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A Lightweight Robust Indoor Radio Tomographic Imaging Method
in Wireless Sensor Networks

Xiao Cao1, Hongchun Yao1, Yixian Ge2, and Wei Ke3, 4, *

Abstract—In recent years, radio tomographic imaging (RTI) is an emerging device-free localization
(DFL) technology enabling the localization of people and other objects without requiring them to carry
any electronic device. Different from other DFL techniques, the RTI method makes use of the changes
of received signal strength (RSS) measured on links of the network to estimate the radio frequency
(RF) attenuation field and forms an image of the changed field. This image is then used to infer
the locations of targets within the deployed network. However, there still lacks an efficient scheme
which can achieve robust location estimation performance with low computational cost. To solve this
problem, we propose a lightweight robust RTI approach in this paper. The proposed method not
only can reduce the algorithm’s storage and computational resource requirements, but also exploits the
location information of wireless measurement nodes to improve the accuracy of the localization result,
which ensures its robust performance. The effectiveness and robustness of the proposed scheme are
demonstrated by experimental results where the proposed algorithm yields substantial improvement for
localization performance and complexity.

1. INTRODUCTION

The proliferation of wireless communication and mobile computing has driven the demand of indoor
location-based services (LBSs). Due to the low-cost advantage, a common approach to localization in
wireless sensor networks (WSNs) is active RSS-based localization, wherein a radio device is attached
to the target to be localized [1–5]. The target’s location is estimated by using RSS measurements
between its radio device and other nodes in the network whose locations are known. However, in some
applications such as battlefield surveillance, emergency rescue, and security safeguard, it is impractical
to equip the target with a wireless device. Under these situations that conventional localization systems
cannot be used, RSS-based DFL systems can infer the target’s location by measuring the target’s effect
on the RSS of the network’s links. Therefore, RSS-based DFL without the need of carrying any device
has recently become an attractive technology for determining an uncooperative target’s position [6, 7]
Moreover, DFL techniques can also be used to reinforce existing device-dependent localization techniques
to improve localization accuracy. In addition, compared with the existing device-free techniques such as
infrared detector, video monitor and UWB radar detector, RSS-based DFL brings several advantages
over other technologies by being able to work in obstructed environments, see through smoke, darkness,
and walls, while avoiding the privacy concerns raised by video cameras.

As an emerging technique with promising application prospects, several RSS-based DFL approaches
have been proposed in recent years. One significant approach of DFL is the fingerprint-based method,
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which matches the RSS samples collected online with the radio map constructed offline. Youssef et
al. [7] originally adopted radio maps to store the RSS measurement of every link when the target
is located at every possible location, and then matched the observed RSS to the training data for
determining the target’s location. Then, the different fingerprint-based DFL method were further
studied, e.g., in [8–10] under the same framework. Recently, Xiao et al. [11] made use of channel-state-
information (CSI) to generalize the radio map, which provides a higher dimensional measurement per
link which can then improve DFL performance. To investigate localization performance over time in a
changing environment, Mager et al. [12] performed lots of experiments to quantify how changes in an
environment affect accuracy, and proposed a correlation method for channel selection to help achieve a
lower localization error rate even as the environment changes. The fingerprint-based method can well
describe the relationship between link measurement and target location, but the training process is time
consuming and labor intensive. Moreover, any significant change on the environment implies a costly
new recalibration.

Another category of DFL is the geometric-based method. Instead of exploiting the offline training,
the geometric-based method detects the wireless link line information affected by targets and uses
simple operations on geometric objects to realize DFL. Geometric methods proposed in [13, 14] used
a sensor-grid deployment and the overlap of shapes defined by shadowed links to estimate the target
location. A disadvantage of the methods in [13, 14] is that no prior information about the target’s
possible location is used to filter succeeding location estimates, making them sensitive to noise. To
overcome this shortcoming, the geometric-filter (GF) method in [15] used a threshold value to detect
the target-affected links, and then defined a circular prior region to remove outlying links and points.
Finally, a location estimate was generated using the weighted mean of remaining points inside the
circular prior region. However, the approach that treats the intersection points of shadowed links as
probable target locations in the GF algorithm is a coarse approximation method. Moreover, the weight
values are generated empirically, which may sometimes be unreasonable, and hence the performance of
the GF algorithm based on the weighted mean method is not stable and particularly sensitive to the
multipath fading effects.

Motivated by the success of the computed tomography method in medical and radar systems,
references [16–18] formulated the DFL model as a radio tomography imaging problem. In [16], Wilson
and Patwari introduced an elliptical model to describe the spatial impact area of a target on a wireless
link, and then formed an image of the changed field by using the Tikhonov regularized method. The
model assumes that the RSS of the link will change when a target is located inside the ellipse. The
performance of RTI may be further improved with the assistance of frequency diversity [17], antenna
diversity [18], power diversity [19] and compressive sensing [20–23]. Different from the elliptical model,
Hamilton et al. [24] proposed a novel inverse area elliptical model (IAEM), which defines that the
shadowing effect of a target on a wireless link is inversely proportional to the size of the smallest
ellipse that contains the target. Recently, based on extensive experiments or the diffraction theory,
the exponential-Rayleigh model (ERM) [25], diffraction model (DM) [26] and saddle surface model
(SaS) [27] are proposed to model the RSS changes, and they are all incorporated into the particle filter
framework to realize DFL.

Although these works significantly enrich the research of the RTI, one disadvantage of these methods
is that all links in the WSN including the non-shadowed links are used to obtain the image of the
attenuation field. In fact, many experiments have demonstrated that RSS is particularly sensitive to
noise, and even the RSS measurements may still vary when the deployment area is vacant. Therefore,
if these non-shadowed links are included to generate the image of the attenuation field, localization
errors will become large because some spots that represent pseudotargets will also appear on the image.
Meanwhile, more links will result in higher dimension of the matrix, so the inversion computation of
high-dimensional matrix makes it difficult to be applied in some resource-constrained cases.

In this paper, we propose an improved RTI method to solve the above problems, which firstly
utilizes the adaptive threshold method to select the real target-affected links, and then exploits these
target-affected links to generate the image of the attenuation field. Thus, this method can not only
avoid the influence of the outlier links, but also reduce the storage and computational requirements.
Further, since the location information of wireless measurement nodes is usually known a priori, we
can use this prior information as an assisted condition to enhance the RTI accuracy. On the basis of
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the RTI result, the low-complexity quasi-distance based localization method is proposed to improve the
accuracy of the localization results.

The remainder of the paper is organized as follows. Section 2 describes the basic principle of RTI.
The details of the adaptive threshold algorithm are addressed in Section 3. The LS-based optimization
method is described in section 4. The experimental setup and experimental results are given in Section 5.
Finally, Section 6 concludes the paper.

2. THE BASIC PRINCIPLE OF RTI

Suppose that the wireless network consists of M wireless nodes with known locations, and then the
total number of wireless links with every pair of nodes is J = M × (M − 1)/2. Here, any pair of
nodes is counted as a link, whether or not communication actually occurs between them. When wireless
nodes communicate, the radio signals pass through the physical area of the network. Thus, the target’s
presence inside the monitored region causes changes in the RSS of a subset of these J links due to
scattering, reflection, diffraction or absorption. The shadowed links will be different when the target is
located at different locations, and this makes it possible to realize DFL based on the link measurements.

In RTI [16–18], the two-dimensional physical space is evenly divided into N pixels, and the
corresponding image values at these pixels due to the presence of a target are denoted by x =
[x1 x2 . . . xN ]T . The work in [16] shows the efficacy of a linear model that relates the image x to
the RSS variations Y = [y1(t) y2(t) . . . yJ(t)]:

ΔY = Φx + n (1)

where yj(t) = abs[yj(t) − yj(0)] (j = 1, 2, . . . , J) represents the change of the RSS measurement on
jth link at time t; yj(t) is the vector of RSS measurements for jth link at time t; yj(0) is the baseline
RSS measurement for jth link when the deployment area is vacant. n is a J × 1 noise vector, and Φ
is a J ×N matrix representing the weight of the target-affected contribution in each pixel on each link
measurement. As shown in Fig. 1, the weighting of pixel i on link j is formulated as [16]:

ϕji =
1√
dj

{
1, if dji1 + dji2 < dj + ρ

0, otherwise
(2)

where dji1 and dji2 are the distances from the center of pixel i to the two nodes of link j, dj the distance
between two nodes of link j, and ρ a tunable parameter defining the width of the ellipse.

Once we have the forward model, the localization problem becomes an inverse problem: to estimate
N dimensional position vector x from J dimensional link measurement vector Y. However, this problem
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Figure 1. Illustration of the elliptical weighting model.
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is an ill-posed inverse problem, since the same set of link measurements can lead to multiple different
images when J < N . Therefore, regularization techniques such as Tikhonov regularization [16] and
regularized least squares estimators [17] have been used. Here, we use the Tikhonov regularization
approach, which is given as:

x =
(
ΦTΦ + αQTQ

)−1
ΦT ΔY = ΠΔY (3)

where Q is the Tikhonov matrix and α the regularization parameter. The linear transformation Π can
be calculated beforehand enabling real-time image reconstruction.

3. LINK SELECTION BASED ON THE ADAPTIVE THRESHOLD METHOD

So far, most RTI methods exploit all J links to generate the image of the attenuation field, but the
presence of the target only causes some links to be shadowed, and those links are affected depending
on the current position of the target, as shown in Fig. 2. Once the non-shadowed links are included to
calculate the inverse problem, the quality of the obtained image will be degraded, and some pseudo-
targets’ spots will even appear on the image. Therefore, finding the affected links is essential for the
RTI method.

Wireless Node

Target

Unaffected Link

Target-affected Link

Figure 2. Illustration of the target-affected links.

In fact, many experiments have demonstrated that a link may experience distinct attenuation or
amplification due to the appearance of the target in its vicinity [15]. Therefore, if a link j can be
considered to be shadowed by the target, its corresponding change in RSS measurement yj(t) must be
above the shadowing detection threshold yth. To determine which links are shadowed by the target,
in [15] a simple fixed threshold depending on the experiential value is used to detect the target-
affected links, but this method ignores the time-varying factors on RSS measurements. In practice,
RSS measurements are not only time-varying, but RSS measurements on the same links in the network
may also significantly vary even if the deployment area is unchangeable. Therefore, using a single fixed
threshold value may result in the misclassification of some links in real environments. To overcome this
shortcoming, this paper proposes an adaptive threshold detection algorithm based on the fact that the
RSS changes of the target-affected links may have higher value than the other unaffected links.

Firstly, let k = 0 and Δy
(0)
th be defined as the initial threshold value which can be chosen empirically,

e.g., the median of Y. Then, J links are divided into two groups. If yj(t) > Δy
(0)
th (j = 1, 2, . . . , J), then

the link j belongs to group 1; otherwise, it is in group 2. Next, we calculate the mean of RSS changes
in each group and obtain them from

μ1(k) =
1
J1

J1∑
j=1

Δyj(t) and μ2(k) =
1
J2

J2∑
j=1

Δyj(t) (4)
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where J1 and J2 are the numbers of links in group 1 and 2, respectively. Correspondingly, the variance
of each group can be calculated as:

σ2
1(k) =

1
J1

J1∑
j=1

(Δyj(t) − μ1(k))2 and σ2
2(k) =

1
J2

J2∑
j=1

(Δyj(t) − μ2(k))2 (5)

In order to identify the target-affected group and unaffected group, two groups should have
maximum difference under some appropriate threshold. Hence, we define the distance between two
groups to denote this difference:

D(k) =
(
μ2(k) − Δy

(k)
th

) (
Δy

(k)
th − μ1(k)

)
(6)

At the same time, we hope that the variance of each group is small because the RSS changes in the
same group have comparability. Therefore, combining these two considerations, we obtain the threshold
selection parameter:

η(k) =
D(k)

σ2
1(k) + σ2

2(k)
(7)

Then, if Δymin < Δy
(k)
th < Δymax, let k = k + 1, Δy

(k+1)
th = Δy

(k)
th ± δ, and repeat the above process.

Δymin and Δymax are the lower and upper limits of the threshold value, and δ is the step length. Finally,
we choose the optimal threshold value Δy∗th when the condition

η|
Δy

(k)
th =Δy∗

th

= max

{
D(k)

σ2
1(k) + σ2

2(k)
, k = 1, 2, . . .

}
(8)

is satisfied, and the corresponding links in group 1 are selected to generate the RTI estimate. Thus, not
only negative effect of non-shadowed links is mitigated, but also the dimension of the model in Eq. (1)
is reduced. For completeness, a full description of the adaptive threshold detection algorithm is given
in Algorithm 1.

Figure 3. The adaptive threshold algorithm.
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4. IMPROVING RTI RESULT BY USING NODE LOCATION INFORMATION

The above improved RTI method only uses RSS measurements of those links that are above the
shadowing detection threshold to realize DFL, and thereby mitigating the noise influence and reducing
the storage and computational requirements. Although non-shadowed wireless links are reduced by
using the adaptive threshold method, not all of the detected effective links go through the vicinity of
the target. Moreover, some experiments have found that the changes of RSS in some wireless links that
are far from the target can also be above the shadowing detection threshold due to multipath effects.
Therefore, the simple threshold method cannot eliminate the negative effect of all outlier links. In
addition, the localization result from the RTI is only a approximation due to simply using the centroid
of the target’s spot as the target position. Thus, the localization coordinate rs = (xs, ys) obtained from
RTI usually deviates from the true target location coordinate r0 = (x0, y0).

On the other hand, we find that in most DFL approaches wireless measurement nodes only take
charge of communicating and measuring RSS values, but their location information is rarely utilized. In
fact, the location information of wireless measurement nodes is not only known but usually accurate as
well. This prior information can be utilized to improve the geometric localization result. Consequently,
in this section we propose a quasi-distance based localization approach by using least squares (LS)
optimization method to merge node location information into the DFL framework. Since the target still
does not carry any device in the optimization step, we cannot measure the distances between the target
and nodes by using the device-to-device method, which is different from the device-dependent distance-
based localization. Therefore, we have to use the calculated distance through the RTI localization result
and the coordinates of wireless nodes. Thus, not only the characteristic of DFL that does not carry
any device is retained, but also accurate node location information is merged into DFL to improve
localization performance.

According to the RTI localization coordinate rs = (xs, ys), the estimated distance between the
coarse target location and lth wireless measurement node is

‖rl − rs‖ =
√

(xl − xs)2 + (yl − ys)2 (9)

where rl = (xl , yl) represents the coordinates of the lth wireless measurement node, and ‖ • ‖ is
the Euclidean norm. However, the true distance between the target location and the lth wireless
measurement node is

‖rl − r0‖ =
√

(xl − x0)2 + (yl − y0)2 (10)

Generally, there is a difference between the estimated and true distances which can be defined as

el =
1
2

(
‖rl − r0‖2 − ‖rl − rs‖2

)
= −rT

l r0 + rT
l rs + ‖r0‖2 /2 − ‖rs‖2 /2 (11)

where ‖r0‖ =
√

x2
0 + y2

0 and ‖rs‖ =
√

x2
s + y2

s . Assume that L (L < M) nodes participate in the
improved RTI process, so putting the L errors together and writing them in a vector form gives

e = Aθ − b (12)

where e = [e1 e2 . . . eL]T , θ = [x0 y0 R0]T , A =

⎡
⎢⎢⎣

−x1 −y1 1/2
−x2 −y2 1/2

...
...

...
−xL −yL 1/2

⎤
⎥⎥⎦, b =

⎡
⎢⎢⎣

Rs/2 − x1xs − y1ys

Rs/2 − x2xs − y2ys
...

Rs/2 − xLxs − yLys

⎤
⎥⎥⎦,

R0 = ‖r0‖2 and Rs = ‖rs‖2.
Naturally, we hope that the error vector e can be reduced to zero. Hence, under the least squares

(LS) criterion, the improved localization result can be obtained by

θ = (ATA)−1ATb (13)

The last problem in the LS-based DFL is how to choose L nodes. In most distance-based localization
systems, the number of nodes is usually small, e.g., 3 or 4 distance measurements are enough for 2-
D or 3-D localization. Therefore, these nodes can all participate in the localization. Unlike these
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systems, the networks in DFL consist of about twenty nodes. If all nodes are used to participate in the
optimization-based DFL, it will result in high computational load, especially in the matrix inversion
computation. In fact, lots of factors can be considered to determine which node is better to participate
in the optimization, but in DFL we cannot obtain any information about the target except for RSS
measurements. Since RSS measurement is particularly sensitive to noise, it is not a good indication
to choose nodes. Therefore, we only consider the geometry effect of node configurations to select L
nodes. Generally, three nodes that are not along the same straight line are enough for 2-D localization.
However, since there is commonly the presence of measurement errors, more than three nodes are
usually used to enhance the estimation accuracy under the LS localization framework, which is also the
accustomed way in the device-dependent localization. According to the experimental results, we found
that the location information of 4–6 noncollinear nodes was usually enough to improve the RTI result.
Therefore, in most experiments, we chose only 4 nodes to participate in the optimization. Thus, the
dimension of the model in Eq. (12) is not high, and the LS-based optimization method can obtain a
good tradeoff between the tracking performance and computational complexity.

5. EXPERIMENTAL RESULTS

5.1. Physical Description of the Experiment

To demonstrate the applicability of the proposed method, we performed extensive experiments based
on a prototype RTI system in two kinds of indoor environments. The wireless nodes use the 2.4 GHz
IEEE 802.15.4 standard for communications, and the transceiver of each node is a system-on-chip (SoC)
CC2530 device with a monopole antenna. Each node is about 0.9 m off the ground on a tripod in both
environments. To avoid network transmission collisions, a simple token ring protocol is used to control
transmission. Each node is assigned an ID number and programmed with a known order of transmission.
When a node transmits, each node that receives the transmission examines the sender identification
number and reserves the RSS from the transmitting node. The receiving nodes check to see if it is their
turn to transmit, and if not, they wait for the next node to transmit. If one node does not transmit, or
the packet is corrupted, a timeout causes each receiver to move to the next node in the schedule so that
cycle is not halted. In our tests, it takes 5 ms for each node to broadcast a message, and it takes 140 ms
for all the 28 nodes to perform one cycle of measurement. A base-station node listens to all broadcasts
from the perimeter nodes and logs the RSS information to a mobile computer with 3.5 GHz processor
and 8GB memory for real-time processing.

To obtain the baseline RSS, measurements were taken for 60 s while the single human target is
outside the deployment area. Afterwards, a target walked inside the deployment area along a predefined
trajectory. In all experiments, we assume that the starting location of the target is known, which is
generally used in many tracking algorithms [20]. To evaluate the performance of the improved RTI
(iRTI) algorithm, we compare them with the traditional RTI algorithm and the geometric-based GF
method under the same experimental conditions. The tracking error is defined as the distance between
the known true target location and the estimated location obtained by each algorithm.

5.2. Performance Evaluation and Comparison

5.2.1. Localization Performance the Uncluttered Indoor Environment Scene 1)

First, we carried out the RTI experiments in the uncluttered indoor experimental environment where
twenty-eight wireless nodes were placed 1.0 m apart at the perimeter of a 7m × 7 m square area being
free from obstructions. A photograph and map of the experimental setup are shown in Figs. 4(a) and
4(b). In the experiment, a target (a person) moved clockwise along a rectangular trajectory, and its
location was estimated once per second. A metronome and uniformly placed markings on the floor help
the experimenter to take constant-sized steps at a regular time interval, and the true speed of the target
is about 0.5 m/s. The default parameters are as follows: the width of the ellipse is 0.5 m; the number of
pixels is 400; regularization parameter is 4.5. To avoid the collinear problem for positioning, we choose
one node from each border, and thus there are altogether four nodes participating in the LS process.
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(a) (b)

Figure 4. (a) Photograph of the experiment setup. (b) Geometry of the experiment setup.
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Figure 5. Cumulative distribution functions of the three algorithms in scene 1.

Figure 5 shows the error cumulative distribution functions (CDF) of the different algorithms in the
uncluttered indoor environment. We can see that the proposed iRTI approach has the least tracking
error. The proposed algorithm achieves the 90% location error at about 0.92 m, while the 90% location
errors of the GF and RTI algorithms are around 125 m and 1.45 m, respectively. Especially, the iRTI
algorithm is superior to the conventional RTI methods, which confirms the effectiveness of the proposed
scheme by exploiting the location information of nodes and the adaptive threshold technique.

The detailed statistical characteristics of the tracking errors are summarized in Table 1. Although
the tracking errors of all algorithms under the uncluttered indoor environment are small, we can see
that the tracking performance of the iRTI algorithm is better than the GF and RTI methods, with mean
tracking error reduced by 0.139 m and 0.187 m, respectively. In addition, we find that without LS-based
optimization the iRTI method can still improve mean error about 0.09 m compared with the traditional
RTI method. Moreover, the RMSE of the proposed iRTI algorithm is around 0.32 m, and the median
error is also less than 0.45 m. These two results are the smallest among all algorithms. Meanwhile, we
can find that although the traditional RTI method is also a model-based algorithm, its performance is
worse than that of the GF method under the same conditions
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Table 1. Comparisons of tracking errors — Scene 1.

Algorithm Mean (m) Median (m) RMSE (m)
iRTI 0.376 0.444 0.321

iRTI without LS 0.479 0.610 0.383
GF 0.515 0.631 0.442
RTI 0.563 0.703 0.429

5.2.2. Localization Performance in the Highly Cluttered Indoor Environment (Scene 2)

To evaluate the performance of the proposed method in rich multipath scenarios, an experiment was
also conducted in a highly cluttered indoor environment inside a laboratory where there are numerous
obstructions such as tables and other equipment. Moreover, only six nodes were placed inside the
building, and other nodes were placed outside the brick wall. A photo and map of the experimental
setup are shown in Figs. 6(a) and 6(b). In this scene, 28 nodes were deployed 1.5 m apart at the
perimeter of a 10.5m × 10.5 m square area, and the number of pixels is 900. All other settings are
similar to those in Scene 1.

(a) (b)

Figure 6. (a) Photograph of the experiment setup. (b) Geometry of the experiment setup.

Figure 7 shows the CDFs obtained by the different algorithms for Scene 2. The detailed statistical
results for Scene 2 are shown in Table 2. In the highly cluttered indoor environment, multipath effects
result in higher variation in RSS measurements. Therefore, compared with the results in Fig. 5 and
Table 1, the positioning performances of all algorithms in Scene 2 show a downward trend with different
levels in Fig. 7 and Table 2. However, since the proposed algorithm exploits the adaptive threshold
technique to dynamically select the target-affected links and utilize the node position information to
improve the RTI result, the proposed iRTI algorithm can still perform the best tracking accuracy. On
the contrary, the localization performance of the GF method significantly drops since the geometric-
based method is particularly sensitive to the multipath effects compared with that of the GF and RTI
algorithms in Scene 2. The mean tracking error of the iRTI algorithm decreases by 0.651 m and 0.467 m,
respectively. Meanwhile, we can see that although the median values of the tracking errors in three
schemes are all less than 2.0 m, the iRTI approach has significantly better performance than the other
three methods in terms of RMSE. These results confirm that the proposed algorithm is robust for being
adopted in rich multipath environments.
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Table 2. Comparisons of tracking errors — Scene 2.

Algorithm Mean (m) Median (m) RMSE (m)
iRTI 0.728 1.011 0.858

iRTI without LS 0.963 1.444 1.077
GF 1.379 1.899 1.912
RTI 1.195 1.626 1.309

5.2.3. Discussion

In this subsection, we evaluate the proposed iRTI scheme under different parameters to analyse its
performance. Fig. 8 illustrates the tracking performance with different numbers of nodes in the LS-
based optimization process for iRTI. It is observed from Fig. 8 that the improvement of tracking errors
is not conspicuous with the increase in the number of nodes, and even the accuracy decreases slightly
when the number of nodes increases to seven or higher. This means that the location information of 4–6
noncollinear nodes is enough to improve the localization result, which can help to have a good tradeoff
between the tracking performance and computational complexity.

Finally, the average running time is used as a measure to compare the computational complexity
of three algorithms. The average execution times to generate one location estimate of the different
algorithms for both scenes are shown in Fig. 9. It can be found from Fig. 9 that the GF algorithm
has the fastest running speed among three algorithms, and the executions peed of the RTI and iRTI
methods is slower than the GF algorithm. This is because the geometric-based algorithms’ execution
time scales with the number of links in the network, while the RTI-based algorithms’ execution time
scales with the grid resolution of the desired image. Therefore, with the increase of the number of
pixels, the running time of two RTI methods is obviously increased while the GF algorithm has almost
the same running time in both scenes. Since the iRTI method exploits the adaptive threshold technique
to select the target-affected links, it can reduce the dimension of the model in Eq. (1). Therefore, in
spite of adding the LS optimization process, the computational complexity of iRTI is still low, and its
execution time is less than the conventional RTI. Moreover, since the LS-based optimization method is
lightweight and can avoid performing operations on large matrices, the increment of execution time is
not too much. Considering the large performance gain that the proposed method achieves, this slight
complexity is totally acceptable.
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Figure 9. Running times of different algorithms.

6. CONCLUSION

The appeal of using DFL systems is its applicability in situations in which conventional localization
systems cannot be used. As an important type of DFL, RTI plays an increasingly important role in many
applications ranging from intrusion detection to elder care. In order to enhance tracking performance
and keep low computing complexity, this paper proposes an improved RTI method. To overcome the
negative effect of non-shadowed links, an adaptive threshold detection algorithm is proposed to find the
target-affected links. Thus, the iRTI method can not only solve the problem of outlier links, but also
reduce the algorithm’s storage and computational resource requirements. In the LS-based optimization
process, the location information of wireless nodes is exploited as an assisted condition to enhance the
RTI accuracy. To the best of our knowledge, node location information is first merged into RTI to
improve localization performance. The effectiveness of the proposed scheme has been demonstrated by
experimental results in two kinds of indoor environments where substantial improvement for localization
performance is achieved.

In our future work, we will try to explore how to realize multi-target localization. Meanwhile, for
the proposed scheme we will consider the theoretic bound on the location estimation precision.
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