simulations for comparison of resolution are carried out. Figs. 2, 3, 4, 5 show the

space spectrums of the four methods under four different scenarios. Keep the number of snapshots at
200 and the SNR at 10 dB. Assume that four groups directions of three incident signals are [θ1, θ2, θ3] =
[20◦, 40◦, 60◦], [θ1, θ2, θ3] = [25◦, 40◦, 55◦], [θ1, θ2, θ3] = [30◦, 40◦, 50◦] and [θ1, θ2, θ3] = [35◦, 40◦, 45◦],
respectively. The comparison result in Fig. 2 indicates that the three directions with 20◦ angle interval
can be discriminated clearly by the four algorithms. The discrimination of MCCS method is beginning
to degrade as the angle interval narrows from 15◦ to 5◦, which can be seen from Figs. 3, 4, 5. In addition,
from Fig. 4, we can see that the DOAs of these signals can be distinguished reluctantly by MCCS and
MS when the angle interval is 10◦. But when the angle interval is 5◦, only our method can discriminate
the three directions, which is reflected from Fig. 5. Considering the comparison results from the four
figures, we can say that our algorithm has higher resolution than the other three algorithms.

Figure 4. Space spectrum of four algorithms
([θ1, θ2, θ3] = [30◦, 40◦, 50◦]).

Figure 5. Space spectrum of four algorithms
([θ1, θ2, θ3] = [35◦, 40◦, 45]).

Then, some simulations for comparison of accuracy are performed. Fig. 6 describes the RMSE of
the four methods versus SNR with 200 snapshots, and three incident signals come from the directions
[30◦, 40◦, 50◦]. From Fig. 6, we can find that the proposed method shows higher estimation accuracy
than the MCCS method, MS method and FOC-MS method under different SNR. Fig. 7 depicts the
RMSE of the four methods versus the number of snapshots with SNR at 10 dB, and directions of the
three incident signals are also [30◦, 40◦, 50◦]. The results in Fig. 7 indicate that the accuracy of the
proposed method improves with the increase of snapshots and is way above the MCCS method, MS
method and FOC-MS method.
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Figure 6. RMSE versus SNR. Figure 7. RMSE versus snapshots.

5. CONCLUSIONS

In this paper, a DOA estimation algorithm in the case of MC is addressed. Large interval ULA and
small-interval ULA are used simultaneously to reduce the effect of MC. Because of the extension of
array aperture, the estimation performance is better than many traditional blind DOA estimation
algorithms in accuracy and resolution. From the simulation results in Section 4, we can know that the
proposed method can get satisfactory estimation precision for different directions even if under a low
SNR environment. Moreover, compared with the FOC-based algorithm, our algorithm not only has
higher accuracy and resolution but also has lower computation complexity.
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