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A Low Cost Instantaneous Frequency Measurement System

Hossam Badran* and Mohammad Deeb

Abstract—A new low cost method for implementing an Instantaneous Frequency Measurement (IFM)
system is presented in this paper. The proposed method is based on dividing the incoming RF signal into
four signals and filtering each one by an appropriate band-pass filter. The frequency is then estimated
from the power level of the filtered signals. A closed form for the Standard Deviation (STD) and the bias
of the frequency estimator is derived. A design example for an IFM system with a working frequency
band of 2 to 4GHz is presented with simulated and measured results. The design is implemented on a
commercial FR4 (DE104) substrate using printed circuit board technology. Experiments in a laboratory
show a maximum error of about 15 MHz in estimating the frequency value.

1. INTRODUCTION

Instantaneous Frequency Measurement (IFM) systems are an important part of many Electronic Warfare
(EW) and electronic intelligence (ELINT) systems. Their role is to determine the carrier frequency of
the incoming RF signal over a wide band of frequencies [1, 2]. A conventional IFM system divides
the incoming signal into two signals and delays one of them with respect to the other using a delay
line with a specified length, then the phase difference between the delayed and non-delayed signal is
measured and utilized to extract the frequency value. The phase difference is measured using a phase
discriminator, which is most often implemented using power dividers hybrid couplers, and square law
detectors [3]. To obtain high accuracy in measuring the frequency, the IFM system components must
be carefully designed and fabricated. A very good matching and isolation between the components
is required, and the sensitivity of the detectors must be matched very closely. In addition, the delay
line loss must be compensated by an equal loss in the direct path [4]. To meet these requirements, an
advanced fabrication technology is needed which increases the cost.

Some simpler and lower cost methods but with poor accuracy were presented, by using coplanar
strips (CPS) delay-line and multiple band-stop filters [5–7].

In this paper, a new simple and low cost method for implementing an IFM system is presented.
The block diagram of the proposed system is shown in Figure 1. It consists of a limiting amplifier
4-way power divider, four band-pass filters (BPF), four logarithmic detectors, four analog to digital
converters (ADCs) and a processing unit. The path from each output port of the power divider through
the connected band-pass filter, logarithmic detector, and the ADC forms a so called channel.

The RF signal at the system input is amplified by the limiting amplifier to a specified power level
of Psat, then it is divided by the power divider to four signals withe qual amplitudes.

Each signal will pass through one of the four band-pass filters where it will be attenuated according
to its frequency, thus the frequency of the incoming RF signal can be estimated by measuring the power
level of the four filtered signals. The power level of each filtered signal is measured by the logarithmic
detector at the filter output. A logarithmic detector produces a voltage proportional to the signal power
level at its input. The voltages at the logarithmic detectors outputs are sampled by the ADC’s, and
the data are fed to the processing unit where the frequency estimation task is performed.
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Figure 1. Block diagram of the proposed IFM system.

2. DETAILED DESCRIPTION OF THE SYSTEM

Assuming an RF signal with unknown frequency f0 present at the system input, the limiting amplifier
will amplify and clip this signal to a constant amplitude corresponding to a power level of Psat [9, 10].
The limiting amplifier used in this work has a nominal output power of Psat = 0 dBm.

The signal will then be divided by the 4-way power divider to four signals with equal power level
of Psat − 6 dB, where 6 dB is the power attenuation caused by the power divider.

Each signal will pass through one channel of the system, where it will be filtered by the
corresponding band-pass filter. Designing the band-pass filters is the most important part in the system,
the shape of the frequency response of these filters will determine the accuracy of the system. Design
considerations of these filters are presented in the next section. Figure 2 shows an example of four
band-pass filters that cover the frequency band 2 to 4 GHz.
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Figure 2. Frequency response of a sample band-pass filters.

The power level of the signal at each filter output is:

PBPF k = Psat − 6 + Ak(f0), k = 1, . . . , 4 (1)

Here Ak(f) is the frequency response in dB of the band-pass filter in channel number k.
The logarithmic detector at each channel will provide a measure of this power.
A logarithmic detector converts the RF signal present at its input to a corresponding decibel-scaled

output voltage, given by [8]:
Vo = m(Pin − Pintercept) (2)



Progress In Electromagnetics Research M, Vol. 59, 2017 173

0

0.5

1

1.5

2

-70 -60 -50 -40 -30 -20 -10 0 10 20

V
o

u
t
[V

]
Pin [dBm]

Pintercept

Figure 3. Response of the AD8318 logarithmic detector.

Here Pin is the signal power level at the input expressed in dBm, m the slope of the detector’s transfer
function expressed in V/dB, and Pintercept the intercept point. Equation (2) is valid over a specified
dynamic interval from Pdet-min to Pdet-max. Figure 3 shows the output voltage of a sample logarithmic
detector, it has a slope of m = −25 mV/dB, Pintercept = 20 dBm, and a dynamic interval from −55 to
−5 dBm.

Inserting Equation (1) into Equation (2), gives the output voltage of each logarithmic detector that
is:

Vok = m (Psat − 6 dB + Ak(f0) − Pintercept)
Δ=Gk(f0), k = 1, . . . , 4 (3)

The function Gk(f) is called the transfer function of channel number k, which is the voltage at the
logarithmic detector output as a function of the input signal frequency.

3. DESIGNING THE BAND-PASS FILTERS

As previously mentioned, the shape of the frequency response of the band-pass filters will determine
the accuracy of the system. Thus, designing these filters must take into account some considerations.

Also it was mentioned that the signal power level at the logarithmic detector input must be higher
than Pdet-min, so that the signal can be detected and properly measured by the logarithmic detector,
i.e.,

Psat − 6 dB + Ak(f) ≥ Pdet-min, or, Ak(f) ≥ Pdet-min + 6dB − Psat (4)

Equation (4) shows that the usable part of the frequency response of the filter is the part that
has an amplitude higher than Pdet-min + 6dB− Psat. This imposes the first constraint on designing the
band-pass filters, that is: the usable part of the frequency response of the four filters must cover the
required frequency band of the system.

The second constraint comes from the fact that a filter with a sharper frequency response produces
more accurate estimation of the frequency (as it will be shown in Section 5); consequently, the filter
pass-band — the flat part of its frequency response — doesn’t serve in the estimation process. Thus,
the flat part of the frequency response of each filter must overlap the frequency response of an adjacent
filter.

As long as these two conditions are met, the degree of the filters can be increased to get sharper
frequency response, and thus more accurate estimation of the frequency.

Note that increasing the degree of filters will increase the time delay for the output signal to reach
its steady state, which will increase the response time of the system. This time delay is better measured
by simulation for the filters integrated with the power divider. For the designed system, ADS software
is used to measure the delay time from the power divider input to the filters outputs, and simulation
shows that the signals at the filters output will reach their steady state after a maximum delay of 25 ns.

Also, it must be mentioned that any number of filters can be used to increase the system accuracy,
but this will increase the complexity of the system. In this design, we choose to use four filters to
minimize the system complexity.
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4. TRANSFER FUNCTIONS OF THE SYSTEM AND DATA MODEL

Equation (3) gives the voltages at the logarithmic detectors outputs, where Gk(f) is the transfer function
of channel number k.

To be able to estimate the frequency f0 from the voltages Vo1, . . . , Vo4, the transfer function of
each channel must be known. To do that, the transfer functions Gk(f)’s are measured at a laboratory.
Measuring of Gk’s is performed by applying a reference signal with known frequency fm to the system
input and measuring the voltages Vo1, . . . , Vo4 at the logarithmic detectors outputs. The measured
voltages are stored into four vectors G1, . . . , G4. Then the reference signal frequency fm is changed by
fine steps to scan the frequency band W of the system.

Determining the transfer functions of the system by measurements rather than using mathematical
model is more beneficial because measurements contain non-ideal (but systematic) behavior of the
system components, such as:

- The variation of the nominal value of the limiting amplifier output power Psat with frequency.
- The amplitude imbalance at the power divider output ports.
- The variation of the logarithmic detector characteristics (i.e., the slop m and Pintercept) with

frequency.
After the transfer functions of the system have been measured, the voltages at the logarithmic detectors
outputs can be expressed using these transfer functions as:

Vok = Gk(f0) + nk, k = 1, . . . , 4 (5)

Here nk is the noise voltage at the output of the logarithmic detector in channel number k. These noises
are assumed to be uncorrelated with zero mean and variance σ2.

The output power level of the limiting amplifier may drift from its nominal value Psat. This drift
occurs because of temperature changes. It is distributed equally between all channels, and show up as
a voltage drift e0 at the output of the four logarithmic detectors.

Temperature changes also have effect on the output voltage of the logarithmic detectors that will
be subjected to small drifts e1, e2, e3, e4.

Taking these voltage drifts into account, Equation (5) becomes:

Vok = Gk(f0) + e0 + ek + nk, k = 1, . . . , 4 (6)

These voltage drifts are caused by temperature changes, so they have a slow variation nature and can
be considered fixed within short time interval, or within the time of acquiring samples. The voltages
Vo1, . . . , Vo4 are sampled by the ADC at each channel. For pulsed RF signals, the sampling is performed
only within the pulse duration.The acquired samples are:

Z1[i] = G1(f0) + e0 + e1 + n1[i]
Z2[i] = G2(f0) + e0 + e2 + n2[i]
Z3[i] = G3(f0) + e0 + e3 + n3[i]
Z4[i] = G4(f0) + e0 + e4 + n4[i], i = 1, . . . , N

(7)

Here N is the number of acquired samples.
The previous equations represent the data model, and the samples Z1[i], . . . , Z4[i] are fed to the

processing unit where an estimation algorithm is performed to estimate the frequency value f0.

5. ESTIMATING THE FREQUENCY

To estimate the frequency value f0 from the samples Z1[i], . . . , Z4[i], the Least Square (LS) estimator
is used, where the estimated value f̂0 of frequency is the value that minimizes the function J in (8):

J(f) =
N∑

i=1

(Z1[i] − G1(f))2 + (Z2[i] − G2(f))2 + (Z3[i] − G3(f))2 + (Z4[i] − G4(f))2

f̂0 = min
f

(J(f))

(8)



Progress In Electromagnetics Research M, Vol. 59, 2017 175

Taking into account that the transfer functions G1, . . . , G4 are stored as numeric values,
minimization of J is performed numerically

The performance of the LS frequency estimator is evaluated in Appendix A. the standard deviation
(STD) of this estimator is given by:

STD(f̂0) ≈
√

σ2
/
N

G′2
1 (f0) + G′2

2 (f0) + G′2
3 (f0) + G′2

4 (f0)
(9)

and the bias is given by:

bias(f̂0) = E
(
f̂0 − f0

)
≈ e1G

′
1(f0)+e2G

′
2(f0)+e3G

′
3(f0)+e4G

′
4(f0)+e0 [G′

1(f0)+G′
2(f0)+G′

3(f0)+G′
4(f0)]

G′2
1 (f0) + G′2

2 (f0) + G′2
3 (f0) + G′2

4 (f0)
(10)

where:
G′

k(f) =
∂Gk(f)

∂f
, k = 1, . . . , 4 (11)

If the voltage drifts are within the interval from −emax to emax, then, the maximum absolute value
of the bias is given by (see Appendix A):

max bias(f̂0) = emax
|G′

1(f0)|+|G′
2(f0)|+|G′

3(f0)|+|G′
4(f0)|+|G′

1(f0)+G′
2(f0)+G′

3(f0)+G′
4(f0)|

G′2
1 (f0) + G′2

2 (f0) + G′2
3 (f0) + G′2

4 (f0)
(12)

We note that the bias of the estimator depends on the voltage drifts e0, . . . , e4, and these voltage drifts
have a slow variation over time (as mentioned in Section 4), thus performing multiple measurements for
the same signal within a short time interval cannot improve the bias, but it can decrease the STD of the
estimator. However, we will see that the estimator bias is much higher than its STD.Thus, performing
multiple measurements for the same signal can’t effectively improve the estimation.

Equations (9) and (10) show that the STD and the bias of the frequency estimator depend on
the frequency value f0 and are inversely proportional to G′

k. This means that a system with sharper
transfer functions produces a more accurate frequency estimate.

Note that in a well designed system, the transfer function Gk has nearly the same shape of the
frequency response of the band-pass filter number k. This makes Equations (9) and (12) to be of great
importance when designing the bandpass filters. The filters are designed and simulated using software
design tools, while Equations (9) and (12) provide a prior knowledge about the resulting estimator
accuracy, thus the frequency response of the filters can be adjusted in order to minimize the variance
and the bias of the estimator.

Calculating the LS estimator needs to compute the function J(f) in Equation (8) and then, find
its minimum. This will need some time to be done depending on the platform used for performing the
calculations. Some notes can be made to decrease the calculations time.

Noting that the function J(f) can be written as

J(f) =
N∑

i=1

(
Z2

1 [i]
)

+ NG2
1(f) − 2G1(f)

N∑
i=1

(Z1[i]) +
N∑

i=1

(
Z2

2 [i]
)

+ NG2
2(f)

−2G2(f)
N∑

i=1

(Z2[i]) +
N∑

i=1

(
Z2

3 [i]
)

+ NG2
3(f) − 2G3(f)

N∑
i=1

(Z3[i])

+
N∑

i=1

(
Z2

4 [i]
)

+ NG2
4(f) − 2G4(f)

N∑
i=1

(Z4[i]).

The quantities
N∑

i=1
(Zk[i]) and

N∑
i=1

(Z2
k [i]) can be computed during sampling process, and the quantity

G2
k(f) is pre-computed and stored in a memory. Once the sampling process is finished, the quantities

N∑
i=1

(Zk[i]) and
N∑

i=1
(Z2

k [i]) will be ready, and the computation of function J(f) can start.
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The use of field programmable gates array (FPGA) to perform calculations is reasonable here,
because the calculations can be performed in parallel at different points of frequencies.

Using pipelining technique, the calculation of J(f) at each frequency point can be performed
during one clock (if 100 MHz clock is used, then the clock period is 10 ns), but this requires the use of
8 multipliers, 11 adders, and one comparators, working simultaneously.

Thus using 80 multipliers, 110 adders, and 10 comparators, make it possible to calculate J(f) at
10 points of frequency during one clock cycle.

In the presented 2 to 4 GHz system, the transfer functions are measured at a frequency step of
2MHz, thus the number of the frequency points is M = 1000. So we need 100 clock cycles to compute
J(f), which corresponds to 1µs.

The proposed number of arithmetic elements are very usual in a medium density FPGA.
Using high density FPGA circuit can offer more arithmetic elements, and can reduce the calculations

time to a few hundreds of nanoseconds.

6. DESIGN EXAMPLE AND EXPERIMENTAL RESULTS

An IFM system with working frequency band W from 2 to 4 GHz is designed and implemented. The
microwave circuit of the system is shown in Figure 4, and it consists of a 4-way power divider (1 : 4
PD and four band-pass filters (BPF1, BPF2, BPF3, BPF4), and port P1 is the input port, and ports
P2, P3, P4, P5 are the output ports.

(b)(a)

Figure 4. (a) Layout of the microwave circuit. (b) Photograph of the fabricated microwave circuit.

The 4-way power divider is designed using three identical 2-way Wilkinson power dividers with one
section, and each 2-way power divider is designed at center frequency of 3GHz. Figure 5(a) shows the
4-way power divider with physical dimensions.

The lengths of the transmission lines between the first 2-way divider and the other two, and
between the power divider and the band-pass filters are a1, a2, a3, a4, a5, a6. These lengths are adjusted
by simulation to achieve the desired frequency response from input to output ports, i.e., |S21|, |S31|,
|S41|, |S51|.

The physical dimensions of the power divider are shown in Table 1 (in mm).

Table 1. Physical dimensions (in mm) of the fabricated 4-way power divider.

Dimension Dimension Dimension
W1 0.808 d3 1.213 a3 12.5
W2 1.516 r 4 a4 15.5
d1 4.064 a1 14 a5 10.95
d2 1 a2 8.75 a6 10.95
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(a) (b)

Figure 5. (a) The designed 4-way power divider. (b) Prototype of the designed band-pass filters.

The value of the three resistors R is 100 Ω.
Four 4th order Butterworth band-pass filters are designed using coupled lines with tapped input

and output topology. The center frequencies of these filters are: 2.39, 2.75, 3.36, 3.64 GHz, and the
−3 dB band width are: 260, 270, 230, 280 MHz, respectively. The prototype of these filers is shown in
Figure 5(b).

The physical dimensions of these filters are shown in Table 2 (in mm).
The circuit is implemented on an FR4 (DE104) substrate with a dielectric constant of 4.2, loss

tangent of 0.02, and thickness of 0.8 mm. Figure 6(a) shows the simulated and measured insertion
losses from the input to the output ports, i.e., |S21|, |S31|, |S41|, and |S51|. The simulation is carried
out using the ADS EM simulator software. As shown, there is a good agreement between the simulated
and measured values. There is high ripple in the measured values at an amplitude level below −50 dB.
This ripple is caused by cables and SMA connectors and will not affect the estimation process because
the logarithmic detectors will not respond to signals with such a low amplitude.

Table 2. Physical dimensions (in mm) of the designed band-pass filters.

BPF1 BPF2 BPF3 BPF4 BPF1 BPF2 BPF3 BPF4
L1 10.62 9.42 8.26 7.4 W2 1.53 1.53 1.53 1.53
L2 5.11 3.99 2.4 2.32 W3 1.49 1.49 1.51 1.51
L3 17.5 15.11 12.26 11.33 W4 1.49 1.49 1.51 1.51
L4 17.38 15.02 12.22 11.29 W5 1.53 1.53 1.53 1.53
L5 17.5 15.11 12.26 11.33 S1 0.57 0.67 1.02 0.92
L6 4.99 4.24 2.57 2.44 S2 0.96 1.08 1.51 1.38
L7 10.62 9.42 8.27 7.4 S3 0.57 0.67 1.02 0.92
W1 1.52 1.52 1.52 1.52

A limiting amplifier with Psat = 0dBm is placed at the system input, and the AD8318 logarithmic
detector from ANALOG DEVICES is placed at the output of each filter. The typical values of slope and
Pintercept of this logarithmic detector are stated as −24.4 mV/dB and from 19.6 to 25 dBm respectively
within the interval from 1.9 to 5.8 GHz. The dynamic range of the AD8318 logarithmic detector is from
−55 to −5 dBm.

The transfer functions of the system have been measured at a laboratory several times at different
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Figure 6. (a) EM simulated (dot), and measured (solid) values of |S21|, |S31|, |S41|, |S51|. (b) Measured
transfer functions of the system, G1, G2, G3, and G4.

degrees of temperature and averaged. The measured transfer functions are clipped manually to a
maximum value of 2 V. Figure 6(b) shows the measured transfer functions.

The transfer functions have nearly the same shape of the measured insertion loss shown in
Figure 6(a) but with up-down flipping. The difference between the two shapes is due to the changes in
logarithmic detectors response with frequency and the non-perfect matching of the detectors.

After measuring the transfer functions of the designed system, the frequency of the incoming signal
can be estimated using the LS estimator. The performance of the frequency estimator is evaluated using
Monte-Carlo simulation, the following values are assumed in simulation:

- The variance of noise at logarithmic detectors output is σ2 = (10mV)2.
- The number of acquired samples from each channel is N = 25 samples.
- The voltage drifts e0, . . . , e4 are uniformly distributed within the interval from −10 to 10 mV, and

they are fixed in each simulation run.

Simulation results show that the STD of the frequency estimator is less than 1.3 MHz, and it is very
close to the approximated value computed from Equation (9), as shown in Figure 7.
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Figure 7. Approximated (red), and simulated (blue) STD of the frequency estimator.

Also, the maximum absolute bias of the frequency estimator is less than 15 MHz, and it is very
close to the approximated value computed from Equation (12), as shown in Figure 8.

The maximum absolute value of the bias is relatively high and attains 15 MHz at some frequencies.
In practice, the maximum bias is reached only for certain values of the voltage drifts. So in order to see
how the bias is distributed between its maximum and minimum values, the 90% confidence interval is
calculated by simulation. Assuming that the voltage drifts are uniformly distributed over the interval
from −10 to 10 mV, the 90% confidence interval of the bias is less than 10 MHz, as shown in Figure 8.
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Figure 8. Approximated (red) and simulated (blue) maximum absolute bias of the frequency estimator.
And the 90% confidence interval of the bias (green).

7. CONCLUSION

In this paper, a new low cost method for implementing an IFM system is presented. In this method, a
set of four band-pass filters are used to estimate the frequency of the incoming RF signal. The accuracy
of this method is analyzed and described by closed forms. A design example with working frequency
band of 2 to 4GHz is presented with simulated and measured results. For practical values of noise
and measurements drifts, the designed system shows an accuracy of less than 10 MHz over most of the
working frequency band and less than 15 MHz over the total working frequency band.

APPENDIX A.

The Least Square (LS) estimator is used to compute an estimated value f̂0 for f0. The variance and
bias of this estimator will be evaluated in this appendix.

The estimated value f̂0 is the value that minimize the function J(f) in Eq. (A1).

J(f) =
N∑

i=1

(Z1[i] − G1(f))2 + (Z2[i] − G2(f))2 + (Z3[i] − G3(f))2 + (Z4[i] − G4(f))2 (A1)

Instead of minimizing J(f), the LS estimator can be found as the solution of Equation (A2)

∂J(f)
∂f

∣∣∣∣∣
f=f̂0

= 0 = −2
N∑

i=1

{(
Z1[i] − G1(f̂0)

)
G′

1(f̂0) +
(
Z2[i] − G2(f̂0)

)
G′

2(f̂0)

+
(
Z3[i] − G3(f̂0)

)
G′

3(f̂0) +
(
Z4[i] − G4(f̂0)

)
G′

4(f̂0)
}

(A2)

Where
G′

k(f) =
∂Gk(f)

∂f
, k = 1, . . . , 4 (A3)

And this solves the equation:(
Z̄1−G1(f̂0)

)
G′

1(f̂0)+
(
Z̄2−G2(f̂0)

)
G′

2(f̂0)+
(
Z̄3−G3(f̂0)

)
G′

3(f̂0)+
(
Z̄4−G4(f̂0)

)
G′

4(f̂0) = 0 (A4)

where Z̄k is computed from Eq. (7) as:

Z̄k =
1
N

N∑
i=1

Zk[i] = Gk(f0) + e0 + ek +
1
N

N∑
i=1

nk[i] = Gk(f0) + e0 + ek + n̄k (A5)

Replacing Eqs. (A5) into (A4) gives(
G1(f0) + e0 + e1 + n̄1 − G1(f̂0)

)
G′

1(f̂0) +
(
G2(f0) + e0 + e2 + n̄2 − G2(f̂0)

)
G′

2(f̂0)+(
G3(f0) + e0 + e3 + n̄3 − G3(f̂0)

)
G′

3(f̂0) +
(
G4(f0) + e0 + e4 + n̄4 − G4(f̂0)

)
G′

4(f̂0) = 0
(A6)
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Note that the transfer functions of the system do not suffer from fast variations and can be approximated
by a line in the vicinity of f , thus

Gk(f0) − Gk(f̂0) ≈ (f0 − f̂0)G′
k(f0) (A7)

Replacing Eq. (A7) into Eq. (A6) and rearranging gives

f̂0−f0 ≈ 1
A

[
(e0+e1+n̄1) G′

1(f0)+(e0+e2+n̄2)G′
2(f0)+ (e0+e3+n̄3)G′

3(f0)+(e0+e4+n̄4) G′
4(f0)

]
(A8)

where:
A = G′2

1 (f0) + G′2
2 (f0) + G′2

3 (f0) + G′2
4 (f0) (A9)

Taking the variance of both sides of Eq. (A8) gives the variance of the LS estimator:

var(f̂0) ≈
σ2

/
N

A
(A10)

Taking the expectation of both sides of Eq. (A8) gives the bias of the estimator:

bias(f̂0) = E
(
f̂0−f0

)
≈ 1

A

[
(e0+e1) G′

1(f0)+(e0+e2) G′
2(f0)+ (e0+e3)G′

3(f0)+(e0+e4) G′
4(f0)

]
≈ 1

A

[
e1G

′
1(f0)+e2G

′
2(f0)+e3G

′
3(f0)+e4G

′
4(f0)+e0

(
G′

1(f0)+G′
2(f0)+G′

3(f0)+G′
4(f0)

)]
(A11)

Assuming that the voltage drifts e0, e1, e2, e3, e4 are within the interval [−emax, emax], the maximum
absolute bias is

max bias(f̂0) ≈ emax

A

∣∣G′
1(f0)

∣∣+∣∣G′
2(f0)

∣∣+∣∣G′
3(f0)

∣∣+∣∣G′
4(f0)

∣∣+∣∣G′
1(f0)+G′

2(f0)+G′
3(f0)+G′

41(f0)
∣∣ (A12)
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