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Fuzzy Logic Biased Optimal Dipole-Linear Antenna Array:
An Improved Array with Better Tradeoff between

Performance Parameters

Saumendra K. Mohanty1, *, Prativa Swain2, and Biswa B. Mangaraj2

Abstract—Linear antenna array design is a multi-parameter, multi-objective, and nonlinear problem
which requires optimal design parameters to get desired performance. To achieve desired performance
through multi-objective optimization process, a compromise among desired objectives is essential. In
such a situation to make a rational decision on global optimization to avoid arbitrary compromise to
any objective, we introduced two fuzzy logic biased/fuzzy biased optimization techniques. We proposed
fuzzy logic biased biogeography based optimization algorithm and fuzzy logic biased gravitational search
optimization algorithm to solve M -element nonlinear linear antenna array design problem. In our design
problem, we have considered a 16-element dipole-linear antenna array. The optimal design problem
includes thirty one design parameters (sixteen lengths, and fifteen spacings) and four performance
parameters such as directivity, front to maximum side-lobe level, half power beamwidth, and front to
back ratio. The result shows that applications of fuzzy logic biased optimizations are more efficient for
solving multi objective problem. While analysing the linear antenna array, mutual coupling is taken
into account for numerical analysis using method of moment.

1. INTRODUCTION

For long distant communication, it is required to design an antenna with high directivity
characteristics [1]. A single element antenna has very few and an antenna array has many input/design
parameters such as length of antenna elements (Lm; m = 1, 2, . . . ,M), diameter of the elements
(dm; m = 1, 2, . . . ,M), spacing between two neighbour elements (Sm(m+1); m = 1, 2, . . . , (M − 1)),
amplitude (Vin) and phase (∅in) of the excitation and operating frequency (f0), and similarly some of the
output/performance parameters such as directivity (D), front to side-lobe level (FSLL), 3 dB beamwidth
in E-plane (E3D BW), and front to back ration in E-plane (EFTOB). The desired performance
parameters can be achieved by a set of optimal design parameters. In this paper a 16-element linear
antenna array (LAA) is considered for optimal design to achieve some desired performance parameters.

Classical optimization algorithms do not provide suitable optimal solution for any design problem.
Hence, to solve these problems other optimization techniques need to be considered. After several
years of research, there has been a growing demand in heuristic optimization algorithms inspired
by behaviour of birds, animals, insects, and some algorithms inspired by behaviour of natural and
biological phenomenon as well. It is shown by many researchers that these algorithms are well
suitable for solving optimization problems and ultimately provide desired designs. There are various
heuristic optimization algorithms, for example genetic algorithm (GA) [2], particle swarm optimization
(PSO) [3, 4], comprehensive learning PSO (CLPSO) [5], bacteria foraging algorithm (BFA) [6, 7],
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evolution algorithm (EA) [8], differential EA (DEA) [9], and matrix pencil method (MPM) [9], and
many more have been used in various kinds of antenna optimization for several years. However, there
is no particular algorithm that provides suitable solution to all antenna optimization problems. Hence,
searching for a new algorithm is now a matter of interest. After several years of frequent use, new and
different optimization algorithms, such as biogeography based optimization algorithm (BBOA) [11, 12],
and gravitational search optimization algorithm (GSOA) [13, 14], are developed in the search for most
efficient algorithms.

The ideas on optimization of design parameters to obtain desired performance parameters by many
researchers are available in literatures. Mainly we have reviewed some of the research work related to
application of some of the heuristic algorithms in LAA optimizations. Mahanti et al. [2] applied real
coded GA with elitist strategy for synthesis of thinned LAA to obtain maximum side-lobe level equal
to or below a fixed level and percentage of thinning equal to or below fixed value. Thinned LAA can
be obtained by removing the end elements from either side of the array. They observed that result
obtained by removing the end element of array being switched off is better than that without removing
the end element of array being switched off. They concluded that in future this can be applied to
synthesize a planar array. Mazzarella and Panariello [15] studied that keeping a λ/2 inter-element
separation can equivalently work as thinning of a large conformal array. Orchard and Elliott [16]
synthesized an equispaced linear array that produced filled-in patterns, which was achieved by applying
cosec2θ × cos θ type pattern. In [17], Elmikati and Elsohly presented successive projection iterative
method to synthesize a nonuniform linear array. Sotirios et al. [5] applied CLPSO for synthesis of
unequally spaced LAA to minimize side-lobe level and desired null level at specific direction. The
results obtained by using CLPSO are compared to the existing array designs in the available literature,
and they found that CLPSO performs better than the common PSO algorithm and real coded genetic
algorithm. Mandal et al. [9] applied modified differential algorithm for designing an LAA to obtain
optimal current excitation amplitude and phase distribution for each element, so that it can produce
desired shaped beam radiation pattern as the user demand. The result obtained by using modified
differential evolution algorithm is compared with adaptive differential evolution algorithm and CLPSO.
This comparison indicates that modified differential evolution algorithm is more efficient than adaptive
differential evolution algorithm and CLPSO. Liu et al. [10] applied MPM for synthesis of a nonuniform
LAA design with minimum number of elements to obtain both optimal excitation amplitude and element
position, so that it can produce desired radiation pattern. First of all, the designer samples desired
radiation pattern to obtain discrete radiation pattern data set, then arranges discrete radiation pattern
data set in the form of Henkel matrix and performs singular value decomposition (SVD) of Henkel
matrix. SVD is used to obtain lower rank approximation of Henkel matrix. Lower rank matrix data
correspond to the approximated radiation pattern that consists of a minimum number of elements. After
that, the designer determines the minimum number of elements that is required in an approximated
pattern before excitation amplitude, and element positions are solved. Then MPM is used to rearrange
the excitation amplitude and element position for new antenna array elements with minimum number
of elements. The results obtained by using minimum number of elements are better than the original
number of elements in an antenna array. They observe that their proposed method is well suitable for
the design of LAA with narrow beamwidth and low side-lobe level. They also conclude that in future
this can be applied to synthesis of planar array. After going through all the literature discussed above,
we have not found a set of optimal solution for each of the problems considered. In any multi-objective
optimization problem there should be a set of multiple solutions. The problems found in such literatures
are overcome in this paper where we provide a single optimal solution.

These two new techniques, BBOA and GSOA, are dissimilar in approach. Many researchers
have found their applications in various kinds of optimization problems. They demand that these
two algorithms are strong enough to provide global solution to a problem. However, demanding a
global solution to a particular multi-objective problem is not at all possible without compromising
some objectives or fixing any criteria. In this regard, involving fuzzy logic biased optimization will be
definitely a big help to provide global solution as per its systematic application procedure. In single
optimization problem fuzzy logic biased optimization is not at all desired [18].

Our LAA design problem considered in this paper is a multi-parameter, multi-objective and
nonlinear optimization problem with contradictory objectives. A multi-objective problem is usually
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defined as a linear combination of weighted sum of different objectives. The objectives are to maximize
D, to minimize E3D BW, to maximize FSLL, and to maximize EFTOB. These performance parameters
are nonlinear function of all the design parameters of LAA, where all the design parameters are
independent. In such a situation during the optimization process, a set of unique optimal solutions
are obtained, where all the performance parameters are different. Fuzzy biased is used to identify only
one unique solution which is the best compromise solution out of a group of optimal solutions obtained
using BBOA and GSOA. In directive antenna design, it is always desirable to achieve both narrow
beamwidth and low side-lobe level. The radiation pattern with narrow beamwidth, high directivity
does not necessarily produce low side-lobe level. The radiation pattern with low side-lobe level slightly
increases the beamwidth, and it provides low value of directivity. In these situations, to obtain the
best compromise solution among the performance parameters, it is appropriate to use a fuzzy logic for
solving any optimization or decision making problems. In this regard, we have proposed two fuzzy logic
biased optimization techniques, namely fuzzy logic biased biogeography based optimization algorithm
(FBBOA) and fuzzy logic biased gravitational search optimization algorithm (FGSOA). In addition,
also a comparative study is done between these two proposed optimization techniques, by placing them
both on the same platform considering the same problem in antenna array optimization.

2. DESIGN PROBLEM OF LAA

An M -element LAA has M number of antenna elements with a (M − 1) number of spacings. Thus,
LAA has (2M − 1) variables as design parameters that determine antenna performance characteristics.
Hence the other parameters such as dm, f0, Vin and ∅in are kept constant for simplicity. The design
variables of an M -element LAA are represented as X, which is a function of [L1, L2, . . . , Lm, . . . , LM ,
S12, S23, . . . , Sm(m+1)], where Lm is the length of mth antenna elements, and Sm(m+1) is the spacing
between the mth and (m + 1)th antenna elements. Here we have taken both the parameters (Lms and
Sm(m+1)) which are not necessarily equal. This nonuniform length and spacing are preferred to achieve
better performances. The structure of 16-element (M = 16) LAA is considered for optimization, as
shown in Figure 1.
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Figure 1. 16-element linear antenna array with non-uniform lengths and spacings.

When the antenna elements in an array are in the neighbourhood of each other, the directional
characteristics such as directivity and radiation pattern in E and H planes of an excited antenna
element are influenced by the presence of other elements. This effect is known as mutual coupling.
When the spacing between two neighbouring elements is large (λ/2 or more), the effect of mutual
coupling is insignificant, but when the spacing between two neighbouring elements is small, the effect of
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mutual coupling is unavoidable [1]. The effect of mutual coupling severely influences the performance
parameters of LAA.

The mathematical analysis of the LAA is based on Pocklington’s integral equations using method
of moment [1]. The equation of line source current and z-component of total electric field in antenna
element can be written as in Eq. (1). The point with coordinate (x, y, z) is referred as the observation
point, and the point with coordinate (x′, y′, z′) is referred as source point.∫ L/2

−L/2
Iz(z′) ×

[(
∂2

∂z2 + k2

)
e−jkR

R

]
dz′ = j4πωε0E

t
z (1)

where R = ((x − x)2 + (y − y)2 + (z − z)2)
1
2 is the distance between center of each segment of the

antenna element and centre of each segment of the other antenna elements. L = length of antenna
element, k = ω

√
με = wave number, ε = permittivity of medium, I(z′) = line source current fed at

center, ω = angular frequency, ε0 = permittivity of free space, Et
z = z-component of total electric

field. Total electric field is obtained by summing the field contribution from each of the M elements [1]
considering mutual coupling into account is given by,

Etotal =
jωμ

R
e−jkR sin θ

∑M

m=1

{
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∑P

p=1
Imp

[
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Z+
+

sin(Z−)
Z−

]}
Lm

2
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where μ = Permeability of medium, M = Total number of elements in array xm, and ym presents the
position of the mth element.

z+ =
[
(2p − 1) π

Lm
+ k cos θ

]
× Lm

2
(3)

z− =
[
(2p − 1)π

Lm
− k cos θ

]
× Lm

2
(4)

Imp represents the complex current coefficient of mode p on element m, and Lm represents the
corresponding length of the mth element.

3. FUZZY LOGIC: ITS IMPORTANCE IN OPTIMIZATION AND LAA DESIGN

Binary or Boolean Logic (BL) is straight forward therefore easy to understand, which has only two
distinct values 1 (one) or 0 (zero), i.e., true or false. This logic is not suitable for various modes of
human reasoning. However, in the case of fuzzy logic (FL) everything including truth is a matter of
degree, therefore quite helpful for human reasoning. It is observed that most of the modes of human
reasoning and especially common sense reasoning are approximate in nature. The FL is very much
suitable for various modes of such reasoning. In fact, FL is a superset of conventional BL that has
been extended to handle partial truth: truth values between “completely true” and “completely false”.
Zadeh [19] has explained FL in a simple manner.

As per Zadeh in [19]

• Exact reasoning is viewed as a limiting case of approximate reasoning.
• Everything is a matter of degree.
• Any logical system can be interpreted using FL.
• Knowledge is interpreted as a collection of elastic or equivalently, fuzzy constant on collection of

variables.
• Inference is viewed as a process of propagation of elastic constraints.

The third statement defines BL as a subset of FL. Further, considering x and y two variable
parameters the standard definitions in FL as suggested by Lofti are:

i) Negate (Negation Criterion): truth (not x) = 1− truth (x).
ii) Intersection (Minimum Criterion): truth (x and y) = minimum (truth (x), truth (y)).
iii) Union (maximum Criterion): truth (x or y) = maximum (truth (x), truth (y)).
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In single objective optimization problem the fuzzy logic is not at all necessary. However, in the case of
the design of a 16-element LAA to achieve four objectives, a multi-objective optimization problem
highly requires fuzzy logic. The four objectives have to finally provide four independent desired
performance parameters. Here, each of the performance parameters is a nonlinear function of all
the design parameters. Therefore, the design problem is multiple parameters, nonlinear, and multi-
objective in nature. In such a situation achieving the four desired objectives simultaneously is far
difficult to reach. During optimization process when one desired objective is achieved other desired
objectives are not necessarily achieved. Hence, demanding global optimization using any single or
multiple (hybrid) optimization technique is just imaginary. To achieve all the desired performance
parameters through multi-objective optimization process, a compromise among desired objectives is
essential. In such a situation to make a rational decision on global optimization, which is uncertain for
optimization techniques, the fuzzy logic is the ultimate choice [18].

Before the application of the fuzzy logic to the optimization problem, first of all the multi-objective
optimization function is defined. Each objective function in the multi-objective function is associated
with a weight. Hence, there are four weights corresponding to our four objectives. The sum of the four
values corresponding to the four weights equals 1 (one). Using optimization algorithm and a unique
set of weights, the optimization process is conducted for 20 iterations, and at the end of the iteration
optimal design parameters are recorded. Similarly, using the same optimization algorithm with another
unique set of weights the optimization is conducted for another 20 iterations, and at the end of iteration
another set of optimal design parameters are recorded. After all the possible combinations of weights
are over, the fuzzy logic is applied.

Considering the imprecise nature of the various optimal sets of the design parameters, it is natural to
assume that the decision of the optimization process may have fuzzy or impossible goals for the objective
functions. The fuzzy sets are defined by equations called membership functions. These functions
represent the degree of membership in some fuzzy sets using values from 0 to 1. The membership
value 0 indicates the incompatibility with the sets, while 1 means full compatibility. By taking account
of minimum and maximum values of each objective function together with the rate of increase of
membership satisfaction, the decision of optimization process must detect membership function γ (Fi)
in a subjective manner. Hence it is assumed that γ (Fi) is strictly monotonically decreasing and
continuous function defined as

γ (Fi) =

⎧⎪⎪⎨
⎪⎪⎩

1; Fi ≤ Fmin
i

Fmax
i − Fi

Fmax
i − Fmin

i

; Fmin
i < Fi < Fmax

i

0; Fi ≥ Fmax
i

(5)

The values of membership function suggest (in the scale from 0 to 1) that a non-inferior (non-dominated)
solution has satisfied the Fi objective. The sum of membership function values γ (Fi), i = 1, 2, 3, and
4 for all the objectives can be computed in order to measure the accomplishment of each solution
in satisfying the objectives. The accomplishment of each non-dominated solution can be rated with
respect to all the j non-dominated solutions by normalizing its accomplishment over the sum of the
accomplishment of j non-dominated solutions as follows:

γj
D =

[∑4

i=1
γ

(
F j

i

)]
[∑N

j=1

∑4

i=1
γ

(
F j

i

)] (6)

The function γD in Eq. (6) can be treated as a membership function for non-dominated solutions in
a fuzzy set and represented as fuzzy cardinal priority by ranking the non-dominated solutions. The
solution that attains the maximum membership γj

D in the fuzzy set so obtained can be chosen as the
best solution or the one having the highest cardinal priority ranking.

Max
{

γj
D; j = 1, 2, . . . , N

}
(7)

Equation (7) ultimately provides the global solution.
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4. FORMULATION OF MULTI-OBJECTIVE FUNCTION

The main aim of a designer is to develop an antenna that meets some desired performance parameters in
a particular application. The quality of a design depends on the objective function. When an objective
function is considered for a optimization process, first of all one has to decide whether it is to be
minimized or maximized. If the objective function is decided to be minimized, then to achieve the best
design, the objective function should be as small as possible. Each of the performance parameters is a
function of all the design parameters. By considering all the performance parameters and their desired
values, a suitable multi-objective function is formulated as follows:

F1 = a × abs (Dmax − D) + b × abs (E3D BWmin − E3D BW) + c × abs (FSLLmin − FSLL)
+d × abs(EFTOBmax − EFTOB) (8)

where D, E3D BW, FSLL, and EFTOB are function of X, and X =f{L1, L2, . . . , Lm, . . . , LM , d12, d23,
. . . , dm(m+1), d0, f0, Vin, ∅in}.

The desired performance parameters are Dmax = 21 dB, E3dBmin = 25 degree, FSLLmin = −21 dB
and EFTOBmax = 2 dB, and performance parameters such as D, E3D BW, and EFTOB are found
by varying design parameters. The scalar constants a, b, c and d are the weight that control the
contribution from each objective to overall objective. This multi-objective function is used for both
BBOA and GSOA.

5. BRIEF THEORY ON BBOA AND ITS ROLE IN LAA DESIGN

Biogeography is the study of geographical distribution of biological organism. Two index variables, a
dependent variable known as high habitant suitability index (HSI) and an independent variable known
as suitability index variables (SIVs), decide evolution of new species, migration of species between
islands and extinction of species. Island with a high HSI can support many species, and island with
a low HSI can support very few species [10]. High HSI islands have low immigration rate δ and high
emigration rate τ simply due to high population, so they are less dynamic. By the same virtue, islands
with low HSI have high immigration rate δ and low emigration rate τ , so they accept more species
from high HSI islands to move to their islands, which may lead to increase in the HSI of islands. In
Figure 2, the immigration rate δ and emigration rate τ are function of number of species in islands.
The immigration curve shows that maximum possible immigration rate to the island is I, when there is
zero species in the island, and maximum number of species that the island can allow is Smax, at which

Figure 2. Species modes of a single island. Figure 3. Illustration of two islands, S1 represents
a relatively poor solution while S2 represents a good
solution.
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immigration rate is zero. The emigration curve shows that emigration rate becomes zero when there is
zero species on the island, and maximum possible emigration rate to the habitat is E, when the island
contains large number of species. As number of species in the island increases, the island becomes more
crowded, and higher number of species are able to migrate from one island to other islands. At S0, the
immigration and emigration rates are equal [12].

The value of immigration rate and emigration rate are given in Equations (9) and (10)

δS = I

(
1 − S

n

)
(9)

τS =
ES

n
(10)

where Smax = n is the maximum number of species, I the maximum possible immigration rate, E the
maximum possible emigration rate, S the number of species, and S0 the equilibrium number of species at
which both immigration and emigration rates are zero. The above biogeography theory can be applied
to BBOA problem. BBO algorithm mainly consists of two processes, namely migration process and
mutation process.

a. Migration Process
In general, each island consists of several parameters, i.e., equivalent to number of design parameters

used in the optimization. Each parameter in the island is considered an SIV. In Figure 3, S1 represents a
low HSI, i.e., island with very few species while S2 represents a high HSI, i.e., island with many species.
The immigration rate δ1 for S1 will be higher than the immigration rate δ2 for S2. The emigration rate
τ1 for S1 will be lower than the emigration rate τ2 for S2. The immigration rate and emigration rate
of each island are calculated probabilistically to share solution features between islands. With island
modification probability Pmod, each island is modified based on the other island. If an island (solution)
Si is selected to be modified, then use its immigration rate δi to decide probabilistically whether or not
to modify each SIV in that island. If each SIV in that island Si one by one is selected to be modified,
then use the emigration rate τj of the other island Sj to decide probabilistically which of the islands
solution features should migrate to island Si [11].

b. Mutation Process
Sudden change in climate of one island or other incidents will cause sudden changes in HSI of that

island. In BBOA algorithm, this situation can be modeled in the form of sudden changes in the value
of SIV and use species count probability Ps to determine mutation rate. Ps indicates the islands that
contain exactly S species (SIV). The probability of each species in that island can be calculated by the
differential equation Ṗs

Ṗs =

⎧⎨
⎩

− (δs + τs)Ps + ˙τs+1Ps+1 S = 0
− (δs + τs)Ps + δs−1Ps−1 + τs−1Ps+1 1 ≤ S ≤ Smax

− (δs + τs)Ps + δs−1Ps−1 S = Smax

(11)

From Figure 3, it is observed that low species at S = 0 and high species at S =Smax both have low
probabilities, but medium species at 1 ≤ S ≤Smax have high probability because they are near the
equilibrium point at E = I.

Each species of the island has its own probabilities. Islands with high HSI or low HSI have relatively
low probability, and those with medium HSI have relatively high probability. If an island has low
probability then this island has high chance to mutate to some other islands. Similarly, if an island has
high probability then this island has less chance to mutate to some other islands. Consequently, islands
with high HSI or low HSI have less chance to develop a better SIV in next generation while islands with
medium HSI have more chance to develop a better SIV in next generation.

The mutation rate m is directly proportional to the solution probability which is given by

m = mmax × (1 − Ps)
Pmax

(12)

where mmax indicates maximum mutation rate.
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5.1. Optimization of LAA Parameters Using BBOA

In BBOA, a set of solution is called population; each solution is represented by an island. All islands
are placed in a search space, each with a dimension equal to number of design parameters used in
optimization. A multi-objective function is defined which can evaluate unique value that defines fitness
of each design with in the search space. The HSI of an island in BBOA is similar to fitness in other
population based optimization algorithms. A good solution is analogous to high HSI islands while
a poor solution is given by low HSI islands. An island with high HSI indicates good designs whose
parameters should not be changed, while an island with poor high HSI indicates poor designs, whose
design parameters need to be changed. Island consists of solution features named SIVs, equivalent to
GA’s genes [11]. The method to generate the next generation in BBOA is migrating the solution features
from one island to another island, and then the mutation is simply performed for the whole population
just as in GA. In an N-dimensional optimization problem, an island is a 1× N array. This array is
defined by Island = [SIV1, SIV2, SIV3, . . . , SIVN ]. In GA terms, this array is called chromosome,
but in BBOA the term island is used for this array. The SIVs or variable values in the island are
represented by floating point numbers. The HSI or cost of the island is found by evaluating the cost
function f at the above given array or islands. Therefore, cost = f (Island) = f (SIV1, SIV2, SIV3,
. . . , SIVN). Then, migration between solutions is applied to share the features between these islands.
To apply the migration process described in previous section, immigration and emigration rates of each
solution or island are evaluated. As discussed above, a good solution has high emigration rate and low
immigration rate while it is opposite for a poor solution. After migration process, mutation process
is probabilistically applied to the island though mutation is not an essential feature to BBOA. The
purpose of mutation is to increase diversity in the population [12].

The pseudo code of any optimization algorithm is highly essential to the development of the soft
code for optimization. The pseudo codes for migration and mutation processes of BBOA are described
as follows [11]:

Pseudo code for migration process in BBOA:

For i = 1: NP
Select island Si with probability proportional to immigration rate δi

If Si is selected
For j = 1: NP
Select other island Sj with probability proportional to emigration rate τj

if island Sj is selected
Randomly select an SIV from island Sj

Replace a randomly selected SIV from island Sj with that selected SIV in the island Si.
end if
end for
end if
end for

Pseudo code for mutation process in BBOA:

For j = 1: length (SIVs)
Use δi and τi to compute the probability Pi

Select SIV Si(j) with probability proportional to Pi.
If Si(j) is selected
Replace Si(j) with a randomly generated SIV
end if
end for

The migration operators in BBOA are similar to recombination approach in GA. Therefore, BBOA
can be applied to those problems to which GA is also applied. The parameter mapping between BBOA
and LAA is essential for understanding the exact implementation of the optimization algorithm and
subsequent optimization mechanism. The mapping in shown below in Table 1.
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Table 1. Mapping of antenna parameters with BBOA.

Terms related to BBOA Terms related to antenna
Population of island Group of antenna arrays
SIVs of an island Design parameter of antenna array

Dimension of problem space Number of total design parameters
Island with high HSI The best design among all the antenna arrays

Migration between islands Change in value of the design parameters

Mutation
Change design parameters of worst antenna designs

to obtain the best HSI in next iteration
Elitism Keep best design antenna from one iteration for the next iteration

6. BRIEF THEORY ON GSOA AND ITS ROLE IN LAA DESIGN

This algorithm is inspired by behaviour of natural phenomenon based on law of gravity and mass of
interaction. GSOA is a nature inspired population based search algorithm proposed by Rashedi in
2009 [20]. In this algorithm, agents are considered as objects, and their performances are measured by
their masses. These agents interact with each other through the gravitational force. This gravitational
force causes global movement of one agent with lighter mass towards the other agent with heavier mass.
The gravitational force, F12, which acts on mass M1 whose position is X1 due to mass M2, is directly
proportional to the product of their mass M1 and mass M2, and inversely proportional to square of
distance between them. Similarly, when force acts on M1 due to M3, the resultant force is F13. So F1

is the total resultant force that acts on M1 due to all other masses M2, M3, M4, and its acceleration is
a1.

F12 = G×M1×M2

R2
(13)

where F12 is the magnitude of gravitational force; G is the gravitational parameter; M1 and M2 are
mass of particle; R is distance between two particles. Newton’s 2nd law states that when force is applied
to any particle it accelerate, and its acceleration ‘a1’ depends on force and mass and is given by

a1 =
F1

M1
(14)

Based on Equations (13) and (14), there is a gravitational force among all the particles of universe
where the influence of larger and nearer mass is higher, as illustrated in Figure 4. The next section
describes how gravitational law can be applied to gravitational search optimization algorithm.

In GSOA, a set of agents called population and position of each agent corresponds to a starting
solution of the problem, which may not be the optimum solution [13]. In fact, each solution is always
associated with a fitness value. A good solution corresponds to agents with heavy mass, and poor
solution corresponds to agents with light mass. Now consider a system with N agents, we define
position of the ith agents by:

Xi = (x1
i , x2

i , . . . , xq
i , . . . , xQ

i ), for i = 1, 2, . . . , N , where xq
i presents the position of ith element

in the qth dimension.
Q is the dimension of search space.

Xi =

⎡
⎢⎢⎢⎢⎢⎣

X1

X2
...
...

XN

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

x1
1 x2

1 . . . . . . xQ−1
1 xQ

1

x1
2 x2

2 . . . . . . xQ−1
2 xQ

2
...

... . . . . . .
...

...
...

... . . . . . .
...

...
x1

N x2
N . . . . . . xQ−1

N xQ
N

⎤
⎥⎥⎥⎥⎥⎥⎦

(15)
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Figure 4. Every mass accelerates towards the resultant force that acts on it by the other masses.

At a specific time t, we define that the total force acting on agent M1 whose position is X1 due to
all other neighbouring agents is

F q
1 (t) = F q

12 + F q
13 + F q

14 + . . . + F q
1N =

∑N

j=1(i�=j,i=1)
rand×F q

ij(t) (16)

We define that the total force acting on agent M2 whose position is X2 due to all other neighbour agent
is

F q
2 (t) = F q

21 + F q
23 + F q

24 + . . . + F q
2N =

∑N

j=1(i�=j,i=2)
rand×F q

ij(t) (17)

Similarly, the total force acting on agent M4 whose position is X4 due to all other neighbouring agents
is:

F q
4 (t) = F q

41 + F q
42 + F q

43 + . . . + F q
4N =

∑N

j=1(i�=j,i=4)
rand×F q

ij(t) (18)

In general, at a specific time the force acting on agent Mi from another agent Mj is given by

F q
ij (t)= G (t)×Mi×Mj

Rij
×

(
Xq

j −Xq
i

)
(19)

The total force that acts on agent i in the q-th is a randomly weighted sum of qth component of the
forces exerted from other agents, which is given as:

F q
i (t) = F q

i1 + F q
i2 + F q

i3 . . . + F q
iN =

∑N

j=1,i�=j
rand×F q

ij(t); i = 1, 2, . . . , N (20)

where Rij is the distance between agent i and agent j.
Hence, by the law of motion for the qth dimension, acceleration of agent i at a time t is given as:

aq
i (t) =

F q
i (t)

Mii(t)
(21)

where Mii is the inertia mass of the ith agent. Inertia mass is a measure of an agent’s resistance to
change in its state of motion when force is applied. An agent with large inertia mass changes its motion
more slowly, and an agent with small inertia mass changes its motion rapidly. Current velocity of each
agent is updated from the knowledge of the previous velocity added to its acceleration in unit time and
given by

V q
i (t + 1) = rand × V q

i (t) + aq
i (t) (22)

The position of each agent is changed in the next search using its updated velocity information.

Xq
i (t + 1) = Xq

i (t) + V q
i (t) (23)
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Gravitational parameter G is initialized at the beginning of the search and will be reduced with time
to control search accuracy as follows

G1 = G0 × e
−∝t

iteration (24)
G0 and α are given constant, where G0 = 100, α = 20.

Gravitational and inertia masses are simply calculated through fitness evaluation. Gravitational
and inertia masses are updated as per the following equation

mi(t) =
fitnessi (t) − best(t)
best (t) − Worst(t)

(25)

Mi(t) =
mi(t)∑N

i=1:N
mi(t)

(26)

where fitnessi(t) represent the fitness value of the agent i at time t. Worst (t) and best (t) are defined
as follows:
For minimization problem

best(t) = mini∈{1:N} {fitnessi(t)} (27)
worst(t) = maxi∈{1:N} {fitnessi(t)} (28)

For maximization problem

best(t) = maxi∈{1:N} {fitnessi(t)} (29)
worst(t) = mini∈{1:N} {fitnessi(t)} (30)

Pseudo code of GSOA is as follows:
Steps:

1. Set initial value of gravitational constant G0 and control parameter α.
2. Initialize N agents with their random positions.
3. Set initial iteration it = 0.
4. for i = 1 : N .

Calculate fitness f(Xi)
end

5. Evaluate best and worst agents.
6. Update gravitational parameter by using Equation (24).
7. for i = 1 : N .

Calculate gravitational mass m(i) by using Equation (25).
Calculate inertia mass M(i) by using Equation (26)

end

8. for i = 1 : N

for j = 1 : q
Calculate the force that acts on agent i from agent j

end
Calculate the total force that acts on agent i
Calculate the acceleration of agent i
Update the velocity of agent i
Update that position of agent i

end
9. it = it +1

10. Repeat steps 4 to 9 until the stopping criteria is reached
11. End
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6.1. Optimization of LAA Parameters Using GSOA

In GSOA, a set of solutions is called population, and each solution is represented by an agent. All
the agents are placed in search space, each with a dimension equal to number of design parameters
considered for optimization process. Each solution is associated with a fitness value. A low fitness value
defines a good solution while a high fitness value defines a poor solution for our problem. A good solution
corresponds to an agent with heavy mass that has low fitness value while a poor solution corresponds to
an agent with light mass hence with a high fitness value. At first initial population is generated which
consists of N agents. The position for each agent is defined by Xi = (x1

i , x2
i , . . . , xq

i , . . . , xQ
i ), where

i = 1 : N . In a Q-dimensional optimization problem, an agent is a 1 × Q array. The mass or variables
in the agent are represented by floating point number. The set of the entire agents is the search space
from which optimal solution is found. The fitness value for each agent is found by evaluating the fitness
function f (Xi). Initially each agent has some velocity and position. Later when the iteration process
continues, the entire agents interact with each other due to gravitational force acting between them and
by the lapse of time movement of all agents with lighter mass globally towards the agents with heavier
mass. So, each agent ends up with a new position. The new position and velocity of the agents are
updated every iteration, and the best fitness value along with its corresponding agent is stored. The
termination criterion of this algorithm is specified by a fixed amount of iteration [4]. This process is
continued till iteration criterion is not satisfied. After termination of this algorithm, the stored best
fitness value along with its corresponding agent at final iteration becomes the global fitness and global
solution to our problem. The mapping of antenna parameters with GSOA is shown in Table 2.

Table 2. Mapping of antenna parameters with GSOA.

Terms related to GSOA Terms related to antenna

Population of agent Group of antenna arrays

Mass of an agent Design parameters of antenna array

dimension of search space Number of design parameters

Agent with heavy mass Best design among all the antenna array

Movement of masses (change in position) Change in design parameters

Update position of masses Getting new design in next iteration

7. BEST COMPROMISE SOLUTION USING FUZZY LOGIC

In engineering design or decision making problem, a set of solutions is available, and to choose which
solution is the best one from this set, a concept of fuzzy set theory is introduced in optimization [19].

Engineering design consists of several objective functions. To evaluate the overall performance of
design, individual objective function (Fi; i = 1, 2, 3, 4) and its weight must be combined to give a single
multi-objective function. By varying the weight of each Fi, a set of solutions is produced instead of one
optimal solution. Each Fi is characterised by the fuzzy set or membership function (γi(Fi); i = 1, 2, 3, 4).
Due to imprecise nature of decision maker’s judgement, the γi(Fi) is calculated by taking the minimum
and maximum value of each Fi by Eq. (5), where Fmax

i and Fmin
i are maximum and minimum values

of each Fi.
The normalised compromise solution set (γj

D; j = 1, 2, . . . , N) obtained by Eq. (6) (where N
represents the total number of solutions in a set) is performed for the four objective functions. The
maximum value of normalised compromise solution γj

D is the best solution. Therefore, the best solution
is found by Equation (7).
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8. SIMULATION RESULTS AND DISCUSSION

The BBOA and GSOA techniques are both considered for various LAA. The performance of both
optimization techniques is to maximize D, FSLL, and EFTOB and to minimize E3D BW. We obtain
the results of two methods: one without fuzzy biased optimization (considering equal importance to all
objectives) and the other with fuzzy biased optimization discussed in the later part of this section. We
try to provide a comparison of two fuzzy biased optimization techniques, derived from the simulation
results.

8.1. Optimal Results Obtained Using BBOA

8.1.1. Performance of BBOA (Without Fuzzy Logic)

LAA is optimized to achieve the best values of D, E3D BW, FSLL and EFTOB. The geometry of
16-element linear, nonuniform in length and spacing array is shown in Figure 1. The spacing between
two neighbouring elements and length of each element are the design parameters to be optimized. Each
array or solution in the population has 31 variables which are made up of 16 lengths and 15 spacings in
the array. The spacing between elements varies from 0.7 to 0.8, and length of each element varies from
0.9 to 1.

During BBOA optimization, the following parameters are taken:
Number of islands or solution = 20; Maximum generation = 20; Number of SIVs per island = 31;

Mutation probability = 0.005; Island modification probability = 1; Elitism parameter = 2; Maximum
possible emigration rate E = 1; Maximum possible immigration rate I = 1.

The constants a = 0.25, b = 0.25, c = 0.25 and d = 0.25 represent the weight of each objective
function as shown in Equation (8). The design parameters and performance parameters corresponding
to our best design are as shown in Table 3. The optimal parameters and performance parameters are
shown in Table 3. The corresponding E-plane pattern is shown in Figure 5, and convergence plot for
16-element LAA is shown in Figure 6. The radiation pattern as shown in Figure 5 shows that the power
radiated in the front direction is almost the same as that in the opposite direction, which results in
EFTOB close to 1 or 0 dB.

Table 3. BBOA optimal design and performance parameter for 16-element LAA.

No. of
elements

Length Spacing D in dB
E3D BW
in degree

FSLL in dB
EFTOB
in dB

1 0.9606 -
2 0.9915 0.7929
3 0.9245 0.7791
4 0.9004 0.7991
5 0.9856 0.7155
6 1.0000 0.8000
7 0.9384 0.7886
8 0.9488 0.7030 19.3935 24 −12.3722 0.0193
9 0.9174 0.7512
10 0.9785 0.7779
11 0.9157 0.7811
12 0.9451 0.7093
13 0.9095 0.7213
14 0.9893 0.7828
15 0.9798 0.7727
16 0.9055 0.7037
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Figure 5. Normalised E-plane pattern for
BBOA optimized 16-element LAA without
fuzzy logic.

Figure 6. Convergence plot of BBOA for 16-element
LAA without fuzzy logic.

Table 4. Wight variations and its performance parameters of FBBOA.

No. of
solutions

a b c d
D

in dB
E3D BW
In degree

FSLL
In dB

EFTOB
In dB

1 0.25 0.25 0.25 0.25 19.3935 24 −12.3722 0.0193
2 0.3 0.25 0.25 0.2 19.5824 20 −17.1292 0.0222
3 0.3 0.3 0.3 0.1 19.5541 20 −18.8651 0.0220
4 0.3 0.3 0.2 0.2 19.5743 20 −19.5750 0.0209
5 0.3 0.2 0.3 0.2 19.7154 16 −12.7039 0.0417
6 0.35 0.25 0.25 0.15 19.8159 16 −20.3055 0.0246
7 0.4 0.3 0.2 0.1 19.5181 24 −9.2161 0.0152
8 0.4 0.2 0.3 0.1 19.8046 18 −8.5336 0.0238
9 0.45 0.25 0.2 0.1 19.6398 20 −12.7588 0.0192
10 0.5 0.25 0.15 0.1 19.7502 20 −14.2218 0.0182
11 0.5 0.2 0.2 0.1 19.9050 16 −4.2975 0.0326
12 0.5 0.2 0.15 0.15 19.8316 20 −18.6246 0.0227
13 0.55 0.2 0.15 0.1 19.8149 18 −20.1238 0.0271
14 0.6 0.2 0.1 0.1 19.7733 22 −18.6353 0.0124
15 0.6 0.1 0.2 0.1 19.8048 20 −20.0612 0.0220
16 0.65 0.2 0.1 0.05 19.9144 18 −16.8315 0.0246
17 0.7 0.1 0.1 0.1 19.7999 18 −20.7184 0.0314
18 0.4 0.2 0.2 0.2 19.8409 16 −17.3456 0.0329
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8.1.2. Performance of FBBOA (With Fuzzy Logic)

The multi-objective function shown in Equation (8) is a linear combination of four objective functions
represented as a weighted sum of same function corresponding to some specific performance parameters.

OF = F1 + F2 + F3 + F4 (31)

where F1 = a × abs(21 − D), F2 = b × abs(25 − E3D BW), F3 = c × abs(−21 − FSLL), and
F4 = d × abs(2 − EFTOB).

By varying the weight in each objective function, a set of performance parameters D, E3D BW,
FSLL, EFTOB is obtained. For each set of performance parameters such as optimized lengths and
optimized spacings, multi-objective fitness values of design parameters are given in Table 4. The values
of the individual objective functions F1, F2, F3 and F4 are found by considering their weights and worst
case value of performance parameters given in Table 5. Here, we have taken 18 combinations of weights.
For each combination of weights, a set of solutions is obtained. So total 18 possible solutions in a set
for each objective function are found. To find the best solution from the set of 18 possible solutions,
maximum and minimum values of each individual objective function are required given in Table 5. The
membership function values of each individual function are represented by γ (F1), γ (F2), γ (F3) and
γ (F4). By using Equation (5), the membership function value of each individual function is obtained
and given in Table 6.

Table 5. Maximum and minimum value of each individual objective function of FBBOA.

F1 F2 F3 F4

Fmax
1 = 0.84007

Fmin
1 = 0.38538

Fmax
2 = 2.25

Fmin
2 = 0.25

Fmax
3 = 3.73992

Fmin
3 = 0.02816

Fmax
4 = 0.495175
Fmin

4 = 0.09877

Table 6. Value of individual objective function and normalized membership function of each solution
using FBBOA.

Sl.

No.
F1 F2 F3 F4 γ(F1) γ(F2) γ(F3) γ(F4)

∑4
i=1 γ(Fi) γj

D =
∑4

i=1 γ(Fi)

Sum

1 0.402 0.250 2.157 0.495 0.964 1 0.426 0.000 2.391 0.055

2 0.425 1.250 0.968 0.396 0.912 0.5 0.747 0.251 2.410 0.056

3 0.434 1.500 0.640 0.198 0.894 0.375 0.835 0.750 2.854 0.066

4 0.428 1.500 0.285 0.396 0.907 0.375 0.931 0.251 2.463 0.057

5 0.385 1.800 2.489 0.392 1.000 0.225 0.337 0.261 1.823 0.042

6 0.414 2.250 0.174 0.296 0.936 0 0.961 0.502 2.399 0.055

7 0.593 0.300 2.357 0.198 0.544 0.975 0.373 0.748 2.640 0.061

8 0.478 1.400 3.740 0.198 0.796 0.425 0.000 0.751 1.972 0.045

9 0.612 1.250 1.648 0.198 0.501 0.5 0.564 0.749 2.314 0.053

10 0.625 1.250 1.017 0.198 0.473 0.5 0.734 0.749 2.457 0.057

11 0.575 1.800 3.341 0.197 0.584 0.225 0.108 0.753 1.670 0.038

12 0.584 1.000 0.356 0.297 0.563 0.625 0.912 0.501 2.600 0.060

13 0.652 1.400 0.131 0.197 0.414 0.425 0.972 0.751 2.563 0.059

14 0.736 0.600 0.236 0.199 0.229 0.825 0.944 0.748 2.745 0.063

15 0.717 0.500 0.188 0.198 0.270 0.875 0.957 0.750 2.853 0.066

16 0.706 1.400 0.417 0.099 0.296 0.425 0.895 1.000 2.619 0.060

17 0.840 0.700 0.028 0.197 0.000 0.775 1.000 0.753 2.528 0.058

18 0.464 1.800 0.731 0.393 0.828 0.225 0.811 0.257 2.120 0.049

Sum = 43.42
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The best compromise solution set is produced by combining the corresponding membership function
values of all objective functions, i.e.,

∑M
i=1 γ(Fi). The normalised best compromise solution set γj

D
(j = 1, 2, . . . , N) is calculated by the best compromise value of each solution over the sum of the
best compromise value of the jth possible solution. Here M = 4 and N = 18, since there are four
objectives and 18 possible solutions. By using Equation (6), the normalised best compromise solution
γj

D of each solution is obtained and also given in Table 6. The solution that attains the maximum value
of normalised best compromise solution set is the best solution. From Table 4 and Table 6, solution
number 3, having weights a = 0.3, b = 0.3, c = 0.3, d = 0.1, shows the maximum value of γj

D that is
0.065726, hence this solution is considered as the best solution. Corresponding to these weights, the
optimized design parameters and desired performance parameters are shown in Table 7.

The optimized design parameters such as length and spacing are as shown in Table 7. Based on
these design parameters, an optimized radiation pattern and its corresponding convergence graph are
shown in Figure 7 and Figure 8. For these optimal design parameters, we are able to get DR of nearly
19.55 dB, SLL of −18.87 dB, HPBW of 20 degree, and FBR of nearly 0 dB.

8.2. Optimal Result Obtained Using GSOA

8.2.1. Performance of GSOA (Without Fuzzy Logic)

The same 16-element LAA, optimized for D, E3D BW, FSLL and EFTOB using GSOA, is analysed
again. In the geometry of the 16-element LAA, its range of lengths and spacings considered here are
the same as BBOA optimization. The constants a = 0.25, b = 0.25, c = 0.25 and d = 0.25 represent the
weights of each objective function as shown in Equation (8). The design parameters and performance
parameters corresponding to our best design are given in Table 8. The corresponding E-plane pattern
is shown in Figure 9, and the convergence plot using 16-element LAA is shown in Figure 10.

Table 7. Final FBBOA optimal design and performance parameter for 16-element LAA.

Number of
elements

Length Spacing D in dB
E3D BW
in degree

FSLL
in dB

EFTOB
in dB

1 0.9818 -
2 0.9624 0.7011
3 0.9368 0.7908
4 0.9814 0.7784
5 0.9684 0.7022
6 0.9510 0.7971
7 0.9998 0.7995
8 0.9053 0.7899 19.5541 20 −18.8651 0.0220
9 0.9423 0.7363
10 0.9950 0.8000
11 1.0000 0.7758
12 0.9210 0.7784
13 0.9280 0.7434
14 0.9034 0.7608
15 0.9371 0.7963
16 0.9065 0.7544
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8.2.2. Performance of FGSOA (With Fuzzy Biased)

By varying the weight in each objective function, a set of performance parameters, D, E3D BW, FSLL,
EFTOB, is obtained. For each set of performance parameters optimized lengths and optimized spacings,
multi-objective fitness values of the design parameters are given in Table 9.

The values of the individual objective functions F1, F2, F3 and F4 are found by considering their

Figure 7. Normalized E-plane pattern
for BBOA optimized 16-element LAA with
fuzzy logic.

Figure 8. Convergence plot of BBOAfor 16-element
LAA with fuzzy logic.

Table 8. GSOA optimal design and performance parameter for 16-element LAA.

Number of
elements

Length Spacing D in dB
E3D BW
in degree

FSLL
in dB

EFTOB
in dB

1 9.9290 -
2 0.9317 0.7893
3 1.0000 0.7688
4 0.9215 0.7982
5 0.9422 0.7337
6 0.9137 0.7969
7 0.9692 0.8000
8 0.9545 0.7912 19.5478 24 −12.7491 0.0063
9 0.9675 0.7617
10 0.9407 0.7846
11 0.9988 0.7997
12 0.9675 0.7478
13 0.9630 0.7138
14 0.9249 0.7998
15 0.9213 0.7989
16 0.9241 0.7961
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Table 9. Wight variations and their performance parameters of FGSOA.

No. of
solutions

a b c d
D

in dB
E3D BW
In degree

FSLL
In dB

EFTOB
In dB

1 0.25 0.25 0.25 0.25 19.5748 24 −12.7441 0.0063
2 0.3 0.25 0.25 0.2 20.0100 16 −16.6331 0.0369
3 0.3 0.3 0.3 0.1 19.6412 24 −9.8729 0.0121
4 0.3 0.3 0.2 0.2 19.6809 20 −16.7870 0.0233
5 0.3 0.2 0.3 0.2 19.9511 22 −14.8754 0.0123
6 0.35 0.25 0.25 0.15 19.5209 24 −11.2626 0.0075
7 0.4 0.3 0.2 0.1 19.8738 22 −12.1834 0.0104
8 0.4 0.2 0.3 0.1 19.6164 18 −19.1684 0.0323
9 0.45 0.25 0.2 0.1 19.8935 24 −11.6318 0.0029
10 0.5 0.25 0.15 0.1 19.8595 16 −20.9967 0.0432
11 0.5 0.2 0.2 0.1 19.6648 20 −20.9976 0.0209
12 0.5 0.2 0.15 0.15 19.6635 24 −11.7502 0.0058
13 0.55 0.2 0.15 0.1 19.9115 20 −18.8771 0.0189
14 0.6 0.2 0.1 0.1 19.9375 24 −9.2209 0.0025
15 0.6 0.1 0.2 0.1 19.6172 18 −20.9896 0.0290
16 0.65 0.2 0.1 0.05 19.7305 24 −18.8712 0.0085
17 0.7 0.1 0.1 0.1 19.4953 24 −7.1834 0.0291
18 0.4 0.2 0.2 0.2 19.7989 20 −20.9971 0.0216

weights and worst case values of performance parameters as given in Table 10. Like FBBOA, here
we also have taken 18 combinations of weights. For each combination of weights, a set of solutions is
obtained. So total 18 possible solutions in a set for each objective function are found. To find the best

Figure 9. Normalized E-plane pattern for
GSOA optimized 16-element LAA without
fuzzy logic.

Figure 10. Convergence plot of GSOA for 16 element
LAA without fuzzy logic.



Progress In Electromagnetics Research B, Vol. 79, 2017 185

solution from a set of 18 possible solutions, maximum and minimum values of each individual objective
function are required and given in Table 10. The membership function values of the individual functions
are represented by γ (F1), γ (F2), γ (F3) and γ (F4). By using Equation (5), the membership function
value of each individual function is obtained and given in Table 11.

The best compromise solution set is produced by combining the corresponding membership function
values of the objective functions, i.e.,

∑M
i=1 γ(Fi). The normalised best compromise solution set γj

D
(j = 1, 2, . . . , N) is calculated by the best compromise value of each solution over the sum of the
best compromise value of the jth possible solution. Here M = 4 and N = 18, since there are four
objectives and 18 possible solutions. By using Equation (6) the normalised membership function γj

D of
each solution is obtained and given in Table 11. The solution that attains the maximum normalised
membership function is the best solution. From Table 9 and Table 11, solution number 16, having
weights a = 0.65, b = 0.2, c = 0.15, d = 0.05, shows the maximum value of γj

D, that is 0.068914,
so this solution is considered the best solution. Corresponding to these weights, the optimized design
parameters and desired performance parameters are shown in Table 12.

Based on these design parameters, an optimized radiation pattern and its corresponding
convergence graph are shown in Figure 11 and Figure 12. For these optimal design parameters we
are able to get DR of nearly 19.73 dB, SLL of −18.87 dB, HPBW of 24 degree, and FBR of nearly 0 dB.

Table 10. Maximum and minimum values of each individual objective function of FGSOA.

F1 F2 F3 F4

Fmax
1 = 1.05329
Fmin

1 = 0.297
Fmax

2 = 2.25
Fmin

2 = 0.1
Fmax

3 = 3.33813
Fmin

3 = 0.00048
Fmax

4 = 0.498425
Fmin

4 = 0.099575

Table 11. Values of individual objective function and their membership function of FGSOA.

Sl.

No.
F1 F2 F3 F4 γ(F1) γ(F2) γ(F3) γ(F4)

∑4
i=1 γ(Fi) γj

D =
∑4

i=1 γ(Fi)

Sum

1 0.356 0.250 2.064 0.498 0.922 0.930 0.382 0.000 2.234 0.048

2 0.297 2.250 1.092 0.398 1.000 0.000 0.673 0.265 1.938 0.042

3 0.408 0.300 3.338 0.396 0.854 0.907 0.000 0.751 2.512 0.054

4 0.396 1.500 0.843 0.396 0.869 0.349 0.748 0.258 2.224 0.048

5 0.312 0.600 1.837 0.393 0.980 0.767 0.450 0.253 2.450 0.053

6 0.518 0.250 2.434 0.299 0.708 0.930 0.271 0.500 2.410 0.052

7 0.450 0.900 1.763 0.299 0.797 0.628 0.472 0.751 2.648 0.057

8 0.553 1.400 0.549 0.200 0.661 0.395 0.836 0.756 2.648 0.057

9 0.498 0.250 1.874 0.200 0.734 0.930 0.439 0.749 2.852 0.062

10 0.570 2.250 0.000 0.199 0.639 0.000 1.000 0.759 2.398 0.052

11 0.668 1.000 0.000 0.199 0.510 0.581 1.000 0.753 2.845 0.061

12 0.668 0.200 1.387 0.198 0.509 0.953 0.584 0.500 2.547 0.055

13 0.599 1.000 0.318 0.198 0.601 0.581 0.905 0.753 2.840 0.061

14 0.638 0.200 1.178 0.197 0.550 0.953 0.647 0.749 2.900 0.063

15 0.830 0.700 0.002 0.197 0.296 0.721 1.000 0.755 2.772 0.060

16 0.825 0.200 0.218 0.197 0.302 0.953 0.936 1.000 3.191 0.069

17 1.053 0.100 1.382 0.196 0.000 1.000 0.586 0.756 2.342 0.051

18 0.480 1.000 0.001 0.100 0.718 0.581 1.000 0.258 2.557 0.055

Sum = 46.31
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Table 12. Final FGSOA optimal design and performance parameter for 16-element LAA.

No. of
elements

Length Spacing D in dB
E3D BW
in degree

FSLL
in dB

EFTOB
in dB

1 0.9000 -
2 0.9488 0.7236
3 0.9794 0.7993
4 0.9445 0.7826
5 1.0000 0.7000
6 0.9780 0.7941
7 0.9102 0.8000
8 0.9946 0.7855 19.7305 24 −18.8712 0.0085
9 0.9562 0.7546
10 0.9818 0.7849
11 0.9945 0.8000
12 0.9258 0.8000
13 0.9990 0.7000
14 0.9541 0.8000
15 0.9953 0.8000
16 0.9593 0.7789

8.3. Comparison of Performance Parameters for BBOA and GSOA Optimized LAA
(With and without Fuzzy Logic)

Now, we can compare the two fuzzy logic biased algorithms placed on the same platform. The fitness
function and various combinations of weights for the BBOA are defined to be the same as that of GSOA.

Comparing the convergence characteristic of fitness function for the two fuzzy biased algorithms,

Figure 11. Normalized E-plane pattern
for GSOA optimized 16-element LAA with
fuzzy logic.

Figure 12. Convergence plot of GSOA for 16-element
LAA with fuzzy logic.
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Figure 13. Comparison of the convergence of fitness function for fuzzy biased BBOA and GSOA.

it is observed that GSOA converges faster than BBOA as shown in Figure 13. The comparative study
of the two fuzzy biased algorithms for a similar LAA design given in Table 13 shows that FBBOA and
FGSOA perform better than BBOA and GSOA as we get a significant change in D, E3D BW,FSLL,
and EFTOB.

Our 16-element linear array is compared with different types of other optimized linear antenna
arrays, Yagi-Uda arrays, and log periodic arrays having 15 and more than 15 elements in Table 14.
The various arrays are optimized through different optimization techniques such as hierarchical genetic
algorithms by Wang et al. in 2003 [21], comprehensive learning PSO by Baskar et al. in 2005 [23],
computational intelligence in [24] by Venkatarayalu and Ray in 2004, genetic algorithm in [25] by Jones
and Joines in 1997, Bacteria Foraging in [26] by Mangaraj et al. in 2011, and by others as shown in
Table 14.

Comparing the directivity of Yagi-Uda antennas, we see that the maximum directivity is 17.1340 dBi
for 15-element, 17.43 dBi for 17-element and 19.81 dBi for 22-element. The maximum directivity of Log-
Periodic, V-dipole, Linear Array, PAA is found to be 18.92 dBi. In our case, the FBBOA and FGSOA
optimized 16-element linear array gives a better directivity of 19.5541 dB and 19.7305 dB, respectively,
having not compromised with other objective functions. Comparing HPBW of Yagi-Uda antennas,
the minimum HPBW is found to be 24.2594 degrees in [26] by Mangaraj et al. in 2011. In our case,
the FBBOA and GGSOA provide 20 degree and 23 degree E3D BW, respectively. Comparing the
FSLL of all antenna arrays, we get FSLL of −18.8651 dBi and −18.8712 dBi for FBBOA and FGSOA,
respectively near the maximum obtained by Mahanti et al. [32], i.e., −20 dB. The optimization of the
16-element LAA is performed using Intel (R) core (TM) i3-380M CPU @ 2.53 GHz processor, 2GB
RAM. The run time for BBOA algorithm takes around 58 minutes while run time for GSOA takes
around 1 hour 6 minutes.

Table 13. Comparison of performance parameters with and without fuzzy logic biased optimizations
in designing the LAA.

Sl. No Performance parameters BBOA FBBOA GSOA FGSOA
1 D in dB 19.3935 19.5541 19.5478 19.7305
2 E3D BW in degree 24 20 24 23
3 FSLL in dB −12.3722 −18.8651 −12.7491 −18.8712
4 EFTOB in dB 0.0193 0.0220 0.0063 0.0085
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Table 14. Comparison of different types of optimal antenna arrays with the proposed antenna arrays.

Sl.
No.

Antenna
Type

No. of
Elements

Operating
Frequency
(in MHz)

Optimization
Technique

Directivity
(dBi)

E3D BW
(degree)

FSLL
(dBi)

1

Yagi-Uda,
Wang et al.,
(Table 1),
Ref. [21].

15
Not

Available

Hierarchical
Genetic

Algorithms
12.4

Not
Available

Not
Available

2

Yagi-Uda,
Viezbicke,
(Table 1),
Ref. [22].

15 400
Not

Available
14.2 26

Not
Available

3

Yagi-Uda,
Baskar et al.,

(Table 4),
Ref. [23].

15
Not

Available
Comprehensive
learning PSO

16.40
Not

Available
Not

Available

4

Yagi-Uda,
Venkatarayalu

et al.,
(Table 2),
Ref. [24].

15 432
Computational

Intelligence
16.66

Not
Available

Not
Available

5

Yagi-Uda,
Jones et al.,
(Table 2),
Ref. [25].

15
Not

Available
Genetic

Algorithm
17.07

Not
Available

Not
Available

6

Yagi-Uda,
Mangaraj et al.,

(Table 3),
Ref. [26].

15 300
Bacteria
Foraging

17.1340 24.2594
Not

Available

7
Yagi-Uda,

Altshuler et al.,
Ref. [27]

17 432
Genetic

Algorithm
17.43

Not
Available

Not
Available

8

Uniform
linear
array,

Shreni et al.,
Ref. [28].

20
Not

Available
Genetic

Algorithm
17.005

Not
Available

−13.14

9

Log-periodic
dipole array,
Pantoja et al.,

(Table 2),
Ref. [29].

20 450 PSO 8.23
Not

Available
Not

Available

10

Linear
array,

Roy et al.,
(Table 4),
Ref. [30].

22
Not

Available
dMOPSO 17.58

Not
Available

−19.52

11

Linear array,
Pal et al.,

(Table 11),
Ref. [31].

26
Not

Available
Differential
Evolution

17.812
Not

Available
−37.86

12

Thinned
linear array,

Mahanti et al.,
(Table 2), [32].

100
Not

Available
Real

Coded GA
18.92

Not
Available

−20.06

13
Linear array
(Table 13),
our work.

16 300
FBBOA and

FGSOA

19.5541
and

19.7305

20
and 23

−18.865
and

−18.871
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9. CONCLUSION

In a multi-objective optimization process, the optimization methods yield satisfactory results when a
compromise among desired objectives is made to achieve desired performance. To avoid this sensible
compromise to any objective in case of multi-objective performance parameters of LAA, efficient global
optimization techniques, proposed as FBBOA and FGSOA are beneficial. The above statement has
been justified by comparing the results obtained by BBSO and GSOA with results obtained by FBBOA
and FGSOA. Referring to Table 13, the comparative study shows that the application of fuzzy biased
with varying weight of each objective in the multi-objective function gives an optimal solution for BBOA
and GSOA optimized 16-element nonlinear LAA. We get a significant improvement on E3D BW and
FSLL by these proposed methods.
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