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The Role of Hybrid Modes in Extraordinary Optical Transmission
through a Plasmonic Nanohole Array

Christopher Trampel*

Abstract—A mode-matching solution to plane wave scattering by a plasmonic nanohole array
consisting of a silver film perforated by an infinite square array of circular holes is presented. A complete
orthonormal basis set consisting of waveguide modes satisfying an impedance boundary condition on
the hole wall is derived. Impedance boundary conditions are satisfied on the upper and lower horizontal
surfaces of the film and on the walls of the hole. Extraordinary optical transmission (EOT) is studied
over optical wavelengths. Theory predicts a peak transmission value that is in better agreement with
experiment than previous modal studies. The effect of film thickness on coupling between modes bound
to the upper and lower surfaces is studied. The transmission profile for thinner films evinces two peaks
at different wavelengths resulting from strong coupling between surface waves bound to the upper and
lower surfaces. For thicker films, the surface waves decouple and a single peak is observed. The effect
of hole radius on EOT is considered. It is demonstrated that transmission peaks occur for holes of a
roughly constant electrical size. A relationship between the lattice constant and the transmission-to-area
efficiency is quantified.

1. INTRODUCTION

Structured noble metals have been the subject of much interest in recent years due to their potential
as nanophotonic devices [1]. A number of useful optical and plasmonic properties of such metals have
been observed [2–6]. Plasmonic nanostructures exhibit properties that differ from bulk geometries
due to electron confinement [7]. Nanometallic objects are able to trap incident radiation, focusing
it into very small volumes. Gold nanoparticles have been used to concentrate electromagnetic fields
to increase Raman scattering in a molecular identification technique known as surface-enhanced
Raman spectroscopy (SERS) [8]. Nanoparticles may be used to control membrane processes via
thermoplasmonics [9, 10]. Nanostars have been used in cancer imaging based on surface-enhanced
resonance Raman scattering (SERRS) [11]. Krenn et al. [12] report enhancement of over 600% in a
chain of nanometer scale gold particles. The ability to confine light on very small scales circumvents a
fundamental limitation of dielectric waveguides. In order for a mode to propagate along a waveguide
with a dielectric core, the diameter of the core must be greater than half a wavelength in the core
medium dcore ≥ λ0/(2ncore), the so-called diffraction limit. Here dcore is the core diameter, λ0 the free
space wavelength, and ncore the refractive index of the core. Due to the fact that their permittivity
is negative at optical frequencies, conservation of momentum dictates that noble metals be able to
support guided modes for smaller core diameters. Several plasmonic waveguide geometries have been
proposed, including nanowires [13] and stripes [14]. Maier et al. demonstrate local energy transport
along a waveguide consisting of silver rods [15]. As the losses in the metal limit propagation length,
metal-insulator-metal (MIM) waveguides have also been studied [16]. Such waveguides typically consist
of a dielectric layer sandwiched between two metal stripes. In MIM waveguides, coupling between
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surface plasmon polaritons on opposite metal surfaces confines the mode to the dielectric region where
resistive losses are smaller.

This article focuses on electromagnetic scattering from a silver film perforated by a periodic
array of circular holes (Figure 1). Such plasmonic nanohole arrays have been used extensively as
biosensors [17, 18]. The frequency at which a plasmon supported by the nanoaperture array is excited is
very sensitive to the refractive index of the surrounding material. Thus, plasmon frequency shifts may
be used to detect the presence of an analyte binding to the surface of the biosensor [19]. Nanohole arrays
have been intensely studied since the discovery that they allow much greater optical transmission [20]
than single holes [21]. Much experimental and theoretical effort has been focused on understanding
this extraordinary optical transmission (EOT). Numerical studies of periodic hole arrays have been
made using the finite-difference time-domain (FDTD) method. Baida and Van Labeke study zero-order
transmission efficiency through a gold film as a function of incident wavelength [22]. They demonstrate
that transmission efficiency can be improved by replacing the holes with an array of annular apertures.
Similar structures have been studied in the frequency-domain via scattering matrix methods [23].
Biswas et al. leverage the scattering matrix approach to study a subwavelength triangular lattice of
holes in a platinum film coupled to a silicon photonic crystal [24]. Their model predicts a resonant
absorption of incident radiation over infrared frequencies.
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Figure 1. (a) Top and (b) side-view of silver film perforated by an infinite array of circular holes. The
region above the film is designated 1, inside the hole 2, and below the film 3.

Martin-Moreno and Garcia-Vidal have studied scattering by a subwavelength square lattice of
circular holes in a silver film via mode-matching [25]. Their approach may be summarized as follows.
Above and below the film, the fields are expanded in terms of TM and TE Floquet harmonics. Waveguide
modes are used inside the hole where the walls are treated as a perfect electric conductor (PEC). The
unknown coefficients are found by enforcing boundary conditions at the upper and lower surfaces of
the film. While the silver is treated as a PEC in [25], it is replaced with an impedance boundary
condition (IBC) on the top and bottom surfaces of the film in [26]. The walls of the hole remain
perfectly conducting, however. Zhang et al. [27] conduct a similar theoretical study of EOT through
an array of circular holes. In their approach, the waveguide modes are determined by assuming an
exponentially decaying field outside the hole rather than imposing an impedance boundary condition
on the wall. While this approach is exact for an isolated hole, the assumption that the field in the
metal can be modeled by a Hankel function with an imaginary argument may be problematic for a
periodic geometry. Their approach agrees well with experimental data with respect to the position of
transmission peaks and nulls. However, no quantitative measure of the error in the peak amplitudes
is given. Impedance boundary conditions were also used to analyze transmission through an array of
rectangular holes [28]. The assumption of an impedance boundary condition on the hole wall yields
excellent quantitative results. Both the position and amplitude of the transmission peaks agree well
with experiment.

This article extends the formalism in [26] to include an IBC on the walls of the hole. The addition of
an impedance boundary condition on the hole walls is a significant improvement as it allows for a finite
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tangential electric field on the wall surface. It also avoids the necessity to phenomenologically enlarge
the holes to capture penetration into the metal [29]. The results herein predict a peak transmission that
is much closer to the experimental value than that presented in [26]. While previous mode-matching
studies predict similar qualitative results, the theory presented here permits accurate quantitative study
of the EOT phenomenon. In addition, this approach avoids any explicit assumptions regarding the form
of the solution in the metal region. The article is organized as follows. Section 2 introduces the scalar
decomposition used to split the fields into TE and TM components. Section 3 details the derivation
of the waveguide modes in the hole region with an impedance boundary condition on the walls. The
modal expansions above and below the film and in the hole region are discussed in Section 4. A set of
matrix equations for the unknown coefficients is solved in Section 5. Section 6 includes a discussion of
the results, while our conclusions are collected in Section 7.

2. SCALAR DECOMPOSITION

For a preferred direction along the z-axis, the frequency-domain electric and magnetic fields may be
written in terms of transverse magnetic (TM) and transverse electric (TE) scalar potentials thus [30]

E = ∇×∇× [ẑψ] + ıωμp∇× [ẑϕ] (1)

H = −ıωεp∇× [ẑψ] + ∇×∇× [ẑϕ]. (2)
Here ω is the frequency and εp, μp are respectively the permittivity and permeability of region p.
Cylindrical coordinates are employed inside the hole. In cylindrical coordinates, the components of
the electric and magnetic fields are

Ez =
(
∂2

∂z2
+ k2

p

)
ψ (3)

Eρ =
∂2ψ

∂ρ∂z
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1
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where k2
p = ω2εpμp. Above and below the film, the scalar potentials and fields are expressed in Cartesian

coordinates
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The strategy for finding the potentials is as follows. Above and below the film, the Bloch-Floquet
theorem guarantees a complete discrete basis set consisting of TE and TM Floquet modes [31]. Inside
the hole, I expand the fields in terms of waveguide modes derived by imposing an impedance boundary
condition on the hole wall. For azimuthal numbers other than zero, these waveguide modes involve
coupled TE and TM potentials. As the hole region is radially finite, the waveguide modes are also a
complete discrete basis [32]. The unknown coefficients are determined by enforcing boundary conditions
on the upper and lower horizontal interfaces over a single unit cell.

3. WAVEGUIDE MODES

First I must determine the eigenmodes of the hole region while imposing an impedance boundary
condition on the walls. I begin by writing the TM and TE potentials as Fourier series

ψh(ρ, φ, z) =
∞∑

n=−∞
anJn(γρ) exp(ınφ) exp(ıβz) (15)

ϕh(ρ, φ, z) =
∞∑

n=−∞
bnJn(γρ) exp(ınφ) exp(ıβz) (16)

where Jn(γρ) is the Bessel function of the first kind, n an integer, β the axial wavenumber, γ2 = k2−β2,
and an and bn are unknown coefficients. On the walls of the hole I impose the following impedance
boundary condition

Etan = Zn̂×H (17)

where n̂ is a unit vector normal to the surface, and Z =
√
μm/εm is the surface impedance of the metal.

In this case n̂ = −ρ̂. I employ the Drude free electron model [33] for the silver permittivity

εmr = 1 − ω2
p

(ω2 + ıγpω)
(18)

where γp is a damping coefficient, and the plasma frequency ωp = 2π(8980)
√
ne depends on the electron

number density ne. Here the damping coefficient γp = 9×1013 and the plasma frequency ωp = 1.37×1016.
The IBC Eq. (17) leads to two equations

Ez(a) = −ZHφ(a) (19)

and
Eφ(a) = ZHz(a). (20)

Substituting Eqs. (15) and (16) into Eqs. (19) and (20) and exploiting orthogonality yields[
γ2Jn(γa) + ıZωεγJ′n(γa)

]
an − Zβn/aJn(γa)bn = 0 (21)

and
βn/aJn(γa)an +

[
ıωμγJ′n(γa) + Zγ2Jn(γa)

]
bn = 0. (22)

The system may be rewritten in matrix form ZnCn = 0. Here

Cn =
[
an

bn

]
. (23)

I find the eigenvalues by sweeping over the axial wavenumber β to find the zeros of the determinant of
the system matrix Zn[

γ2Jn(γa) + ıZωεγJ′n(γa)
] [
ıωμγJ′n(γa) + Zγ2Jn(γa)

]
+ Zβ2n2/a2J2

n(γa) = 0. (24)

The coefficients anj and bnj are found from the eigenvectors of Zn, where the second subscript indexes
the eigenvalue βnj associated with eigenvector Cnj.
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Each mode was subsequently normalized by ensuring the following orthogonality condition was
satisfied ∫ 2π

0

∫ a

0
ẑ ·Ep ×H

∗
qρdρdφ =

{
δpq, �{βp,q} = 0
−ıδpq, �{βp,q} > 0

(25)

where Ep is the electric field due to the waveguide mode mi, Hq the magnetic field due waveguide
mode nj, and βp,q are the eigenvalues for modes p and q, respectively. The first case where �{βp,q} = 0
corresponds to propagating modes. Such modes carry real power in the direction of propagation.
The condition �{βp,q} > 0 identifies modes that evanesce in the z-direction. Evanescent modes carry
imaginary power along axis of the waveguide which accounts for the ı multiplying the delta function in
Equation (25). Once (25) is satisfied, the resulting modes form a complete orthonormal basis over the
area of the hole.

The evolution of the modes from decoupled TE and TM modes in the case of perfectly conducting
walls to hybrid modes in the IBC case is of some interest. Note that when the surface impedance Z is
set to zero, Equation (24) reduces to

Jn(γa)J′n(γa) = 0. (26)
Two families of solutions result. The eigenvalues of the TM modes for a PEC guide are obtained from
the zeros of the Bessel function, while the eigenvalues of the TE modes may be obtained from the zeros
of the first derivative of the Bessel function. Thus Equation (24) may be viewed as a generalization of
the characteristic equation for the eigenvalues of a circular PEC waveguide.

The polarization of the incident field, together with symmetry considerations, determines the modes
that are excited inside the hole. The azimuthal symmetry of the hole dictates that the overlap integrals
between the incident field and the hybrid modes vanish for azimuthal numbers other than n = 1 or
n = −1. Therefore, there is a strong coupling between the doubly-degenerate n = 1 mode and the
incident plane wave.

4. EIGENFUNCTION EXPANSIONS

4.1. Incident Field

The excitation is a plane wave of arbitrary angle and frequency incident from region 1. Define the
following rotation matrices:

R(φ0) =

[ cos(φ0) sin(φ0) 0
− sin(φ0) cos(φ0) 0

0 0 1

]
(27)

and

R(θ0) =

[ 1 0 0
0 cos(θ0) sin(θ0)
0 − sin(θ0) cos(θ0)

]
(28)

along with the vectors

k
(0) =

⎡
⎣ k0

x
k0

y

k0
z

⎤
⎦ (29)

and

P
(0) =

[ cos(α0)
sin(α0)

0

]
. (30)

Here the incident propagation direction vector k(0) is defined by

k
(0) = −

[ sin(θ0) cos(φ0)
sin(θ0) sin(φ0)

cos(θ0)

]
. (31)

The incident electric and magnetic fields are given by E
(0) = R(θ0)R(φ0)P

(0) and H
(0) = kk

(0) ×
E

(0)
/(ωμ0).
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4.2. Regions 1 and 3

Above and below the film, the fields are expanded in terms of TM and TE Floquet modes:

ψ(1,3)
mn (x, y, z) = A(1,3)

mn exp
[
ıkmn · ρ ± ıβmn(z ∓ t/2)

]
/
√
DxDy (32)

and
ϕ(1,3)

mn (x, y, z) = B(1,3)
mn exp

[
ıkmn · ρ ± ıβmn(z ∓ t/2)

]
/
√
DxDy (33)

where kmn = 2π(mx̂/Dx + nŷ/Dy), ρ = xx̂+ yŷ, β2
mn = k2 − (2πm/Dx)2 − (2πn/Dy)2, and A(1,3)

mn and
B

(1,3)
mn are unknown coefficients. The transverse electric and magnetic fields associated with each mode

are given by

E
(1,3)′
tmn (x, y, z) = ∓ (

βmnkxx̂+ βmnkyŷ
)
ψ(1,3)

mn (x, y, z), (34)

H
(1,3)′
tmn (x, y, z) =

(
ωεkyx̂− ωεkxŷ

)
ψ(1,3)

mn (x, y, z), (35)

E
(1,3)′′
tmn (x, y, z) =

(−ωμkyx̂+ ωμkxŷ
)
ϕ(1,3)

mn (x, y, z), (36)

and
H

(1,3)′′
tmn (x, y, z) = ∓ (

βmnkxx̂+ βmnky ŷ
)
ϕ(1,3)

mn (x, y, z) (37)

where kx = 2πm/Dx and ky = 2πn/Dy. When m = n = 0, two additional modes are necessary to span
the space

E
(1,3)′(z) = A

(1,3)
00 exp[±ık(z ∓ t/2)]x̂

H
(1,3)′(z) = ±k/(ωμ)A(1,3)

00 exp[±ık(z ∓ t/2)]ŷ
(38)

and

E
(1,3)′′(z) = B

(1,3)
00 exp[±ık(z ∓ t/2)]ŷ

H
(1,3)′′(z) = ∓k/(ωμ)B(1,3)

00 exp[±ık(z ∓ t/2)]x̂.
(39)

4.3. Region 2

Inside the hole, I expand the fields in a series consisting of the waveguide modes defined in Section 3.
The transverse components of the total field inside the hole are therefore

E
(2)
t (ρ, φ, z) =

∑
nj

[Cnj exp(ıβnjz) +Dnj exp(−ıβnjz)]
[
Eρnj(ρ)ρ̂ +Eφnj(ρ)φ̂

]
exp(ınφ) (40)

and

H
(2)
t (ρ, φ, z) =

∑
nj

[Cnj exp(ıβnjz) −Dnj exp(−ıβnjz)]
[
Hρnj(ρ)ρ̂ +Hφnj(ρ)φ̂

]
exp(ınφ) (41)

where

Eρnj(ρ) = ıβnjγnjJ′n(γnjρ)anj − ωμnJn(γnjρ)/ρbnj (42)

Eφnj(ρ) = −nβnjJn(γnjρ)/ρanj − ıωμγnjJ′n(γnjρ)bnj (43)

Hρnj(ρ) = ωεnJn(γnjρ)/ρanj + ıβnjγnjJ′n(γnjρ)bnj (44)

Hφnj(ρ) = ıωεγnjJ′n(γnjρ)anj − βnjnJn(γnjρ)/ρbnj (45)

and Cnj and Dnj are unknown waveguide mode coefficients.
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5. MATRIX EQUATIONS

I enforce an impedance boundary condition on the metal-air interfaces and continuity of the tangential
electric field over the hole area at z = ±t/2:

E
(1,3)
t =

⎧⎨
⎩±Zẑ ×H

(1,3)
, ρ ≥ a

E
(2)
t (±t/2), ρ < a.

(46)

Testing (46) with the appropriate TM or TE mode leads to the following matrix equations

Z(e1)A+ V
(e0) = M(e1)

[
D(1)C

(+) + D(2)C
(−)

]
(47)

and
Z(e2)B = M(e2)

[
D(2)C

(+) + D(1)C
(−)

]
. (48)

The matrices
Z(e1)

uv =
∫

U
Hu · E(1)

v dxdy − Z

∫
S
Hu · ẑ ×H

(1)
v dxdy (49)

and
M (e1)

uv =
∫

H
Hu · E(2)

v ρdρdφ (50)

contain the overlap integrals between testing Hu = ẑ ×H
∗
tmn and basis functions E(1,3)

v = E
(1,3)
tpq and

H
(1,3)
v = H

(1,3)
tpq . Here E(2)

v = Eρnj(ρ)ρ̂+Eφnj(ρ)φ̂ is the electric field associated with a waveguide mode,
U the area of the unit cell, S the area covered by the metal, and H the area of the hole. The integrals
over the azimuthal direction were calculated analytically while the remaining integral over the radial
direction was computed by quadrature. The matrices D(1,2)

vv = exp(±ıβnjt/2) contain phase terms for
each waveguide mode. The overlap integrals between regions 2 and 3 are included in

Z(e2)
uv =

∫
U
Hu · E(3)

v dxdy − Z

∫
S
Hu · ẑ ×H

(3)
v dxdy (51)

and
M (e2)

uv =
∫

H
Hu · E(2)

v ρdρdφ. (52)

The overlap between testing functions and the incident field is contained in the vector

V (e0)
u =

∫
U
Hu · E(0)

dxdy − Z

∫
S
Hu · ẑ ×H

(0)
dxdy. (53)

The vector A contains the unknowns from region 1, and B contains the unknowns from region 3.
C

(+)
v = Cnj and C(−)

v = Dnj are the unknown waveguide mode amplitudes.
Continuity of the tangential components of the magnetic field is enforced over the hole area only

H
(1,3)
t = H

(2)
t (±t/2), ρ < a. (54)

Testing the magnetic field with waveguide modes leads to the following matrix equations:

M(h1)A+ V
(h0) = D(1)C

(+) − D(2)C
(−) (55)

M(h2)B = D(2)C
(+) − D(1)C

(−) (56)

where
M (h1)

uv =
∫

H
Eu ·H(1)

v ρdρdφ (57)

and
M (h2)

uv =
∫

H
Eu ·H(3)

v ρdρdφ (58)
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contain the overlap integrals between regions 1 and 2 and 2 and 3, respectively. Here I test with the
electric field of a waveguide mode given by Eu = −ẑ × [E∗

ρmi(ρ)ρ̂ + E∗
φmi(ρ)φ̂]. The basis functions in

region 1 and 3 are given by H(1,3)
v = H

(1,3)
tpq . Once again, the overlap between testing functions and the

incident field is contained in the vector

V (h0)
u =

∫
H
Eu ·H(0)

ρdρdφ. (59)

It remains to solve for the unknown coefficients contained in A and B. I begin by solving for the
waveguide mode coefficient vectors C(+) and C(−):

C
(+) = M(f)−1

[
S

(e0) + S
(h0)

]
(60)

C
(−) = −Q(mr)−1Q(pr)C

(+)
. (61)

The intermediate quantities are defined in the Appendix. The unknown vectors A and B are determined
from C

(+) and C(−):

A = Z(e1)−1
[
−V (e0) + M(e1)D(1)C

(+) + M(e1)D(2)C
(−)

]
(62)

B = Z(e2)−1
[
M(e2)D(2)C

(+) + M(e2)D(1)C
(−)

]
. (63)

Once B is known, the transmission through the film may be calculated.

6. RESULTS

Consider transmission through a 320 nm thick silver film perforated by a square array of circular holes
of radius 140 nm and lattice constant 750 nm at normal incidence (Figure 2). The transmission-to-area
efficiency is defined as the ratio between the energy transmitted through the film to the area of the film
covered by the holes. The holes cover only 11% of the area of the film, yet the peak transmission is
nearly 15%, a transmission-to-area efficiency of roughly 130%. Martin-Moreno and Garcia-Vidal further
point out that single aperture theory (which assumes a PEC screen) predicts a transmission efficiency
on the order of 1% in this frequency regime. The much larger transmission through the perforated film
relative to that predicted by single aperture theory explains the descriptor “extraordinary” in the name
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Figure 2. (Color online) Theoretical extraordinary transmission through a 320 nm thick silver film
perforated by an array of circular holes of radius 140 nm and lattice constant 750 nm at normal incidence
(a) from 400 to 1000 nm and (b) from 775 to 800 nm.
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of the phenomenon. Note also the presence of the null in the transmission profile at a wavelength of
750 nm associated with Wood’s anomaly.

The theory presented here agrees well with the experimental peak transmission through a finite
array of 21 × 21 circular holes ([34], Figure 1). The method herein predicts the amplitude of the first-
order SPP transmission peak to within a relative error of ±15% of the experimental value. Previous
modal approaches significantly over-estimate the transmission around a wavelength of 800 nm, ranging
from 43% [29] if an IBC is imposed on the upper and lower horizonatal surfaces only to 50% [34] for an
infinite PEC array. Small variations in the finite array hole diameters may explain the broader peaks
in the experimental data. However, the overestimation of peak transmission is related to the boundary
condition on the hole wall.

The improved agreement between experiment and theory when an IBC is included in the hole
may be attributed to a more realistic model of the fundamental mode. For sufficiently subwavelength
apertures at optical wavelengths, the fundamental mode dominates the fields inside the hole. When an
IBC is imposed on the hole wall, the fundamental is the hybrid HEM11 mode (Figures 3 and 4). Here
the azimuthal number is one and I take the first eigenvalue. Both TM and TE potentials contribute to
the fundamental under the IBC approximation. Notice that a significant tangential electric field exists
on the surface of the hole at ρ = a (Figures 3(a), (b) and 4(a), (b)). If the IBC is replaced with a PEC
as in [29] and [34], the fields are squeezed to allow a null on the hole wall (Figures 3(c), (d) and 4(c),
(d)). In order to compensate for this, Martin-Moreno and Garcia-Vidal enlarge the hole by assuming
an effective hole radius equal to the original value plus twice the skin depth [29]. Enlarging the hole
extends the field past the true hole radius and neglects losses in the silver. Energy that should be
absorbed leaks through and the transmission is overestimated.
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Figure 3. (Color online) Normalized z-component of the electric field for the fundamental mode at a
wavelength of 790 nm. The x and y-axes have been normalized by the hole radius. The panels show
the (a) real and (b) imaginary parts of the field for the fundamental hybrid HEM11 mode used with an
IBC on the hole wall. The remaining panels show the (c) real and (d) imaginary parts of the field for
the fundamental TE11 mode used with a PEC boundary condition on the hole wall.

Next I study the impact of film thickness, hole radius, and lattice constant on the transmission
profile for the purpose of identifying a mechanism for EOT. Surface plasmon polaritons tied to the
interface between a dielectric and a metal have been included in a possible mechanism [34, 35]. While
the exact role of surface waves in EOT has been a matter of debate, they help to explain the results
reported herein. First, note that transmission through the film is a strong function of the film thickness
(Figure 5). The transmission peaks are associated with waves bound to the top and bottom surfaces.
When the film is thin, coupling between the upper and lower surfaces is strong and two peaks at
different wavelengths may be observed. As the film thickness increases, the coupling weakens and the



154 Trampel

(a)

 

 

 -1 0 1
 -1

0

1

-0.5

0

0.5

1

(b)

 

 

 -1 0 1
 -1

0

1

-1

0

1

(c)

 

 

 -1 0 1
 -1

0

1

-1

0

1

(d)

 

 

 -1 0 1
 -1

0

1

-1

0

1

Figure 4. (Color online) Normalized φ-component of the electric field for the fundamental mode at a
wavelength of 790 nm. The x and y-axes have been normalized by the hole radius. The panels show
the (a) real and (b) imaginary parts of the field for the fundamental hybrid HEM11 mode used with an
IBC on the hole wall. The remaining panels show the (c) real and (d) imaginary parts of the field for
the fundamental TE11 mode used with a PEC boundary condition on the hole wall.
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Figure 5. (Color online) Theoretical transmission for the film thicknesses listed in the panel.

peaks merge. The response for the 500 nm thick film is dominated by uncoupled surfaces waves.
Both the amplitude and position of the the transmission peaks are affected by the hole radius

(Figure 6). Unsurprisingly, larger holes transmit more energy through the film. The peaks also shift
towards longer wavelengths as the radius of the hole increases. This wavelength shift is related to the
resonant character of the transmission process. The peaks occur for holes of a certain size relative to
the wavelength. As the wavelength increases, this relative size remains roughly constant. The peak
position increases to maintain the resonant ratio between hole radius and wavelength.

The lattice constant also significantly affects the transmission profile (Figure 7). The peaks
consistently occur at a wavelength slightly greater than the lattice constant. The amplitude of the
transmission peaks decreases as the lattice constant increases. For a constant hole radius, a smaller
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Figure 6. (Color online) Theoretical transmission for the hole radii listed in the panel for a 320 nm
thick film with lattice constant 750 nm.
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Figure 7. (Color online) Theoretical transmission for the lattice constants listed in the panel for a
320 nm thick film with hole radius of 140 nm.

fraction of the film area is covered by the holes as the lattice constant increases and less energy is
transmitted. However, the transmission-to-area efficiency is not constant with respect to lattice constant
(Figure 8). For a lattice constant D = 600 nm, 17% of the film area is covered by the holes. I observe a
maximum transmission of approximately 57% for a transmission-to-area efficiency of roughy 335%. The
efficiency decreases to 68% for a lattice constant of 800 nm. Smaller lattice constants appear to be more
efficient than larger lattice constants. Surface waves again help to explain this trend. Martin-Moreno et
al. identify modes supported by a single interface with parallel momentum 2π/D, the so-called first-
order surface plasmon polariton [34]. As the lattice constant decreases, more parallel momentum is
carried by the first-order SPP. The surface wave traps more energy that is funneled through the film by
the fundamental mode.
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Figure 8. (Color online) Theoretical transmission-to-area efficiency as a function of lattice constant.

7. CONCLUSIONS

A mode-matching solution to plane wave scattering by a silver film perforated by an infinite array of
circular holes has been presented. Impedance boundary conditions have been imposed on all surfaces.
While the approach detailed herein is quite general, it has a few limitations. As the hybrid modes
form a complete orthogonal basis set over the hole region, they are sufficient to represent the fields
inside a hole of arbitrary radius. However, the larger the hole with respect to wavelength the more
modes are necessary to accurately represent the field. The method is valid in wavelength regimes where
the impedance boundary condition remains an accurate approximation. The results predict a peak
transmission value that is in good agreement with experiment. Extraordinary optical transmission has
been studied as a function of film thickness, hole radius, lattice constant, and angle of incidence. The
transmission profile position, shape, and amplitude are strong functions of film thickness, hole radius,
and lattice constant. The coupling between modes bound to the upper and lower surfaces is strongly
affected by film thickness. The resonant nature of the EOT process dictates that transmission peaks
occur for holes of a roughly constant electrical size. Small lattice constants transmit energy more
efficiently than larger ones for the film under study. The results support the inclusion of surface waves
in the mechanism for EOT.

APPENDIX A. INTERMEDIATE MATRIX DEFINITIONS

P(p) = M(h1)Z(e1)−1M(e1)D(1) − D(1) (A1)

P(m) = M(h1)Z(e1)−1M(e1)D(2) + D(2) (A2)

R
(e0) = M(h1)Z(e1)−1V

(e0) (A3)

R
(h0) = V

(h0) (A4)

Q(p) = M(h2)Z(e2)−1M(e2)D(2) − D(2) (A5)

Q(m) = M(h2)Z(e2)−1M(e2)D(1) + D(1) (A6)
The dimension of these matrices is N , the number of Floquet modes used in the series. Often more
modes are needed to represent the fields above and below the film than inside the hole. This results in
nonsquare matrices upon testing. In order to solve the system, I reduce the dimensionality of the larger
matrices:

P(pr) = P(p)
1:Nh,1:Nh

(A7)

P(mr) = P(m)
1:Nh,1:Nh

(A8)
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Q(pr) = Q(p)
1:Nh,1:Nh

(A9)

Q(mr) = Q(m)
1:Nh,1:Nh

. (A10)

Here Nh is the number of waveguide modes in the hole region.

M(f) = Q(pr) − Q(mr)P(mr)−1P(pr) (A11)

S
(e0) = −Q(mr)P(mr)−1R

(e0) (A12)

S
(h0) = Q(mr)P(mr)−1R

(h0) (A13)
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