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A Comparison between Carson’s Formulae and a 2D FEM Approach
for the Evaluation of AC Interference Caused by Overhead

Power Lines on Buried Metallic Pipelines

Andrea Cristofolini*, Arturo Popoli, and Leonardo Sandrolini

Abstract—In this paper, the AC interference produced by an overhead power transmission line on a
buried metallic pipeline is estimated using a circuital method based on the well-known Carson’s formulae
and a two-dimensional finite element numerical code. The finite element formulation used in this paper
implicitly takes into account the mutual inductive coupling between all the considered conductors, and
it allows a more detailed analysis in cases where a nonhomogeneous soil is present. The FEM approach
includes a procedure which has been developed to enforce that the sum of the currents flowing through
the soil, pipeline and eventual overhead ground wire is equal to zero. A case study has been identified,
and the results obtained by the two approaches have been compared and discussed.

1. INTRODUCTION

Whenever overhead power-lines and buried metallic pipelines share the same transport corridors, the
AC nature of the currents carried by the power-lines inevitably produces some effects on the pipelines.
Indeed the pipelines will experience an electromotive force that results in currents that can be harmful
both in the short (high current densities during faults) and long (corrosion effects) terms. Moreover,
these induced voltages may represent a danger for the personnel touching the structure. Due to
the importance and complexity of these topics, scientific research on the subject is still conducted
nowadays. The various techniques adopted for the task of computing the induced voltages and currents
are generally based either on analytical calculations [1–3] or on the Finite Element Method (FEM) [4, 5].
Furthermore, some other recent works are based on hybrid techniques [6, 7], in which FEM is used to
compute equivalent lumped parameters that can be used to obtain the induced voltages and currents.
Whenever an analytical method is involved in the computations, the eventuality of the earth acting as
a return circuit for the currents has to be taken into account. In [1, 2] Carson’s formulae are chosen
for accomplishing this task. These rely on the diffusion equation for assessing the time-dependent
distribution of the currents in a semi-infinite homogeneous soil.

2. PROBLEM FORMULATION

In both methods presented in this work, the inductive coupling is the only mechanism taken into account
while computing the induced voltages and currents. Basically, it is assumed that the electromagnetic
interaction between the overhead power-line and the pipeline happens due to Faraday’s law only. This
means that the conductive and the capacitive coupling are not considered. The focus of this work is set
on buried pipelines and indeed, thanks to the shielding effect of the soil towards the electric field, the
capacitive coupling can be reasonably neglected. Moreover, with respect to conductive coupling, this is
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of some relevance only if the pipeline is located in the vicinity of a faulted power-line with some degree
of unbalance between the currents of the three phases, which would imply some kind of return current
flowing through the soil surrounding the pipeline itself. Since this is a quite infrequent circumstance,
it appears logical focusing on the sole inductive coupling, which is the only effect taking place in every
possible situation.

2.1. Circuital Approach

The circuital approach considered in this paper for calculating the voltages induced on pipelines due to
power lines is described in the Cigré standard [1] and consists of a few steps. Here the procedure in the
case of a power line with three line conductors, indicated with the subscript i = 1, . . . , 3 and equipped
with a single overhead ground wire (OGW), is shown (all quantities are given in SI metric system):

(i) computation of the mutual impedance Zi−OGW between each phase conductor and the OGW. Given
the line currents Ii, this allows finding the electromotive force induced on the OGW:

EMFOGW =
3∑

i=1

Zi−OGWIi; (1)

(ii) calculation of ZOGW, the self-impedance of the OGW. Therefore, the current caused by the EMF
on the OGW is IOGW = EMFOGW/ZOGW;

(iii) once the value of IOGW is found, it can be treated as another line current, and the process described
in the previous steps can be applied to the pipeline (indicated with the subscript p):

EMFp =
3∑

i=1

Zi−pIi + ZOGW−pIOGW, (2)

where Zi−p and ZOGW−p are the mutual impedances between the pipeline and the ith conductor
and the OGW, respectively.

This method relies upon the use of Carson’s expressions [8] for the computation of the self- and mutual
impedances of conductors in presence of a semi-infinite earth. That is, the calculated impedances are
comprehensive of the earth, acting as the return path of the metallic conductors. Carson’s results were
expressed in terms of convergent infinite series, however (for the sake of convenience) some simplified
expressions are normally used instead. The per-unit-length (p.u.l.) self-impedance Z′ of an above-soil
conductor with earth return can be expressed as [9]:

Z′ = R′ + μ0 tan−1

(
β

β + 1

)
+ jμ0f

(
ln

2π
r

)
+ ln

(√
(1 + β)2 + β2)

)
, (3)

where R′ is the p.u.l. resistance of the conductor, f the frequency, h the height of the conductor above
the soil, β = 330

h

√
ρsoil
2f , and ρsoil is the soil resistivity.

The calculation of the mutual impedance Zm between two earth return conductors is performed
using the so-called polynomial form of Carson’s series [2]

Zm = j2πf(F1 + jF2) · 10−9, (4)

where, having defined x = αd and d being the distance between the two circuits and α =
√

ωμ0

ρsoil
, for

x ≤ 10

F1 = a1 − a2x + a3x
2 − a4x

3 + a5x
4 − a6x

5 + a7e
x − a8ln(x),

F2 = −b1 + b2x − b3x
2 + b4x

3 − b5x
4 + b6x

5 + b7e
−x − b8e

x − b9ln(x)
(5)

whereas for x > 10
F1 = 0 F2 = −400

x2
(6)
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with
a1 = 123.36; a2 = 1.69; a3 = 23.937; a4 = 4.9614;
a5 = 0.44212; a6 = 0.01526; a7 = 0.001215; a8 = 200;
b1 = 339; b2 = 193.67; b3 = 49.77; b4 = 6.979;
b5 = 0.5243; b6 = 0.01672; b7 = 180.42; b8 = 0.00146; b9 = 0.274.

(7)

Finally, the p.u.l. self-impedance of the pipeline-earth circuit Z′
p = R′

p + jωL′
p can be computed with:

R′
p =

√
ρpμ0μrω√

2πD
+

μ0ω

8
ωL′
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ρpμ0μrω√
2πD

+
μ0ω

2π
ln

⎛
⎝3.7

√
ρsoil
ωμ0

D

⎞
⎠ , (8)

where ω = 2πf is the angular frequency; ρp and μr are the resistivity and the relative magnetic
permeability of the pipeline respectively; D is its external diameter.

Here are the fundamental hypotheses on which the aforementioned Carson’s expressions are based:

(i) linearity of magnetic materials: generally, pipelines are made of iron, which is a ferromagnetic
material. For this reason, in the case of very high induced currents, the saturation of the magnetic
medium could heavily influence the electromagnetic behaviour of the structure. However, a
situation like this is likely to happen only in the case of extremely strong faults in the vicinity
of the pipeline, a quite unusual circumstance;

(ii) weak coupling: the circuital approach works on the assumption that the considered conductors
are weakly coupled [10]. Therefore, the line conductors will induce currents in the pipeline, whereas
the currents induced in the line conductors due to the currents that are induced in the pipeline are
considered negligible;

(iii) constant network frequency (sinusoidal steady-state): this allows using the phasor method.
In this paper, all the results refer to a frequency of 50 Hz;

(iv) quasi-stationary approximation: Carson’s formulae for the self and mutual impedance of
conductors with earth-return are based on the assumption of J � ∂D/∂t. This is valid [10] if
the condition 2π rp0−p

v � 1
f is verified. In this expression rp0−p is the maximum linear extension of

the physical domain and v represents the speed of propagation of the electromagnetic interaction
in the given medium;

(v) homogeneous soil: the electrical properties of the soil surrounding the pipeline are taken as
constants.

An additional assumption on the proposed methodology is that the pipelines are parallel to the
power lines. In particular, the calculations are performed with the aim of obtaining p.u.l. values.
However, this method has a wider spectrum of applications than what is presented here. Indeed, the
circuital method can be applied (with some inevitable degree of approximation) even to non-parallel
configurations [1, 2, 9], subdividing the pipeline in several parallel equivalent configurations, and then
solving a linear system. It is also possible to compute the shunt admittance to earth of the pipeline,
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Figure 1. (a) Imperfect coating and earthing, (b) perfect coating and earthing.
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which represents the imperfect coating of the pipeline itself. That would lead to writing a pi-equivalent
circuit, depicted in Fig. 1(a), where the generator EMFp (representing the total induced EMF on
considered axial portion of the pipeline) induces a current which finds its return path through the
equivalent p.u.l. admittance Y′

p = πD
ρcδc

+ jω ε0εrπD
δc

. In the latter, ε0 is the electric permittivity of the
vacuum, εr the relative permittivity of the pipeline’s coating, δc and ρc its thickness and resistivity
respectively. However, for the purpose of a comparison with 2D FEM methodologies, a pipeline with
perfect coating (Y′

p = 0) is considered. In particular, the simulated pipeline is perfectly earthed at both
ends (Y0A

= Y0B
= 0), thus leading to circuit (b) of Fig. 1.

2.2. Finite Element Formulation

A numerical procedure has been developed in order to analyse the effects of the AC interference induced
by a transmission line on a buried pipeline. The method is based on a two dimensional finite element
formulation for the solution of the problem in the quasi-magnetostatic assumption (i.e., J � ∂D/∂t).
The 2D formulation is obtained assuming that all the current densities flow in a perpendicular direction
(which will hereafter referred to as z direction) with respect to the plane taken as calculation domain.
Under this assumption, the magnetic flux density B lies on the calculation plane and Az is the only
relevant component of the magnetic vector potential A. In this case, the current density along the z
direction can be expressed as:

Jz = Jz,0 − σ
∂Az

∂t
, (9)

and the governing equation for Az can be written as follows [11]:

−∇ ·
(

1
μ
∇Az

)
= Jz,0 − σ

∂Az

∂t
. (10)

This formulation does not require the aforementioned weak coupling approximation. Indeed, in
this case the vector potential and its time derivative are a result of the current densities flowing on
the whole domain. Thus, the current flowing through the overhead power lines are inherently affected
by the pipeline and OGW currents. Assuming then a sinusoidal regime, a two dimensional complex
formulation of (10) can be derived:

−∇ ·
(

1
μ
∇Az

)
= J0,z − jωσAz . (11)

In Eq. (11), J0,z represents the forcing term acting in the z direction and can be regarded as the
current density that would travel through the conductors in a steady state regime.

Although the proposed formulation shares some of the assumptions underlying the Carson’s
formulae, like the linearity and isotropy of all the materials, FEM analysis allows a detailed analysis of
cases where the complexity of the conductor location and the nonuniformity of the soil properties play
an important role.

Equation (11) is discretized by means of a finite element method. Assuming that the considered
domain Ω has been discretized in calculation mesh, the solution Az is approximated by a piecewise
polynomial representation:

Ãz = {N}T {Az}, (12)

where {N} is an array constituted by the shape functions for each node in the mesh, and {Az} is
constituted by the corresponding nodal values of the unknown. According to the Galerkin approach,
the weak form of the weighted residual formulation can be written using the generic shape function Nk

as weighting function:∫
Ω
∇Nk ·

(
1
μ
∇Ãz

)
dS + jω

∫
Ω

NkσÃzdS =
∫

Ω
NkJ0,zdS −

∮
∂Ω

Nk
1
μ

∂Ãz

∂n
dl. (13)

Inserting Eq. (12) in Eq. (13), a linear system is finally obtained:

[M]{Az} = {f} (14)
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which, once solved, allows one to determine the value of the unknown {Az}. The left- and right-hand
side terms in Eq. (14) (that is, the complex coefficient matrix [M] multiplied by {Az} and the array {f})
are derived from the left- and right-hand side terms in Eq. (13), respectively. Particularly, the right-
hand side term {f} depends on the distribution of the applied current density J0,z over the calculation
domain and on the conditions applied to the domain boundary ∂Ω. The current densities can then be
evaluated over the calculation domain using Eq. (9), that in phasorial form reads:

Jz = J0,z − jωAz. (15)

The numerical integration of this equation, performed using the Gaussian quadrature formulae,
yields the currents flowing (along the z direction) in the regions of the domain. We can therefore define:

Isoil (J0,z) =
∫

soil
JzdS, (16a)

Ip (J0,z) =
∫

pipe
JzdS, (16b)

IOGW (J0,z) =
∫

OGW
JzdS (16c)

as the electric current flowing through the soil, the pipeline and the OGW(s), respectively. In the
definitions of Eq. (16), it is highlighted that the currents are functions of the applied current density
J0,z since, as previously noted, the solution Az depends on J0,z. For instance, if the applied J0,z is
set to 0 on every conductor except for the power line phase conductors, the condition schematically
represented in Fig. 2(a) is obtained. As mentioned in the previous section, the results obtained by
means of the FEM approach will be compared to the calculations based on the Carson’s formulae. For
this purpose, we refer to the case depicted in Fig. 1(b), where a perfectly coated (Y′

p = 0) and perfectly
earthed at both ends (Y0A

= Y0B
= 0) pipeline is considered. We also assume that the OGW is

perfectly earthed at both ends. The applied current density J0,z on each conductor is assumed to be
produced by a forcing electric field E0,z applied on the z direction:

J0,z = σE0,z. (17)

Since the pipeline and OGW are perfectly earthed, the forcing electric field E0,z is the same through
the soil, pipeline and OGW. As a result, the currents in Eq. (16) depend on a unique forcing field E0,z

through Eq. (17). Referring to Fig. 2(b), we now want to find the conditions under which the sum of
the currents defined in Eq. (16) is equal to zero, in order to reproduce the real physical behaviour of
the considered system. That is, we want to find the field E0,z that verifies the condition:

S (E0,z) = Isoil (E0,z) + Ip (E0,z) + IOGW (E0,z) = 0. (18)
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Figure 2. (a) Imperfect coating and earthing, (b) perfect coating and earthing.



44 Cristofolini, Popoli, and Sandrolini

Given the linearity of the problem, the function S = Re[S] + jIm[S] is a linear function of the field
E0,z = Re[E0,z]+jIm[E0,z] and can be conveniently expanded in a Taylor first degree polynomial centred
on a generic E∗

0,z:{
Re[S (E0,z)]
Im[S (E0,z)]

}
=

{
Re[S

(
E∗

0,z

)
]

Im[S
(
E∗

0,z

)
]

}
+ [B]

{
Re[E0,z] − Re[E∗

0,z]
Im[E0,z] − Im[E∗

0,z]

}
, (19)

where [B] the Jacobian matrix:

[B] =

⎡
⎢⎢⎣

∂Re[S]
∂Re[E0,z]

∂Re[S]
∂Im[E0,z]

∂Im[S]
∂Re[E0,z]

∂Im[S]
∂Im[E0,z)

⎤
⎥⎥⎦ . (20)

Expression (19) is used to find the field E′
0,z satisfying Eq. (18). Indeed, given an initial guess E∗

0,z,
the field E′

0,z can be found by equating the expansion in Eq. (19) to zero:{
Re[E′

0,z]
Im[E′

0,z]

}
=

{
Re[E∗

0,z]
Im[E∗

0,z]

}
− [B]−1

{
Re[S

(
E∗

0,z

)
]

Im[S
(
E∗

0,z

)
]

}
. (21)

Hence, the procedure to solve the problem is articulated as follows:

(i) a first guess E∗
0,z is chosen, and the forcing current density J0,z is found using Eq. (17) over

the calculation domain. The system in Eq. (14) is then solved, and the quantity S(E∗
0,z) can be

evaluated through Eqs. (16) and (18);
(ii) the elements in the Jacobian matrix are numerically computed by perturbing in turn the real

and imaginary parts of the initial guess E∗
0,z with a small quantity and finding the corresponding

variation of S through the method described in the previous step;
(iii) the field E′

0,z is found using Eq. (21).

3. RESULTS AND DISCUSSION

In order to perform a comparison between the circuital and 2D FEM approaches, the current on the
pipeline was computed for various different physical configurations using the two corresponding proposed
methods. Those configurations consisted of three main cases, which correspond to three different
positions of the pipeline. In the first one (A) the pipeline is located under the center of the power
line, buried in the soil at a depth of 2 m. Then, the other two configurations (B) and (C) were obtained
positioning the pipeline at 8 m and 18 m respectively from the center of the power line, without changing
its depth. For each of the three pipeline positions, three simulations were performed, as depicted in
Fig. 3:

(i) three phase system, single circuit without OGW;
(ii) three phase system, single circuit with OGW; hOGW = 12.185 m
(iii) three phase system, single circuit with OGW. hOGW = 15.185 m

The three configurations considered and the coordinates of the conductors are shown in Fig. 3. The
electrical conductivity σ of the line conductors and OGW has been set equal to 5.9·107 S/m, whereas for
the pipeline and soil σp = 5·106 S/m and σsoil = 2·10−2 S/m are chosen. The radii of the line conductors
and OGW have been set respectively equal to 20 mm and 16 mm. The pipeline has been modeled as a
hollow ferromagnetic (μr = 1800) conductor, with an external radius of 25 cm and a thickness of 2 cm.

Concerning the FEM code, as stated in Section 2.2 the physical domain has to be discretized.
For this purpose, a 78791 nodes, 157420 triangles mesh was used. The mesh boundary consists of a
circumference of radius 600 m, upon which the normal component of the magnetic flux density is set
to zero by enforcing the boundary condition Az = 0. For the regions corresponding to the air and
the soil surrounding the power line and the pipeline respectively, a non-structured mesh was employed.
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Figure 4. Distribution of |Jz| through (a) the pipeline and (b) the the soil.

Aiming to increase the accuracy on the regions subjected to the skin effect, the external part of the
metallic conductors has been represented instead with a structured mesh. As an example, Fig. 4(a)
shows the current density distribution on the pipeline cross section. As can be noticed, in order to
ensure a good level of confidence in the results, the pipeline was meshed using 30 divisions in the radial
direction. In Fig. 4(b) the distribution of the currents flowing through the soil surrounding the pipeline
is depicted. It is also interesting to note how the distribution of the magnetic field lines surrounding
the pipeline is modified by Ip. The various FEM simulations were run imposing for the line conductors
J0-1 = 1 · 108 = /0◦A, J0−2 = 1 · 108/−120◦A and J0−3 = 1 · 108/120◦A respectively, which corresponds
through Eq. (17) to a three-phase balanced system of voltages. Unlike the circuital method, in the 2D
FEM approach the absence of the weak coupling hypothesis causes every line current to be affected by
the the other conductor’s currents. Therefore, for each different physical configuration, the line currents
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Table 1. Case A — xp = 0m.

Current [A] I — no OGW II — OGW 12.185 m III — OGW 15.185 m
I1 5801.94/−86.44◦ 5943.14/−86.34◦ 5847.74/−86.39◦

I2 5804.05/153.5◦ 5727.63/154.2◦ 5784.68/153.7◦

I3 5805.32/33.60◦ 5761.65/32.90◦ 5795.76/33.34◦

IOGWCar
- 527.175/89.42◦ 206.944/93.45◦

IOGWFEM
- 583.104/91.42◦ 248.784/94.77◦

IpCar
67.0717/−70.03◦ 131.823/−86.68◦ 97.8112/−76.99◦

IpFEM
79.2456/−53.68◦ 140.307/−93.68◦ 103.238/−76.39◦

Table 2. Case B — xp = 8m.

Current [A] I — no OGW II — OGW 12.185 m III — OGW 15.185 m
I1 5774.91/−86.44◦ 5943.59/−86.30◦ 5848.09/−86.35◦

I2 5783.11/153.4◦ 5721.97/154.3◦ 5779.05/153.7◦

I3 5791.09/33.60◦ 5765.53/32.85◦ 5800.12/−33.30◦

IOGWCar
- 530.321/90.20◦ 209.092/95.24◦

IOGWFEM
- 572.824/90.85◦ 240.286/93.36◦

IpCar
65.1739/−103.7◦ 126.913/−104.3◦ 91.0675/−101.0◦

IpFEM
65.4451/−77.18◦ 143.465/−110.9◦ 100.001/−101.3◦

Table 3. Case C — xp = 18 m.

Current [A] I — no OGW II — OGW 12.185 m III — OGW 15.185 m
I1 5807.51/−86.39◦ 5948.06/−86.32◦ 5851.71/−86.35◦

I2 5794.57/153.5◦ 5720.95/154.3◦ 5776.52/153.7◦

I3 5808.25/33.51◦ 5759.24/32.80◦ 5797.46/33.26◦

IOGWCar
- 540.438/89.86◦ 215.530/95.17◦

IOGWFEM
- 562.485/91.37◦ 232.824/94.30◦

IpCar
41.2048/−134.0◦ 99.1569/−112.5◦ 67.1861/−112.5◦

IpFEM
39.5672/−102.4◦ 122.538/−122.6◦ 75.6333/−115.3◦

computed with the 2D FEM have been used as the imposed line currents of the circuital method in
order to have the same starting line currents in the two codes. In Tables 1, 2 and 3, the results for the
three previously described positions of the pipeline are shown.

As can be observed, the current induced on the pipeline increases when the OGW is present. This
effect has also been reported in [1]. This is because in the three-phase overhead line, the magnetic field
generated by a current tends is cancelled by the other two phases. Thus, the field produced by the
power lines decreases more rapidly than the one generated by the OGW. For this reason, even if the
current carried by the OGW is smaller than the currents flowing through the overhead power line, it is
capable of producing significant effects on the pipeline.

According to these results, the agreement between the two approaches is consistent. In particular,
some very close results can be noticed for the (B) and (C) cases, i.e., when the pipeline is not located
directly under the power line.
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It is also worth highlighting that once an OGW is included in the configuration, the difference
between the two approaches increases. However, the described discrepancy becomes narrower when the
OGW is moved farther from the other conductors. This fact shows that the computation of the currents
on the OGW is somehow a critical task in this context (position III).

For this reason, some interesting conclusions can be drawn by looking at the computed currents on
the pipeline (using the circuital method) if IOGW is forced on the value computed using the 2D FEM
approach. Actually, running the circuital code with imposed OGW currents is not a critical choice, as
it just corresponds to a situation where those currents are being measured, and thus used as an input
value for the codes.

The following three tables summarize the results. The input line current values used to obtain the
results reported in Table 4, Table 5 and Table 6 are the ones that can be found in columns corresponding
to II and III of Table 1, Table 2 and Table 3, respectively. As can be seen, when using the circuital
method with imposed OGW current, the computed pipeline current is higher and closer to the FEM
result, than that obtained by utilising the Carson’s formulae for evaluating the OGW current. This
may point out that the weak interaction assumption underlying the Carson’s formulae does not allow,
in this case, a correct estimate of the current flowing through the OGW.

Table 4. Case D — xp = 0m, IOGW = IOGWFEM
.

Current [A] II — OGW 12.185 m III — OGW 15.185 m

IOGW 583.104/91.42◦ 248.784/94.77◦

IpCar
151.198/−83.71◦ 111.895/−76.44◦

IpFEM
140.307/−93.68◦ 103.238/−76.39◦

Table 5. Case E — xp = 8 m, IOGW = IOGWFEM
.

Current [A] II — OGW 12.185 m III — OGW 15.185 m

IOGW 572.824/90.85◦ 240.286/93.36◦

IpCar
139.715/−101.4◦ 101.381/−100.2◦

IpFEM
143.465/−110.9◦ 100.001/−101.3◦

Table 6. Case F — xp = 18 m, IOGW = IOGWFEM
.

Current [A] II — OGW 12.185 m III — OGW 15.185 m

IOGW 562.485/91.37◦ 232.824/94.30◦

IpCar
103.271/−108.6◦ 72.1512/−111.0◦

IpFEM
122.538/−122.6◦ 75.6333/−115.3◦

4. CONCLUSIONS

In this work, several configurations of a buried metallic pipeline located close to an overhead power
line are analysed, using both a circuital and a 2D FEM-based approaches. The latter was embedded
with a procedure dedicated to reproducing the same physical conditions assumed by Carson. The
currents flowing through the pipeline and the possible OGW are indeed forced to take the meshed soil
as a return path. This is consistent with Carson’s approach, based on computing the impedances of
earth-return conductors. The results obtained using the two methods are in good agreement, especially
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when dealing with very simple configurations. Whenever an OGW is added, or some more critical
positions of the pipeline with respect to the overhead power line are considered, the differences of the two
approaches increase, though not excessively. Overall, this work shows that the proposed methodology
for enforcing the return of the currents through the soil in a 2D FEM code performs consistently with
the Carson-based approach. However, as the FEM approach does not require some of the simplifying
hypotheses adopted by Carson, its applicability is broader. Therefore, its use can be extended for
physical configurations involving higher complexity without the computational burden presented by a
3D code.
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