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Comparative Study of the Rytov and Born Approximations
in Quantitative Microwave Holography
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Abstract—Quantitative microwave holography is a recent imaging methodology that shows promise
in medical diagnostics. It is a real-time direct inversion algorithm that reconstructs the complex
permittivity from S-parameter measurements on an acquisition surface outside of the imaged object. It
is recognized that this imaging method suffers from limitations in tissue imaging due to a forward model
which linearizes a highly nonlinear scattering problem. It is therefore important to study its limitations
when reconstruction is aided by certain pre- and post-processing filters which are known to improve the
image quality. The impact of filtering on the quantitative result is particularly important. In this work,
the reconstruction equations of quantitative microwave holography are derived from first principles. The
implementation of two linearizations strategies, Born’s approximation and Rytov’s approximation, is
explained in detail in the case of a scattering model formulated in terms of S-parameters. Furthermore,
real-space and Fourier-space filters are developed to achieve the best performance for the given linearized
model of scattering. Simulated and experimental results demonstrate the limitations of the method
and the necessity of filtering. The two approximations are also compared in experimental tissue
reconstructions.

1. INTRODUCTION

Microwave imaging is an effective strategy for examining optically obscured objects. Current
commercial applications include concealed weapons detection, non-destructive testing, and through-
the-wall imaging [1–5]. Microwave technology also shows promise in medical diagnostics, since it
offers compact low-cost instrumentation and non-ionizing radiation. Many studies have explored the
applicability of microwave imaging particularly in breast cancer imaging [6–10]. Another promising
venue is the investigation of hybrid imaging methods that involve not only electromagnetic radiation
but also acoustic or elastic effects, such as microwave thermoacoustic and photoacoustic imaging [11, 12].
However, microwave imaging has yet to see deployment in clinical practice. The main challenges are
rooted in the complex near-field electromagnetic propagation in tissue. Advanced processing techniques
are therefore required to create fast and accurate imaging devices for clinicians.

Direct inversion approaches are attractive due to their ability to produce images in real time,
simultaneously with measurements. Some examples of direct inversion methods include confocal radar
imaging, diffraction tomography, microwave holography, and scattered-power mapping [13–16]. The
speed of these methods is due to the linearized models of scattering, which view the observed domain as
a collection of uncoupled point scatterers. Two commonly used linear approximations in direct inversion
algorithms are Born’s approximation (BA) and Rytov’s approximation (RA) [17–20]. These methods
are known to outperform one another depending on the specifics of the imaging scenario [21].

Quantitative microwave holography (QMH) is a direct inversion approach typically based on BA,
but can operate based on RA as well [22]. While microwave holography was originally developed
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for use in concealed weapons detection [23], the method has recently been adapted for near-field
tissue imaging [24]. Further advancements have enabled three-dimensional (3D) quantitative image
reconstructions [25–27]. Here, quantitative refers to the ability to estimate the complex permittivity
distribution in the object being scanned, rather than estimating only its shape and location. In doing
so, QMH presents a unique direct inversion method that can perform differentiation and identification
of specific targets, such as cancerous tissue. Moreover, it can be used to provide quantitative contrast
information to nonlinear reconstruction algorithms.

In tissue imaging, however, the constraints associated with the linearizing approximations within
QMH are strongly violated due to significant mutual coupling and multiple scattering. This may result
in image artifacts, the shape and location of which are generally unpredictable. Such artifacts can be
avoided only by properly accounting for the nonlinear scattering phenomena, which are not the subject
of the current investigation. On the other hand, QMH is also afflicted by image artifacts that are not
due to multiple scattering and mutual coupling. The focus here is on eliminating such artifacts. This
is imperative before proceeding toward nonlinear QMH reconstruction for tissue imaging.

This work begins with a derivation of the Born and Rytov approximations in the framework of
S-parameters. QMH is then introduced with the appropriate algorithmic modifications to allow for
operation with either BA or RA. Note that while these modifications were first stated in [22], the
current work provides the derivation of Rytov-based QMH (RA-QMH) for the first time. Next, the
complications associated with solving the inverse problem in the Fourier domain are stated. Two
filtering methodologies, 2D real-domain apodization filtering [28–30] and 2D Fourier domain low-pass
filtering are explored. A 3D simulation experiment is considered, demonstrating the importance of
filtering. Finally, a 2D tissue experiment shows the ability of QMH to reconstruct permittivity maps
in a highly nonlinear scattering scenario. Our investigation suggests that while QMH struggles in such
scenarios, it still provides a useful complex permittivity distribution of the inspected tissue object. This
distribution is useful in two ways. Firstly, it can serve as the initial guess in a nonlinear reconstruction
procedure. Currently, it is customary to set such an initial estimate as the known uniform background
medium. We show that QMH can provide a far better object-specific initial estimate. Secondly, due
its remarkable speed, QMH can serve as a quantitative linear-reconstruction module within a nonlinear
solver for high-speed tissue imaging.

2. LINEARIZED MODELS OF SCATTERING

The frequency-domain forward model of scattering in dielectric objects is derived from the vector
Helmholtz equation for the electric field and can be stated as follows [20]:

Esc(r) =
∫∫∫

V
k2

0Δεr(r′)Gb
(r, r′) ·Etot(r′)dv′, (1)

where Esc(r) is the scattered electric field at the position of observation r, V the volume of the
imaged domain, k0 the wavenumber in free space, Δεr(r′) the complex relative-permittivity contrast
Δεr = Δε′r + iΔε′′r between the object and the background at the position r′, G

b
(r, r′) the Green’s

dyadic function, and Etot(r′) the total internal electric field. It is useful to formulate (1) as a data
equation, on which QMH operates:

E
sc(r) =

∫∫∫
V

k2
0Δεr(r′)Gb

(r, r′) ·Etot(r′)dv′, r /∈ V, (2)

where Esc(r) is a measured vector value in the dataset.
Note, however, that most microwave measurement systems acquire the scattering parameters (S-

parameters) instead of electric-field values. As shown in [31], Eq. (2) can be modified to operate using
the scattering component of the S-parameter:

Ssc
ik(r) =

iωε0

2aiak

∫∫∫
V

Δεr(r′)
[
Einc

i ·Etot
k

]
(r′, r)dv′, (3)

where ω = 2πf is the angular frequency, and aζ (ζ = i, k) is the incoming root power wave at the ζ-th
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antenna port†. The scattering component of an S-parameter is the one associated with the scattered field
E

sc at the location of the receiving antenna. Note that in (3), Green’s dyadic function has been replaced
with the scaled electric field Einc

i of the receiving (i-th) antenna when it operates in a transmitting mode.
The electric field dot product [Einc

i · Etot
k ](r′, r), referred to as the resolvent kernel, is a function of the

observation position r and the position within the imaged volume r′.
The scattering integral equation (3) is nonlinear with respect to the permittivity contrast due to

the implicit dependence of Etot
k (r′, r) on the permittivity contrast in V . In the case of weak scattering,

the first-order Born approximation can be applied so that Etot
k (r′, r) is replaced by the incident electric

field Einc
k (r′, r) [18]:

Ssc
ik(r) ≈ iωε0

2aiak

∫∫∫
V

Δεr(r′)
[
Einc

i ·Einc
k

]
(r′, r)dv′. (4)

Equation (4) gives the forward model of QMH. This linearization ignores the multiple scattering that
may occur within the imaged domain. This implies that the permittivity contrast Δεr(r′) is minimal.
With the forward model linearized and in an S-parameter form, the differences between BA and RA
can now be highlighted.

2.1. Born’s Approximation

Note that the scattered portion of the S-parameter Ssc
ik(r) cannot be measured directly but it can be

derived from the measured Sinc
ik (r) and Stot

ik (r) responses. Here, Sinc
ik is the S-parameter measurement in

the absence of scatterers (often referred to as the baseline measurement), and Stot
ik is the S-parameter

measurement of the object to be reconstructed. Born’s approximation views Stot
ik (r) as the superposition

of Ssc
ik(r) and Sinc

ik (r) [18–20], which allows Equation (4) to be expressed as:

[Ssc
ik(r)]BA = Stot

ik (r) − Sinc
ik (r) ≈ iωε0

2aiak

∫∫∫
V

Δεr(r′)
[
Einc

i · Einc
k

]
(r′, r)dv′. (5)

Note that Eq. (5) is linear with respect to the unknown Δεr(r′). It is well known that such a linearizing
approximation ignores multiple scattering and mutual coupling effects.

A major limitation of BA is its sensitivity to errors in the overall phase of the total field as it
propagates through an object [21, 32–34]. To keep these errors small, the following constraint must be
observed:

2asup
∣∣ks(r′) − kb

∣∣ < π, r′ ∈ V. (6)

Here a is the radius of the smallest sphere that circumscribes the scatterer, ks the wavenumber of the
scatterer, and kb the wavenumber in the background medium. Note that the above limitation associated
with the Born approximation applies to the observed external field and the respective S-parameters. A
stricter limitation exists in the case where the integral equation of scattering is applied to the internal
field, i.e., when r ∈ V [21].

2.2. Rytov’s Approximation

Rytov’s approximation views the total field as a complex-phase correction to the incident field [18, 19, 21],

Stot
ik (r) ≈ Sinc

ik (r) · exp
(

Ssc
ik(r)

Sinc
ik (r)

)
. (7)

To form the Rytov forward model, the above equation is rearranged and substituted into Eq. (4), leading
to

[Ssc
ik(r)]RA = Sinc

ik (r) · ln
(

Stot
ik (r)

Sinc
ik (r)

)
≈ iωε0

2aiak

∫∫∫
V

Δεr(r′)
[
Einc

i · Einc
k

]
(r′, r)dv′. (8)

† If the field phasors Einc
i and Etot

k in (3) are RMS phasors, then aζ is equal to the square root of the power launched toward the
ζ-th port by the ζ-th transmitter.
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The central portion of Eq. (8) forms the data vector in the RA-QMH reconstruction whereas the right-
hand side is the same as that of the BA-based QMH (BA-QMH); see Eq. (5). Note that Eq. (8), similar
to Eq. (5), is also a linear integral equation with respect to the unknown Δεr(r′).

The limitation of RA is that there must be minimal phase change across a single wavelength [21, 34].
This has been shown to translate into the requirement:∣∣∣∣μsεs − μbεb

μbεb

∣∣∣∣ < 1. (9)

It has been shown that the above limitation associated with the linear Rytov approximation must be
observed not only for the external fields (and the measured S-parameters) but also for any internal-field
scattering models [21]. Note that, unlike the constraint of BA stated in Eq. (6), RA does not depend on
the size of the scatterer. It is also important to note that both methods still depend on a low-contrast
imaging scene, and converge to the same solution as the permittivity contrast decreases.

3. RYTOV-BASED QUANTITATIVE MICROWAVE HOLOGRAPHY

3.1. Forward Model Based on Measurements

Near-field microwave holography based on BA has been derived in [24, 26]. There it is emphasized
that the success of near-field holography depends critically on the fidelity of the forward model. It
is shown that sufficient fidelity is achievable through calibration measurements, whereas analytical
approximations and simulations (such as those used in far-field imaging) often fail to accurately model
the particular acquisition setup. Quantitative BA-based microwave holography has been proposed
in [22, 25]. To our knowledge, RA-QMH is derived for the first time here.

QMH depends on the measurement of three separate datasets known as the reference object (RO),
the calibration object (CO), and the object under test (OUT). The first two measurements are part of
the system calibration. The RO is the background without scattering objects. Its measurement provides
the incident-field (or baseline) responses SRO

ik (r) ≡ Sinc
ik (r). The CO is the same as the RO except for an

electrically small scatterer of known permittivity contrast Δεr,sp embedded in the center r′0 = (0, 0, 0)
of V . The so acquired S-parameters SCO

ik (r, r′0) represent the system point-spread functions (PSFs).
Finally, the measurement of the OUT provides SOUT

ik (r). Both the CO and the OUT data, SCO
ik (r, r′0)

and SOUT
ik (r), represent total-field responses. These three dataset acquisitions are illustrated in Figure 1.

We consider an acquisition system that performs a planar raster scan along the x and y axes.
The sampling positions are indexed by m = 1, . . . , Nx and n = 1, . . . , Ny along x and y, respectively.
At each sampling position, the measurement involves Nr receiving (Rx) antennas and Nt transmitting
(Tx) antennas, indexed by i = 1, . . . , Nr and k = 1, . . . , Nt, respectively. Thus, the number of acquired
S-parameters is Ns = Nr × Nt, where each measurement is indexed by p = 1, . . . , Ns. The data at
each measurement are captured one frequency fu at a time, indexed by u = 1, . . . , Nf . Finally, the
discretization of the imaged domain utilizes a uniform grid of Nv = Nx×Ny ×Nz voxels, each of volume
Ωv as shown in Figure 2.

Assuming sufficient sampling, the S-parameter data can be expressed as a function of the continuous
variables x, y, and f as Sik(r; f) = Sik(x, y, z̄; f). Note that the constant position z̄ is that of the
acquisition plane scanned by the receiving antenna.

Solving the forward model stated in Eq. (8) requires the resolvent kernel [Einc
i ·Einc

k ](r′, r; f), which
is unknown. However, it can be derived from the PSF SCO

ik (r, r′0; f). Consider the contrast function
ΔεCO

r (x′, y′, z′) of a CO when the scattering probe is placed at r′sp = (x′
sp, y′sp, 0). Since the permittivity

contrast Δεr,sp of the scattering probe is known, ΔεCO
r (x′, y′, z′) is expressed as:

ΔεCO
r (x′, y′, z′) = δ

(
x′ − x′

sp, y
′ − y′sp, z

′)Δεr,spΩsp. (10)

Here, δ is the 3D Dirac delta function, and Ωsp is the volume of the scattering probe. Using Eqs. (8)
and (10), along with the sampling property of the δ function, the probe’s scattering response is obtained
as: [

Ssc,CO
ik (r, r′sp; f)

]
RA

≈ iωε0

2aiak
Δεr,spΩsp

[
Einc

i ·Einc
k

]
(r′sp, r; f), (11)
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(a)

(b) (c)

Reference Object (RO)

Calibration Object (CO) Object Under Test (OUT)

Antenna i Antenna k

Antenna i Antenna k Antenna i Antenna k

V

VV

r'   = (0, 0, 0)sp

Figure 1. Illustrations of the three datasets required for the QMH reconstruction. (a) The RO
measurement provides the incident-field data. It is the measurement in the absence of scatterers. (b)
The CO yields the total-field system PSF. It is a measurement with a scattering probe at the center
of the imaged volume. (c) The OUT S-parameters comprise the total-field data, and are acquired by
measuring the object under test.

where [
Ssc,CO

ik (r, r′sp; f)
]
RA

= SRO
ik (r; f) · ln

(
SCO

ik (r, r′sp; f)
SRO

ik (r; f)

)
, (12)

is the Rytov approximation of the probe’s scattering response.
Equation (11) can be rearranged as:

iωε0

2aiak

[
Einc

i · Einc
k

]
(r′sp, r; f) ≈ Ssc,CO

ik (r, r′sp; f)
Δεr,spΩsp

. (13)

The dot product [Einc
i · Einc

k ](r′sp, r; f) in Eq. (13) is exactly the resolvent kernel of the forward model
in Eq. (8), provided r′sp = r′. Thus, a PSF for every position r′ ∈ V is required to generate the full
resolvent kernel.

Assume that the background medium is translationally invariant along the lateral axes x and y.
Then, the measured PSF with the scattering probe at r′sp = (x′

sp, y
′
sp, 0) can be obtained via coordinate

translation of the PSF with the scattering probe at the center r′0 = (0, 0, 0):

SCO
ik

(
x, y, z̄;x′

sp, y
′
sp, 0; f

)
= SCO

ik

(
x − x′

sp, y − y′sp, z̄; 0, 0, 0; f
)
. (14)

It follows that the resolvent kernel can be expressed as:

iωε0

2aiak

[
Einc

i · Einc
k

]
(x′, y′0, x, y, z̄; f) ≈ Ssc,CO

ik (x − x′, y − y′, z̄; r′0; f)
Δεr,spΩsp

. (15)
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y
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Raster scanning
acquisition setup

VΩ

Figure 2. Illustration of a planar raster acquisition scan and the associated notations. A location in
the imaged target is denoted with r′, whereas the locations of the receiving and transmitting antennas
are denoted as ri and rk, respectively. V is the volume of the imaged domain, which is discretized
uniformly into Nv voxels of volume Ωv.

Further, by performing multiple CO measurements with the scattering probe being at different range
locations z′, the method is easily extended to reconstruct 3D images slice by slice. The typical sampling
rate along z′ is chosen to be close to the well-known range resolution limit for far-zone measurements [15]:

Δz′ ≈ vb

2 · BW
, (16)

where vb is the speed of light in the background, and BW is the radiation frequency bandwidth.
Denser sampling is also possible, provided the respective Nz PSFs are available. However, significant
oversampling along range should be avoided. PSFs measured with the probe closely spaced become
linearly dependent, leading to poorly conditioned system matrices. Thus, the sampling along z is
typically selected to narrowly match the range resolution limit in Eq. (16).

The scattering equation for the OUT measurement is

Ssc,OUT
ik (x, y, z̄; f) ≈

∫∫∫
V

Δεr(x′, y′, z′)
iωε0

2aiak

[
Einc

i ·Einc
k

]
(x′, y′, z′;x, y, z̄; f)dv′. (17)

If the same acquisition setup is used, the resolvent kernel and the associated scaling parameters shown
in Equation (15) can be substituted into Equation (17) to obtain

Ssc,OUT
ik (x, y, z̄; f) ≈

∫∫∫
V

Δεr(x′, y′, z′)
Ssc,CO

ik (x − x′, y − y′, z̄; r′0; f)
Δεr,spΩsp

dv′. (18)

The inversion process is performed on a discretized volume (see Figure 2). The integration is
therefore reduced to a summation over the discrete 3D grid introduced in Section 3.1,

Ssc,OUT
ik (xμ, yν , z̄; fu) ≈

Nz∑
q=1

Nx∑
m=1

Ny∑
n=1

Δεr(x′
m, y′n, z′q)

Ssc,CO
ik

(
xμ − x′

m, yν − y′n, z̄; 0, 0, z′q ; fu

)
Δεr,spΩsp

Ωv,

μ = 1, . . . , Nx, ν = 1, . . . , Ny. (19)

The forward data model is now reduced to a form that operates purely on measured data.
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It is important to note that Tu et al. proved that the forward model can be improved through the
use of the localized nonlinear and quasi-analytic approximations [15, 18]. The improvement, however, is
marginal. It was also shown that quantitative reconstruction is better if the contrast of the scattering
probe is close to that of the OUT.

In wideband data acquisitions, both the OUT and CO datasets are normalized according to the
strongest response |Ssc,CO

ik (xμ, yν , z̄; 0, 0, z′q ; fu)| at any given frequency, i.e.,

S̄sc,OBJ
ik (xμ, yν , z̄; fu) =

Ssc,OBJ
ik (xμ, yν , z̄; fu)

max
r

∣∣∣Ssc,CO
ik (xμ, yν , z̄; 0, 0, z′q ; fu)

∣∣∣ ,OBJ ≡ OUT, CO. (20)

Note that this normalization does not affect the stability of the inversion since it occurs in the spatial
domain. Thus, it does not impact the illposedness of the system matrix in the Fourier domain. In tissue,
the signals at the higher frequencies tend to be substantially weaker than those at lower frequencies due
to the increase of loss. Normalization is desirable because it creates equal weighting of the responses
across all frequencies during the inversion process.

3.2. Inversion Procedure

The double sum over x′
m and y′n in Eq. (19) is a convolution. A 2D Fourier transform is applied to

change the convolution into a multiplication:

S̃sc,OUT
ik (κ, z̄; fu) ≈

Nz∑
q=1

ΩvΔε̃r

(
κ, z′q

)
Δεr,spΩsp

S̃sc,CO
ik

(
κ, z′q; fu

)
. (21)

Here κ = (κx, κy) denotes a position in the Fourier space. The quantitative factors are combined with
the contrast function to form the reflectivity function,

ρ̃(κ, z′q) =
Ωv

Δεr,spΩsp
Δε̃r(κ, z′q), (22)

which, when substituted into Eq. (21), yields:

S̃sc,OUT
p (κ, z̄; fu) ≈

Nz∑
q=1

ρ̃(κ, z′q)S̃
sc,CO
p (κ, z′q; fu), (23)

where p = 1 . . . Ns is an S-parameter experiment (i, k). At each p-th experiment, Equation (23) is a
system of linear equations at each spectral position κ:

Ã(κ)ρ̃(κ) = b̃(κ), (24)

where

Ã(κ) =

⎡⎢⎣ S̃sc,CO
p (κ, f1, z1) . . . S̃sc,CO

p (κ, f1, zNz )
...

. . .
...

S̃sc,CO
p (κ, fNf

, z1) . . . S̃sc,CO
p (κ, fNf

, zNz)

⎤⎥⎦ , (25)

ρ̃(κ) =

⎡⎣ ρ̃(κ, z1)
...

ρ̃(κ, zNz)

⎤⎦ , (26)

b̃(κ) =

⎡⎢⎣ S̃sc,OUT
p (κ, f1)

...
S̃sc,OUT

p (κ, fNf
)

⎤⎥⎦ . (27)
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In a scenario where multiple S-parameters are acquired, the system and data matrices become:

Ã(κ) =

⎡⎢⎣ S̃sc,CO
1 (κ)

...
S̃sc,CO

Ns
(κ)

⎤⎥⎦ , (28)

b̃(κ) =

⎡⎢⎣ S̃sc,OUT
1 (κ)

...
S̃sc,OUT

Ns
(κ)

⎤⎥⎦ . (29)

The inversion can therefore be expressed as:

ρ̃(κ) =
[
Ã(κ)

]† · b̃(κ), (30)

where † denotes pseudoinverse. The necessity of the pseudoinverse is due to the rank-deficiency of the
typical system matrix Ã(κ). There are more frequency samples along f than range samples along z′,
i.e., Nf > Nz. The minimum number of frequency samples is dictated by the need to prevent aliasing
between frequencies; thus, the frequency step size is limited to [21]:

Δf <
vb

4Rmax
. (31)

Here, vb is the speed of light in the background medium, and Rmax is the maximum distance from the
antenna to a target in the imaged domain. Note that the frequency step is selected near the limit to
avoid oversampling and thus illposedness in the inversion. This strategy is similar to the one used for
determining the z′ sampling step, shown in Eq. (16). In tissue measurements, the differences between
Eqs. (16) and (31) typically leads to a larger number of frequency measurements than the maximum
number of linearly independent z′-plane measurements.

For example, consider a measurement in the imaging of a compressed breast tissue of a thickness
of 5 cm. If the averaged relative permittivity of the breast can be assumed to be εr ≈ 10 − i5, and the
distance from the farthest extent of the breast to the antenna is 7.5 cm, the frequency sampling step
from Eq. (31) is determined to be Δf = 307 MHz.

On the other hand, to achieve a range resolution of 1 cm (i.e., 5 independent z′-planes), a frequency
bandwidth of 4.60 GHz is required; see Eq. (16). For this particular setup, at least 15 frequency samples
are required in order to avoid violating the constraints of frequency sampling stated in Eq. (31). Thus,
in this common scenario, Nf > Nz, and the resultant system matrix Ã(κ) is overdetermined.

The solution of Eq. (30), ρ̃(κ, z′q), q = 1, . . . , Nz, is found for all κ = (κx, κy). Then the inverse 2D
Fourier transform is applied to each z′-plane of the reflectivity function to obtain ρ(x′, y′, z′) over the
discretized volume Nx ×Ny ×Nz. The multiplicative factors are finally applied to calculate the relative
complex permittivity of the OUT:

εr,OUT(x, y, z) ≈ ρ(x, y, z) · Δεr,sp
Ωsp

Ωv
+ εr,b. (32)

It is critical to note that the differences between the Born and Rytov approximations are solely related
to the approximation of the scattered field data. Since these modifications are all applied before the
inversion stage and operate on the same dataset, RA-QMH can compute the reconstruction at the same
speed as BA-QMH, which typically takes several seconds [22, 25, 27].

4. FILTERING STRATEGIES

Proper data filtering is critical to ensure successful reconstruction via QMH. Without filtering, ringing
artifacts and high-frequency noise obscure the target in the image. Two strategies, apodization filtering
in the real (x, y) domain and post-inversion low-pass filtering in the Fourier domain, are used to improve
reconstruction quality while preserving quantitative output.
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4.1. Apodization Filtering

Apodization (or edge) filtering is used in photography, ultrasound imaging, and magnetic resonance
imaging (MRI) [35–38]. It removes the presence of ringing artifacts that are generated by the DFT.
The issue arises because the DFT assumes that parallel edges of an image are continuous with respect
to one another, e.g., the left side of an image can be wrapped around to the right side resulting in
a smooth transition. However, in physical measurements, the edges are frequently different due to

Figure 3. The scattering object (OUT) in the simulation example. A C-shaped object of dielectric
permittivity εr = 1.5− i0 is placed in a plane which is 4 cm away from the lower dipole antenna. Three
scattering cubes (εr = 1.1− i0) of side length 1 cm are placed along z′ at distances 4 cm, 5 cm, and 6 cm
away from the lower antenna. They are also displaced by 1 cm along the x-axis with respect to each
other. The two antennas are aligned along boresight and sweep across the 30 cm by 30 cm acquisition
plane at 1 cm intervals. The background medium is vacuum.
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Figure 4. (a) Reconstruction of the real part of the permittivity of the simulated OUT using RA-QMH.
The quantitative values of the C-shape and the smaller scattering targets are estimated accurately. (b)
The magnitude of the data of the OUT simulated at 8GHz.
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noise and hardware discontinuities. This edge discontinuity causes the DFT to generate artifacts in the
Fourier domain. These artifacts are related to Gibb’s phenomenon, where large discontinuities create
sinc-function ringing in the 2D Fourier domain [39]. This ringing is amplified during the inversion stage,
creating point and cross-like artifacts in the final images.

There are a variety of apodization filters that can be used to remove these artifacts, including
simple Gaussian functions, the Happ-Genzel filter, and tapered edge techniques [37, 38]. For the sake
of simplicity, a simple cosine function is used here to demonstrate the ability of apodization filtering to
improve the image quality.

Figure 3 shows a C-shape scattering object along with three small cubes in a background of vacuum.
The data in this example is acquired through simulations with the commercial CAD package FEKO [40].
The letter “C”, of dielectric permittivity εr = 1.5− i0, is placed on a plane between two dipole antennas
which are aligned along boresight and are 10 cm apart. The C-shaped object is positioned 4 cm away
from the lower antenna along z. There are also 3 small 1 cm3 cubes of εr = 1.1 − i0 that are placed
on different z′-planes at distances of 4 cm, 5 cm, and 6 cm from the lower antenna. Each of these small
scattering objects are also offset by 1 cm along the x axis with respect to each other. To generate 3D
images, three CO measurements are acquired with a scattering probe placed in the center of the 2D
slices of the region of interest (ROI) at z′ of 4 cm, 5 cm, and 6 cm away from the lower antenna. The
ROI is a volume of extent 30 cm along x′ and y′ and 10 cm along z′. Reconstruction is only performed
on the planes where objects are located at, i.e., 4 cm, 5 cm, and 6 cm away from the lower antenna. The
permittivity of the scattering probe in the CO is εr = 1.1− i0. The S-parameters are acquired across a
30 cm by 30 cm acquisition plane at 1 cm intervals. A frequency range from 3GHz to 8GHz is swept in
1GHz increments. Note that the limitations stated in (9), (16), and (31) are observed.

The results of the RA-QMH reconstruction without any filtering can be seen in Figure 4(a). The
C-shaped object is clearly reconstructed along with accurate quantitative values. The locations and
permittivites of the smaller scattering objects are also determined accurately. While there are some
minor ringing artifacts, they barely affect the image. Note that here the edges of the OUT datasets
have nearly identical values, as shown in Figure 4(b) for the case of 8 GHz.

Now consider a QMH reconstruction with a seemingly insignificant discontinuity at the edge of the
image domain, such as the one shown in Figure 5(a). Such discontinuities are common in experimental
measurements. The small Gaussian disturbance shown in Figure 5(a) is artificially added to the
simulated OUT dataset at each frequency. With these data, QMH produces noisy results throughout
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Figure 5. (a) The magnitude of the data of the OUT simulated at 8GHz, with a small Gaussian-shaped
signal disturbance added artificially to the top right corner of the acquisition plane. (b) Reconstruction
of the real part of the permittivity of the simulated OUT using RA-QMH, when the same small Gaussian-
shaped disturbance shown in (a) is added to the data at each frequency. While the quantitative estimate
of the C-shape permittivity is reasonable, the smaller scattering objects are not visible in the noisy image.
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Figure 6. (a) Reconstruction of the real part of the permittivity of the simulated OUT using RA-QMH,
when the data is corrupt with the corner disturbance. A cosine apodization filter is used to reduce the
impact of the disturbance. (b) The apodization filter based on a 2D cosine distribution across the entire
acquisition plane.

the imaged volume (Figure 5(b)). While the C-shape is discernible, the smaller scattering objects are
not visible and nonphysical values (ε′r < 1) are present. To correct this error, an apodization filter based
on a 2D cosine function is applied to the scattered responses of the OUT and CO datasets (Figure 6(b)).
As shown in Figure 6(a), a clearer image is reconstructed, with the small scattering objects made visible.
The quantitative results are accurate as well.

In actual imaging measurements, noise and discontinuities at the edges of the image domain are
common due to reflections from the enclosures and/or the components of the positioning mechanism.
This is why apodization is a necessity. This is especially important in tissue imaging where, in addition
to strong edge discontinuities, we also deal with low signal-to-noise ratio (SNR).

4.2. Post-Inversion Low-Pass Filtering

Another common cause of artifacts is oversampling along x and y. Oversampling is typically used in
experimental measurements to improve the resolution and to reduce the impact of measurement noise.
For far-zone measurements, the following lateral sampling step is recommended [21]:

Δζ < Δζmax ≈ λmin

4 sin αmax
, ζ ≡ x, y, (33)

where αmax is the maximum angle at which the antenna “sees” the OUT. This is either the angle between
the axis of the antenna and the far edge of the OUT, or one-half of the antenna beamwidth, whichever
is smaller (Figure 7(a) depicts the latter situation). Equation (33) is derived from the maximum spatial
variation that can occur in κζ with far-zone data, which is,

κmax
ζ ≈ 4π sin αmax

λmin
. (34)

Note, however, that the spatial signal variation with near-field measurements may be more rapid,
leading to higher spatial frequencies κx or κy. Consider an acquisition which uses a sampling step Δζ
several times smaller than the limit Δζmax in Eq. (33). The DFT then generates a spatial frequency
range ±π/Δζ which is much larger than the limit stated in Eq. (34) (π/Δζ > κmax

ζ ). With weak or
absent near-field data, the spectral components outside of the circle of radius κmax

ζ in Fourier space
contains mostly noise, which leads to high-frequency artifacts appearing in the reconstructed images.

To handle this, a wide variety of low-pass filters exist. For the purposes of this work, a simple
Butterworth filter is selected. It is designed to ensure that its 3 dB cut-off spatial frequency matches
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Figure 7. (a) Example of how αmax is limited by the antenna directivity pattern. This limitation arises
because the antenna pattern does not cover the entirety of the OUT. In the case where the antenna
pattern covers the entire OUT, αmax becomes the angle between the antenna axis and the farthest
corner of the OUT. (b) Fourth-order Butterworth filter whose cut-off frequency has been set to kmax.
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Figure 8. (a) Simulation reconstruction of the real part of the permittivity with oversampled raw
data. (b) Reconstruction of the real part of the permittivity of the oversampled simulation data with
the addition of a Butterworth filter.

the limitation stated in Eq. (34). The order of the filter is flexible so long as the high-frequency noise
is sufficiently suppressed. Achieving 10 dB attenuation at a spectral position located at about 1.1κmax

ζ

is usually acceptable.
Consider again the example with simulated data introduced in Section 4.1. In order to calculate

αmax in Eq. (33), we use the size of the region of interest, which is 30 cm by 30 cm by 3 cm, where the
maximum range distance from the region of interest to the antenna is 6 cm. In addition, we use the
shortest wavelength λmin = 3.75 cm. Then the maximum sampling step is obtained as Δζmax ≈ 1 cm.
This matches the maximum sampling step used in the simulation; thus, the final reconstruction is
successful as shown in Figure 4(a). To emulate a sampling step Δζ = 0.5 cm, which is twice smaller
than the originally used one, we resample the already available dataset using MATLAB’s resample
function [44]. Note that the area of the pixel in each slice of the image is now four times smaller since Δζ
determines the cross-range dimension of the pixel. The image reconstructed with such resampled data
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without filtering is shown in Figure 8(a). Cross-shaped and point-like artifacts appear and the smaller
scattering objects are hidden. This is because, despite the relatively accurate simulation, the data still
contains numerical “noise” associated with the finite simulation grid. The resampling procedure also
involves interpolation which inevitably introduces errors. Such noise and errors are amplified by the
DFT and especially by the inversion with (30). With the application of a fourth-order Butterworth filter
(Figure 7(b)), the artifacts are removed and the small scattering objects become visible (Figure 8(b)).

5. COMPARISON OF THE BORN AND RYTOV APPROXIMATIONS IN QMH
USING TISSUE EXPERIMENTS

It is important to analyze and compare how both BA- and RA-QMH perform in highly nonlinear
tissue reconstruction. The work in [22] showed that RA-QMH was able to outperform BA-QMH in
the measurement of a chicken wing embedded in a lossy medium. Both BA- and RA-QMH failed to
estimate correctly the values of the complex tissue permittivity, but the RA-QMH images did identify
the shape and location of the chicken wing tissues in the phantom. BA-QMH, on the other hand,
completely failed. The inability to produce useful quantitative information and the failure of BA-QMH
was attributed to the excessive permittivity contrast between the background medium and the chicken
wing. In that experiment, the chicken wing was embedded in a layer of lard which, in its turn, was
embedded in a breast-tissue mimicking phantom material. The permittivity contrast among all three
object components (chicken wing, lard, phantom material) was sufficiently high to violate the constraints
of both the Born and the Rytov approximations.

The experiment in this work reduces the contrast between the tissue phantom and the host medium,
which makes the task of the Born and Rytov approximations easier. A 20 cm by 20 cm by 1 cm tissue
mimicking absorber sheet with a relative permittivity εr ≈ 10−i3 is selected for the background medium.
A circular cutout of the absorber sheet is made, and a petri dish is placed in the cutout. A chicken
wing is placed in the center of the petri dish. S-parameter transmission data of are acquired across
a frequency bandwidth from 3 GHz to 8GHz at 0.1 GHz intervals. The complex permittivities of all

Figure 9. The OUT constructed from peanut
butter and jam (PBJ), an absorber sheet, and a
chicken wing. Note that the skin of the chicken
wing has been pulled to the left side of the wing.
There are also two bones inside the chicken wing
that run down the center underneath the muscle
tissue.

Figure 10. The CO phantom inside the
acquisition setup. Two TEM horns, which are
impedance matched to tissue, perform a raster
scan across a 16 cm by 16 cm acquisition plane.
The antennas are placed 2 mm above and below
the tissue phantom. Extra absorbers are placed
beside the phantom to reduce the impact of
the air/absorber boundary at the edge of the
phantom.
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tissues and materials were measured with Agilent’s coaxial probe [41] in this frequency band and were
then averaged. The chicken wing is made up of muscle (measured average εr ≈ 47.6 − i25.9), skin
(measured average εr ≈ 14.4 − i6.2), and bone (measured average εr ≈ 21.5 − i10.7). To remove the
air gaps between the absorber sheet and the chicken wing, a host medium using peanut butter and jam
(PBJ) is prepared. It is mixed in quantities of 40% peanut butter and 60% jam, with a measured average
permittivity of εr ≈ 7 − i3. The PBJ is inserted around the chicken wing creating the OUT phantom
as shown in Figure 9. The CO measurement is that of an absorber sheet with a small scattering probe
(radius = 0.5 cm, height = 1 cm) of εr ≈ 18 − i0 inserted in the center, as shown in Figure 10. The
RO is a solid absorber sheet with no insertions. Two TEM horn antennas [43], matched to tissue, are
placed on either side of the RO, CO, and OUT phantoms. The antennas perform a raster scan with an
output power of 0 dBm across a 16 cm by 16 cm acquisition plane at 0.2 cm intervals. The raw data of
the RO and the CO are put through a denoising algorithm [42] to reduce the impact of measurement
noise on the reconstruction.

The result of the RA-QMH reconstruction without apodization or low-pass filtering is shown in
Figures 11(a) and 11(b). The images are noisy and no structures can be discerned. To improve the image
quality, the apodization and post-inversion low-pass filters from Section 4 are applied. Figures 12(a)
and 12(b) show the reconstruction with apodization filtering only. Speckling artifacts are visible
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Figure 11. The RA-QMH reconstruction of the complex permittivity of the chicken wing without any
filtering: (a) real part, (b) imaginary part. No structures can be discerned in both images.
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Figure 12. The RA-QMH reconstruction of the complex permittivity of the chicken wing with
apodization only: (a) real part, (b) imaginary part. No structures can be discerned in both images.
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and large nonphysical permittivities exist in both the real and imaginary parts of the reconstruction.
Figures 13(a) and 13(b) show the reconstruction with post-inversion low-pass filtering only. Here, the
chicken wing and the background are not discernible in the image of the real part of the permittivity.
When both filters are applied together, the reconstruction is improved as shown in Figures 14(a)
and 14(b). The chicken wing is correctly localized within the ROI, and tissue structures such as skin
and bone are partially visible in the reconstruction. For comparison, BA-QMH is also performed with
the same filtering approaches, and the final images are shown in Figures 15(a) and 15(b).

There are similarities and differences between the BA-QMH and RA-QMH reconstructions aided
by filtering and denoising. Firstly, they are both able to locate the chicken wing in the OUT. They also
identify different tissue structures in the medium, such as the skin tissue on the left side of the chicken
wing (high real part of the permittivity), and the bones that run down the middle of the chicken wing
(near zero imaginary part of the permittivity). However, BA-QMH is also able identify the host PBJ
medium and the absorber sheet interface. Further differences between the methods can be seen in their
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Figure 13. The RA-QMH reconstruction of the complex permittivity of the chicken wing with post-
inversion low-pass filtering only: (a) real part, (b) imaginary part. No structures can be discerned in
both images.
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Figure 14. The RA-QMH reconstruction of the complex permittivity of the chicken wing with
apodization and post-inversion low-pass filtering: (a) real part, (b) imaginary part. The chicken wing
can be seen, and the skin is visible on the left side of the images. The bones are also partially visible.
However, nonphysical values (Im(εr) > 0) are observed.
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Figure 15. The BA-QMH reconstruction of the complex permittivity of the chicken wing with
apodization and post-inversion low-pass filtering: (a) real part, (b) imaginary part. The chicken wing
can be seen, and the skin in particular is visible on the left side of the images. The bones are seen in
the imaginary part of the image.
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Figure 16. The BA-QMH reconstruction of the complex permittivity of the chicken wing with
apodization and post-inversion low-pass filtering, but without denoising of the CO and RO datasets:
(a) real part, (b) imaginary part. The resolution is improved compared to the images in Figures 15(a)
and 15(b). The two separate bones are now visible in the imaginary part of the image.

quantitative outputs. The estimated permittivity values from the BA reconstruction are lower than the
actual measured values. In comparison, the RA-based method produces slightly stronger quantitative
values. But it also generates larger nonphysical permittivities, such as the positive imaginary responses
in the center of the chicken wing (Figure 14(b)).

Contrary to the results shown in [22], BA-QMH appears to perform similarly to RA-QMH. This is
due to the reduced contrast between the host medium (PBJ) and the chicken tissue on one hand, and
between the host medium (PBJ) and the absorber sheet on the other. In the previous work, the chicken
wing’s individual tissue contrasts are negligible when compared to those with the background medium,
making the wing appear electrically large and uniform. This violated the Born constraints, but did not
impact the Rytov approximation significantly. Therefore, selecting a more appropriate host medium is
critical to the performance of BA-QMH. It is also beneficial to RA-QMH.

It is interesting to consider the abilities of the two algorithms without denoising of the calibration
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RO and CO datasets. In this comparison, only the filtering strategies discussed in Section 4 are applied.
The RA-QMH strategy fails to produce an image, whereas BA-QMH generates a fairly clear image of
the wing; see Figures 16(a) and 16(b). In fact, the BA-QMH image resolution with the non-denoised
data is better than that with the denoised data. The two individual bones can be identified in the
imaginary part of the reconstruction, and the edges of the wing are clearly defined. This is in fact an
expected results since denoising often has an effect similar to low-pass filtering, leading to partial loss
of resolution. We should also note that the phantom’s relatively small thickness of 1 cm makes the task
of BA-QMH easier. Born’s approximation is constrained by Eq. (6), which depends on the length of
the signal path through the OUT. Rytov’s approximation gains no advantages from the thin phantom.
Also, RA-QMH uses a logarithmic function to determine the scattered signal [see Eq. (8)], which may
be more susceptible to noise than the subtraction used by BA-QMH.

From these experimental results, it is clear that tissue imaging presents a significant challenge
to both RA-QMH and BA-QMH. Still, with the proper choice of the host medium, both BA- and
RA-QMH are able to identify the tissue components. By using both approximations, complimentary
reconstructions can be generated to verify and improve the overall linear reconstruction.

6. CONCLUSION

A quantitative microwave holography imaging method has been developed based on the linear Rytov
model of scattering. Common artifacts created by QMH with both Rytov and Born’s approximation are
demonstrated and corrected using filters in a simulation example. An experimental example of a tissue
measurement is shown, and both RA- and BA-QMH are used to reconstruct the complex permittivity
of the tissue. The results demonstrate that in a tissue phantom designed to have an optimal host
medium, BA-QMH performs similarily to RA-QMH, contrary to what was shown in previous work. In
the case where no denoising strategy is applied, BA-QMH outperforms RA-QMH in terms of robustness
to noise. The unique features of both reconstructions indicate a useful complementarity, which should
be exploited in image analysis. Running both the RA-QMH and BA-QMH algorithms is possible due
to their modest computational requirements. Both of them execute within a couple of seconds using
MATLAB [44] on a 2013 Macbook Pro.

Future work aims at using either or both of the QMH implementations in an iterative method for the
imaging of complex objects, such as human tissue. The utility of QMH in iterative imaging is two-fold.
Firstly, QMH can provide the initial guess for the OUT complex permittivity distribution. This initial
guess would be significantly better than the commonly used uniform background permittivity. Secondly,
QMH can serve as the linear inversion module within each iteration of the nonlinear reconstruction.
Before this can be done, however, the nonphysical values generated by the direct inversion method must
be corrected either through customized filtering strategies or through the application of nonphysicality
constraints in the solution of the inversion equations.
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