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Surface Impedance Synthesis Using Parallel Planar
Electric Metasurfaces

Bo O. Zhu*

Abstract—Metasurfaces, due to its designable surface electric and magnetic impedances, have largely
enhanced electromagnetic wave manipulation techniques. The conventional approach to realize the
surface magnetic impedance requires non-planar structures, such as metallic loops, which is not easy
to fabricate, especially at optical frequencies. In this work, we theoretically and rigorously prove that
effective surface magnetic and electric impedances can be obtained using parallel electric metasurfaces.
A synthesis method is presented which allows independent designs of surface electric and magnetic
impedances. Finally, a polarization converter with high energy efficiency is designed using the proposed
impedance synthesis method for verification. The proposed synthesis method is favorable for reducing
fabrication complexities.

1. INTRODUCTION

The recently proposed metasurface is a two-dimensional array of subwavelength scatterers [1–9]. It is a
promising way to manipulate electromagnetic (EM) wave propagation because of the designable feature
of its surface impedance, which uniquely determines the EM field behavior. Many novel metasurface
devices have been proposed so far, such as planar chiral plates [10], holography [11], spin-controlled
photonics [12], wave orbital angular momentum manipulations [13–16], polarization converters and
quarter-wave plates [17, 18], flat lens and focusing [19–22], and Huygens metasurfaces [23, 24].

The surface impedance of metasurfaces comes from the shapes and periodicity of the subwavelength
scatterers of metasurfaces. Because of the subwavelength feature of the periodic scatterers, only the
fundamental Floquet mode, that is just a plane wave, can propagate; whereas the high-order Floquet
modes are evanescent along the propagation direction, and contribute to the surface impedance of a
metasurface. The surface impedance of a metasurface can be categorized into electric type and magnetic
type. Both of them are important and necessary to achieve full control on EM wave propagation [23, 24].
The electric surface impedance is usually implemented by ultra-thin metallic patterns [4, 14, 17, 18, 25–
27], whereas the magnetic surface impedance is usually implemented by the metallic loops [7, 23, 24, 28].

Obviously, this type of magnetic surface impedance requires the non-planar fabrication process,
which is usually difficult to be met, especially in optical regimes [29]. Of late, some planar metasurfaces
have been proposed, which are suitable for microscopic fabrication so as to work at quite high
frequencies [30–33]. In this article, we will theoretically and rigorously prove that the effective surface
magnetic impedance can be achieved by employing parallel planar metasurfaces with only identical
surface electric impedances. Moreover, deep physics insight from this analysis show that adding another
electric metasurface at the middle between the original parallel metasurfaces can adjust the effective
electric surface impedance with no influence on the effective magnetic surface impedance achieved
originally. Directed by the theory, a linear to circular polarization converter with high energy efficiency
is designed to demonstrate the effectiveness of this approach.
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2. FUNDAMENTAL THEORY

Figure 1(a) shows two electric metasurfaces located at z = ±a/2 respectively, which are illuminated
by a normal incident plane EM wave. The surface electric current J± is induced under the excitation,
which can be further decomposed into the odd mode current J±

o with J−
o = −J+

o , and the even mode
current J±

e with J−
e = J+

e , as illustrated in Figs. 1(b) and (c) respectively. The microscopic Maxwell
equations for this case are

∇× E = −∂B
∂t

, (1a)

∇× B
μ0

=
∂ (ε0E)

∂t
+ Jo + Je. (1b)

Since Jo is circulating and divergence free, it produces magnetic dipole polarization density M with the
relation ∇× M = Jo. Inserting this relation into Eq. (1b) with some arrangement, we have

∇×
(

B
μ0

− M
)

=
∂D
∂t

+ Je (2)

With the Definition H = B
μ0

− M, Eq. (1) becomes

∇× E = −∂ (μ0H)
∂t

− ∂ (μ0M)
∂t

, (3a)

∇× H =
∂ (ε0E)

∂t
+ Je, (3b)

indicating that the induced odd mode current Jo results in an equivalent magnetic polarization density
∂(μ0M)/∂t, which leads to the tangential electric field discontinuity and the effective surface magnetic
impedance. The even mode current Je is associated with the surface electric impedance.

2.1. Effective Surface Magnetic Impedance

It needs some calculation to establish the quantitative relation between the effective surface impedance
and the constitutive parallel electric metasurfaces. Time factor ejωt is adopted and suppressed
throughout below. Assuming a plane wave is incident from the left to the right, as shown in Fig. 1(a),

Ei = Ei
xe−jkzx̂, (4a)

Hi = H i
ye

−jkzŷ. (4b)

Using Faraday’s law ∮
L
Ei · dl = −jωμ0

∫
S
Hi · ds, (5)

we have
Ei−

x x̂ · −dlx̂ + Ei+
x x̂ · dlx̂ = −jωμ0dl

∫
H i

ye
−jkzŷ · dzŷ, (6)

where Ei±
x denotes the incident electric field complex amplitudes at z = ±a/2 respectively. Eq. (6) can

be rewritten with some simplification as

ΔEi = (Ei−
x − Ei+

x )x̂ ≈ jωμ0aH i
yx̂, (7)

where the first order approximation e−jka ≈ 1−jka is used when a is much smaller than wavelength [3–5].
This approximation, which is normally valid in metasurface designs, is used throughout this paper. The
odd mode of the incident electric field acting on the metasurfaces at z = ∓a/2 are ±ΔEi/2 respectively,
as illustrated in Fig. 1(b). Such an odd mode electric field excites an odd mode surface electric
current Jo if the parallel electric metasurfaces are identical. For the non-identical case, chiral effect
will occur, which is outside the scope of this paper. The scattering electric and magnetic fields due to
J−

o are Es−
ox e−jk(z+a/2)x̂ and Es−

ox
η e−jk(z+a/2)ŷ respectively for z > −a/2 region, and Es−

ox ejk(z+a/2)x̂ and
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(a)

(b)

(c)

Figure 1. Working principle of the effective magnetic surface impedance produced by double-layer
planar electric surface. Red color denotes the primary exciting fields, and green one denotes the
responding induced current and scattered fields. The superscript ‘−/+’ distinguish the field quantities
on the left/right metasurface. (a) Two electric metasurfaces separated by distance a under the normal
incidence. The exciting electric field can be decomposed into odd and even components, producing
the odd and even surface currents, as shown in (b) and (c). (b) The incident magnetic field excites
differential electric fields (odd mode) acting on the metasurfaces to produce the odd mode surface
electric current. (c) The average incident electric field produces the even mode surface electric current
on the metasurfaces.
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−Es−
ox

η ejk(z+a/2)ŷ respectively for z < −a/2 region. Similarly, the scattering electric and magnetic fields

due to J+
o are Es+

ox e−jk(z−a/2)x̂ and Es+
ox
η e−jk(z−a/2)ŷ respectively for z > a/2 region, and Es+

ox ejk(z−a/2)x̂

and −Es+
ox

η ejk(z−a/2)ŷ respectively for z < a/2 region, where Es−
ox = −Es+

ox since J−
o = −J+

o .
The total electric field acting on the metasurface at z = −a/2 is

E−
t =

(
1
2
jωμ0aH i

y + Es−
ox + Es+

ox e−jka

)
x̂, (8)

which induces the surface electric current

J−
o = −2

Es−
ox

η
x̂. (9)

Applying the surface electric impedance definition J = YeE to Eqs. (8) and (9), we can determine Es−
x

given the incident field H i
y as

Es−
ox =

1
2
jωμ0aη

−2
Ye

+ η
(
e−jka − 1

)H i
y ≈

1
2
jωμ0aη

−2
Ye

− jkaη
H i

y. (10)

With these, the electric field difference and effective magnetic current M′
eff produced by Jo is defined

and calculated as

M′
eff

def=
(
E+

o − E−
o

) × ẑ

=
[(

Es+
ox + Es−

ox e−jka
)
−

(
Es−

ox + Es+
ox e−jka

)]
x̂× ẑ

≈ 2jkaEs−
ox ŷ, (11)

where E±
o are the total scattered electric fields at z = ±a/2 respectively. They are equal in amplitude

but out of phase. In addition, The effective magnetic current caused by the vacuum within the region
between z = −a/2 and z = a/2 is

M′′
eff

def= ΔEi ×−ẑ ≈ jωμ0aH i
yŷ. (12)

The total magnetic fields at z = −a/2 − δ and z = a/2 + δ, which can be shown to be equal, are

Ht =
(

H i
y −

jka

η
Es−

ox

)
ŷ, (13)

with δ being a positive infinitesimal number.
According to definition, the effective magnetic surface impedance of the slab, which consists of the

two electric metasurfaces as well as the vacuum between them, is found as

Zm
eff =

M′
eff + M′′

eff

Ht
≈

jωμ0a
2
Ye

2
Ye

+ ωμ0a

(
−1

2
ka + j

) . (14)

As can be seen, the separation distance a between the two electric metasurfaces gives rise to the effective
magnetic surface impedance. When a = 0, Zm = 0.

2.2. Effective Surface Electric Admittance

The incident electric field Ei excites the even mode surface electric current Je as shown in Fig. 1(c).
The scattered EM fields by Je can be obtained in a similar way. The total electric field acting on the
metasurfaces at z = ±a/2 is found as

Et =
(
Ei

x + Es−
ex + Es+

ex e−jka
)

x̂, (15)
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where Es−
ex = Es+

ex is produced by the even mode current J−
e and J+

e respectively. Et induces the surface
electric current

J±
e =

−2Es−
ex

η
x̂. (16)

Using the surface electric impedance definition as above, we obtain

Es−
ex =

−Ei
x

2
Yeη

+ 1 + e−jka
. (17)

With it, the effective electric current produced by Je is

J′
eff

def= ẑ × (
H+

e − H−
e

)
=

−2Es−
ex

η

(
1 + e−jka

)
x̂, (18)

where H±
e are the total scattered magnetic field at z = ±(a/2 + δ), respectively, and δ is a positive

infinitesimal number.
In addition, the incident Ei

x also introduces difference of the incident magnetic fields at z = ±a/2.
According to Ampere’s law ∮

L
Hi · dl = jωε0

∫
S
Ei · ds, (19)

we get

H i−
y ŷ · dlŷ + H i+

y ŷ · −dlŷ = jωε0dl

∫
Ei

xe−jkzx̂ · dzx̂, (20)

where H i±
y are the incident magnetic field complex amplitudes at z = ±a/2 respectively. Eq. (20) can

be simplified as
ΔHi =

(
H i−

y − H i+
y

)
ŷ ≈ jωε0aEi

xŷ. (21)

The effective electric current (i.e., displacement current) produced by the vacuum between the two
metasurfaces can be defined and calculated as

J′′
eff

def= −ẑ× ΔHi = jωε0aEi
xx̂, (22)

With Eqs. (15), (18) and (22), the effective surface electric admittance due to the two electric
metasurfaces is obtained as

Y e
eff =

J′
eff + J′′

eff

Et
≈

[
2 +

(ka)2

2

]
Ye + jωε0a. (23)

As can be seen, when the separation distance a = 0, the effective surface electric admittance is just the
parallel admittance of the two electric metasurfaces.

3. SIMULATION VERIFICATION

To verify the derived formulas of the effective surface impedances, we modeled the two parallel electric
metasurface illustrated in the inset of Fig. 2(a) using a commercial EM software based on Finite Element
Method. Both metasurfaces have the electric surface admittance Ye = 1/(80 + j100), and they are
separated by 3 mm. The effective surface impedances are retrieved by the formulas

Y e = (2/η) [1 − (R + T )] / [1 + (R + T )] , (24a)
Zm = (2η) [1 + (R − T )] / [1 − (R − T )] , (24b)

where η = 377Ω, R and T are the reflection and transmission coefficients of the model for normal
incidence with the reference planes located at the two metasurfaces [24]. The simulation and theoretical
results are given in Fig. 2. It can be seen that good agreements are achieved, which validates the derived
formulas. In addition, the theory for the effective surface impedances can be generalized to two electric
metasurfaces separated by any distance if the approximation e−jka ≈ 1 − jka is not taken. Hence,
two parallel electric metasurfaces with any distance in between can provide both effective electric and
magnetic surface impedances.
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(a) (b)

Figure 2. Simulation verification of the derived formulas for the effective (a) surface electric admittance
and (b) surface magnetic impedance of the two parallel electric metasurfaces.

4. APPLICATION IN HIGH EFFICIENCY POLARIZATION CONVERSION

In regard of applications, the advantage of using parallel planar electric metasurfaces to produce effective
surface magnetic impedance is the simplified structure and fabrication procedure compared to metallic
loop structures [23, 24]. The loop structure requires vias in realization, which are too complicated to
realize at very high frequencies, such as optical frequencies. In these frequency spectrum, simple and
planar structures are more compliable with present fabrication technologies [25, 34, 35]. Hence, the
proposed synthesis method in this paper is more compatible with practical fabrication capabilities. We
will show that not only the effective magnetic surface impedance can be realized by the proposed
method, but also the effective electric surface impedance, which is also important in metasurface
designs, can be designed and adjusted simultaneously, with no influence on the effective magnetic surface
impedance, by adding a middle layer electric surface. In other words, the effective surface electric and
magnetic impedances can be designed individually and easily using the proposed synthesis method. To
demonstrate this point, as an example, we designed a linear to circular polarization converter using
only multiple planar electric metasurfaces, which can completely convert the linearly polarized incident
waves to the circularly polarized transmitted waves with no energy reflection. High energy transmission
is desired to improve signal noise ratio in practice, which requires both surface magnetic and electric
impedance in synthesis. With only single layer electric impedance surface, as in [25, 24, 35], the incident
energy will be partly reflected, leading to lower transmission efficiency.

The effective surface impedance of this polarization converter is calculated to be Ye =(
j0.0022 0

0 −j0.0022

)
and Zm =

(
−j312 0

0 j312

)
. Fig. 3(a) illustrates the unit cell structure to implement

the required anisotropic surface impedance. It consists of three layers of electric metasurfaces; each
one only provides the surface electric admittance. The metasurfaces on the top and bottom layers are
identical. They provide the effective surface magnetic and electric impedances. As known from Eqs. (14)
and (23), when the thickness parameter a is fixed, the effective surface impedance Zm

eff and Y e
eff are

only determined by the surface electric admittance Y e of each physical metasurface layer. Hence, after
we optimize the Ye to obtain the required Zm

eff produced by the top and bottom layers, Y e
eff can not be

changed any more. To obtain the required Y e
eff , we insert another metasurface as the middle layer as

shown. The inserted layer produces the electric surface admittance that is parallel with that produced
by the top and bottom layers. They contribute to the total effective surface electric admittance required
in design. Moreover, it can be shown that the insertion of the middle layer does not change the effective
surface magnetic impedance, so that these two types of surface impedance can be designed individually.

The unit cell has the dimension of 10 mm by 10 mm by 1.6 mm. The metallic wire width is 0.3 mm,
and its conductivity is 5.8e + 07 S/m. The distance between the two polarities of the capacitor gap
is 0.3 mm. The width of the capacitors in the x direction on the top and bottom layers is 0.8 mm,
and that on the center layer is 1.9 mm. The width of the capacitors in the y direction on the top and
bottom layers is 1.22 mm, and that on the middle layer is 1.09 mm. The relative dielectric constant of
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(a) (b)

(c) (d)

(e) (f)

Figure 3. (a) Unit cell of the planar linear to circular polarization converter. (b) Parallel electric
metasurfaces to produce effective surface electric and magnetic impedances. (c), (d) Realized anisotropic
surface impedance tensors for polarization conversion. Nearly unity transmission magnitude and null
reflection is achieved at 14 GHz, with (e) −45◦ and (f) 45◦ transmission phase for two orthogonally
polarized incident waves, respectively.

the substrate is 2.2, loss tangent 0.002.
Figure 3(b) shows the effective surface electric and magnetic impedances generated only by the top

and bottom layers. The real parts of the retrieved surface impedance are not shown because of their
small values. Note that there is no the middle layer as shown in the inset figure. The effective surface
magnetic impedance for the y component of magnetic field is j312 at 14 GHz, which is equal to the
required parameters given above. The effective surface electric admittance is, however, j0.0260, which
is different from the required value. Hence, a middle electric metasurface is inserted to compensate this
mis-match. As shown in Fig. 3(c), the effective surface electric admittance is now j0.0022, which is equal
to the require value. In addition, adding the middle layer doesn’t change the effective surface magnetic
impedance, as can be seen from the equality between the curves of Im(Zm

yy) in Figs. 3(b) and (c). This is
because the odd mode of incident electric field, that excites the circulating electric current as illustrated
in Fig. 1(b), is zero at the middle layer. By the same procedure, the required effective is obtained for the
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orthogonally polarized incident wave, as shown in Fig. 3(d). Figs. 3(e) and (f) show the transmission
and reflection of the unit cell for two normal incident waves with mutually orthogonal polarizations. As
seen, at 14 GHz, nearly unity transmission magnitude and null reflection is achieved, and transmission
phase is ±45◦ for these orthogonally polarized waves. Therefore, this device can transform a linearly
polarized waves to circularly polarized wave in transmission with high energy efficiency.

5. CONCLUSION

In summary, we have rigorously proved that effective surface magnetic impedance can be implemented by
parallel planar metasurfaces with identical surface electric admittances. The effective magnetic current is
excited by the odd mode of the incident electric field because of the time-varying magnetic field, whereas
the effective electric current is due to the even mode of the incident electric field. The displacement
current and magnetic field between the planar metasurface layers also contribute to the effective
surface impedance. A polarization converter composed of three layers of planar electric metasurfaces is
presented, which verifies the theoretical prediction. Under oblique incidence, even and odd modes still
exist in the incident electric field, so that effective surface magnetic and electric impedance can still
be obtained with planar electric metasurfaces in a similar way. In addition, the proposed idea may be
generalized to achieve surface magnetic impedance tensors using parallel metasurfaces with tenor electric
surface impedance. Effective chiral effect can also be obtained if parallel metasurfaces with different
surface electric impedances are employed. Conventionally, effective surface magnetic impedance had
to be realized using metallic loop structures, which requires the use of vias or non-planar fabrication
process. The proposed planar structure and synthesis method effectively simplifies metasurface designs
and fabrications.
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