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Time Decomposition Method for the General Transient Simulation

of Low-Frequency Electromagnetics
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Abstract—This paper describes a highly robust and efficient parallel computing method for the
transient simulation of low-frequency electromagnetics with nonlinear materials and/or permanent
magnets. In this method, time subdivisions are introduced to control the memory usage and nonlinear
convergence. A direct block triangular matrix solver is applied to solve the formulated block matrix
for each subdivision. This method has been implemented using the Message Passing Interface (MPI)
for distributed memory parallel processing. Depending on the number of available MPI processes and
physical memory, the entire nonlinear transient simulation can be divided into several subdivisions along
the time-axis such that each MPI process handles only the computation for one time-step. Application
examples are presented to demonstrate that this method can achieve excellent scalability of speedup.

1. INTRODUCTION

Electric machines, power and electronic transformers can be better designed and analyzed using transient
electromagnetic field simulation. This choice allows engineers to analyze the dynamic system including
the nonlinear materials, permanent magnets and induced eddy currents under a variety of conditions,
under various excitations including the pulsed waveform. This procedure is usually very time-consuming
since it requires Nt · Ne matrix solutions, where Nt is the number of time steps and Ne is the average
number of nonlinear iterations [1–6]. Provided that an algorithm (or method) can be made parallel,
parallel computing can cut down simulation time for a nonlinear transient problem. For example,
parallel computing can be applied to the matrix assembling and matrix solving at each time step [7].
However, it is not always possible to make full use of all the parallel cores because of limited parallel
scalability. In order to gain better parallel scalability, an approach based on an iterative solver with
incomplete LU factorizations is proposed in [8], but it is not very robust for real engineering applications
because the iterative solver may fail to converge for a given accuracy. Also, incomplete LU factorizations
have the limitations of potential instabilities and lack of algorithmic scalability [9]. Based on a block
direct solver, we proposed a highly robust and scalable parallel computing method, called the time
decomposition method (TDM) for general transient simulation of low-frequency electromagnetics [10].
In this paper, we will discuss this scheme extensively and demonstrate its effectiveness by presenting
several application examples.

2. TIME DECOMPOSITION METHOD

2.1. Fundamental Equations

In low-frequency applications, the finite element method discretization of Maxwell equations with
nonlinear materials produces the following semi-discrete form of equations:

S (x, t)x (t) +
d

dt
[T (x, t) x (t)] = f (x, t) +

d

dt
[w (x, t)] (1)
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In low-frequency electromagnetics, two typical formulations are often used, the A-ϕ and T-
Ω formulations, respectively [11]. In the A-ϕ formulation, T (x, t) is a constant, so Eq. (1) can be
simplified to

S (x, t)x (t) + T
d

dt
x (t) = f (x, t) +

d

dt
[w (x, t)] (2)

Equation (2) is similar to the formulation presented in [8]. However, in the T-Ω formulations, T (x, t)
is dependent on the solution vector x (t) because of the non-linearity, so Eq. (1) must be used. In this
paper, all simulations have been performed based on T-Ω formulations. Applying the backward Euler
method and the Newton-Raphson method to Eq. (1), we have the following linearized matrix equations,
written in the form of a block matrix

⎡
⎢⎢⎢⎢⎢⎢⎣

K1 0 · · · 0 0
M1 K2 · · · 0 0

0 M2
. . .

...
...

...
...

. . . Kn−1 0
0 0 · · · Mn−1 Kn

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

Δx1

Δx2
...

Δxn−1

Δxn

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

b1

b2
...

bn−1

bn

⎤
⎥⎥⎥⎥⎥⎦

(3)

with each submatrix corresponding to a single time-step. In the above, Ki = ΔtS′
i + T ′

i and Mi = −T ′
i

are the Jacobian matrices; Δxi is the increment of the solution during nonlinear iterations; bi is the
residual during nonlinear iterations. =

2.2. Subdivisions

Theoretically, either a general purpose direct solver [12] or an iterative solver [13, 14] can be applied to
solve Eq. (3). However, for real engineering problems, this might be either very time-consuming and/or
memory prohibitive. In order to tackle this issue, the entire nonlinear transient simulation is divided
into several subdivisions along the time-axis such that a smaller block matrix needs to be solved at a
time. One example is shown in Fig. 1. Subdivision 1 handles the computation for time step 1 to m and
subdivision 2 handles the computation for time step m + 1 to 2m. After solving one subdivision, the
solution of the final time step of current subdivision is used as the initial conditions to solve the next
subdivision.

Figure 1. Schematic of subdivisions (the solution of the final time step of subdivision 1 is used as the
initial conditions to solve the subdivision 2).
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2.3. Direct Block Triangular Matrix Solver

For each subdivision, block matrixes, i.e.,⎡
⎢⎢⎢⎢⎢⎣

K1 0 · · · 0 0
M1 K2 · · · 0 0

0 M2
. . .

...
...

...
...

. . . Km−1 0
0 0 · · · Mm−1 Km

⎤
⎥⎥⎥⎥⎥⎦

(4)

must be assembled and solved at each Newton-Raphson iteration. Note that m is usually either smaller
or much smaller than n. Since Eq. (4) is a lower block triangular matrix, the most efficient and robust
solver is a direct block triangle matrix solver. The basic procedure of the direct block triangle matrix
solver is presented in Fig. 2. It includes two parts, submatrix LU factorization and block forward
substitutions. The first part, submatrix LU factorization, can be done independently in parallel while
the second part, block forward substitutions, is essentially sequential. In terms of computational time,
the first part is dominant over the second part, so this direct block triangle matrix solver naturally
facilitates parallel computing.

Figure 2. Direct block triangular matrix solver.

2.4. Distributed Memory Parallel

There are two fundamental approaches to parallel computing: distributed memory parallel and shared
memory parallel. This proposed method can be naturally implemented as distributed memory parallel
using the Message Passing Interface (MPI) [15]. Another advantage of the distributed memory parallel
is that it is not limited to one computer. Theoretically, for a given hardware resource, there are several
ways to do subdivisions. The most efficient way is that the available cores should be sufficiently used
and in the meantime, each MPI process handles only the computation of one time-step. In this way,
the nonlinear system to be solved is minimized such that better memory usage is achieved. It also
gives a better nonlinear convergence since the larger the nonlinear system the more difficult it is to
converge. The FEM matrix assembling and the post processing for each subdivision can also be done in
distributed memory parallel framework. The basic scheme of the distributed memory parallel approach
at each subdivision is presented in Fig. 3.

3. APPLICATION EXAMPLES

The proposed TDM has been applied to the transient simulations of different types of electrical machines,
transformers and other magnetic devices. All the computations of the following three application
examples were performed on a computer cluster with 16 nodes, in which each node consists of 28
cores and 512 GB RAM.



4 He et al.

Figure 3. The distributed memory parallel approach based on MPI for one subdivision.

3.1. Permanent Magnet Motor

Figure 4 shows a three-phase permanent motor with nonlinear-magnetic materials for both rotor and
stator. The speed is 1800 RPM and driven frequency is 60 Hz. The induced eddy-current effect is
considered in magnet. Fig. 5 shows the input three-phase voltages. The number of mesh elements is
124148. The total number of time steps is 256. Table 1 presents the parallel computation performance of
this permanent magnet motor. The speedup is calculated against the sequential case without distributed
parallel computing denoted as one MPI process. For 2 MPI processes, there is no speedup for this case.
This is because for the sequential case, the solution at the previous time step can be used to estimate
the initial nonlinear operating point for the first nonlinear iteration of the next time step. This speeds
up the convergence for the sequential case but for the TDM parallel case this scheme is no longer
applicable. However, with the increase of the number of MPI processes, the parallel speedup is obvious.
The speedup for 256 MPI processes is 13.0.

Figure 4. Permanent magnet motor.
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Figure 5. The input three-phase voltage sources.

Table 1. Performance of TDM for permanent magnet motor.

Number of MPI
processes

Number of
subdivisions

Simulation time
(hours:minutes:seconds)

Speedup

1 256 (9:19:45) 1
2 128 (11:51:31) 0.79
4 64 (06:32:48) 1.43
8 32 (04:28:46) 2.08
16 16 (02:42:21) 3.45
32 8 (01:57:3) 4.78
64 4 (01:18:35) 7.12
128 2 (00:59:11) 9.46
256 1 (00:43:12) 13.0

3.2. Double Cage Induction Motor

Figure 6 shows an 8-pole double cage induction motor. The slip is 0.0334. The speed is 724.979 RPM
and driven frequency is 50 Hz. The induced eddy-current effect is considered in the copper damping
bar. Fig. 7 shows the input three-phases voltages. The total number of time steps is 256. The number
of mesh elements is 480942. Table 2 presents the parallel efficiency. In Table 2, the speedup for 256
MPI processes is 26.7.

3.3. Planar Transformer

Figure 8 shows a planar transformer with a nonlinear magnetic core. Fig. 9 shows the input voltage with
the pulsed waveform. The induced eddy-current effect is considered in the multi-turn planar winding.
The traditional time stepping method is very time-consuming due to large time constants and large
matrix size. The total number of time steps is 256. The number of mesh elements is 875927. Table 3
gives the parallel efficiency. The speedup for 256 MPI processes is 15.4.
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Figure 6. Double cage induction motor.

Figure 7. The input three-phase voltage sources.

Table 2. Performance of TDM for double cage induction motor.

Number of MPI
processes

Number of
subdivisions

Simulation time
(hours:minutes:seconds)

Speedup

1 256 (104:36:21) 1
2 128 (166:28:46) 0.63
4 64 (90:52:05) 1.15
8 32 (47:36:23) 2.20
16 16 (29:37:52) 3.53
32 8 (16:17:27) 6.42
64 4 (9:08:58) 11.4
128 2 (6:22:14) 16.4
256 1 (3:55:25) 26.7
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Figure 8. Planar transformer.

Figure 9. The input voltage with pulsed waveform.

Table 3. Performance of TDM for planar transformer.

Number of MPI
processes

Number of
subdivisions

Simulation time
(hours:minutes:seconds)

Speedup

1 256 (34:28:28) 1
2 128 (25:04:44) 1.37
4 64 (13:08:30) 2.62
8 32 (7:30:51) 4.59
16 16 (5:34:05) 6.19
32 8 (3:20:55) 10.3
64 4 (3:43:50) 9.24
128 2 (3:25:28) 10.1
256 1 (2:14:31) 15.4

4. CONCLUSIONS

A highly robust and efficient parallel computing method for the transient simulation of low-frequency
electromagnetics is proposed. In this method, time subdivisions are introduced to control the memory
usage and nonlinear convergence, and a direct block triangular matrix solver is applied to solve the
formulated block matrix for each subdivision. Application examples are presented to demonstrate that
this method can achieve more than 10 times speedup.
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