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Radiation Fields of a System of Two Impedance Crossed Vibrators

Excited In-Phase and Placed over a Rectangular Screen

Nadezhda P. Yeliseyeva, Aleksey N. Gorobets,
Victor A. Katrich, and Mikhail V. Nesterenko*

Abstract—An asymptotic solution of a 3D vector diffraction problem for a vibrator system placed
over a rectangular perfectly conducting screen of finite dimensions is obtained in the framework of the
uniform geometrical theory of diffraction (UGTD) using the asymptotic expressions for the impedance
vibrator currents. The system consists of two orthogonally crossed vibrators with equal dimensions
but different surface impedances. The vibrators are excited in-phase. An algorithm and respective
software for computing the directional, power and polarization characteristics of the radiation field of
this antennas system are developed. The conditions required to form a circularly polarized radiation
with a maximally attainable directivity in the normal direction to the screen are determined depending
on the screen dimensions and the distance between the vibrators and the screen.

1. INTRODUCTION

As is known, two mutually orthogonal symmetric perfectly conducting vibrators excited by currents
with equal amplitudes and phases shifted at ΔΦ = ±π/2, and a turnstile radiator, located above a
perfectly conducting square screen of finite dimensions, form a circularly polarized wave in the forward
and backward normal directions to the screen at any distance between the vibrators and the screen [1].

A new method of forming a circularly polarized radiation by a system of two crossed vibrators
excited in-phase (ΔΦ = 0) with equal geometric dimensions but different surface impedances and placed
parallel to a perfectly conducting infinite plane was proposed in [2]. The required phase shift of the
currents was ensured by varying the vibrator impedances. It was shown that the mutually orthogonal
crossed vibrators excited in-phase but with different surface reactive impedances allow to form elliptical
(circular) polarized field. These antenna structures can be placed, for example, on a top of a car or on
a board of an aircraft unit. High frequency techniques for antenna analysis have been developed on the
base of the UGTD for an edge in a perfectly conducting surface in [3, 4].

The aim of this paper is to obtain an asymptotic solution of a 3D vector diffraction problem for
two mutually orthogonal crossed impedance vibrators excited in-phase and placed over a rectangular
perfectly conducting screen of finite dimensions and to find the required conditions of forming a circularly
polarized radiation with the maximum achievable directivity in the normal direction to the screen. We
will also study spatial amplitude and polarization characteristics, as well as a radiation resistance for
the structure under consideration.

2. PROBLEM FORMULATION

Consider a radiating system consisting of two horizontal cylindrical vibrators 1 and 2 located at a
distance h above a center O of an infinitesimally thin, perfectly conducting screen of rectangular
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Figure 1. Geometry of the problem.

geometry with side lengths L and W (Fig. 1). The geometrical length of each vibrator is 2l, and
their radii are r. Let us introduce two interrelated the Cartesian frames (X,Y,Z) and (X ′, Y ′, Z ′), and
two spherical frames (R, θ, ϕ) and (R′, θ′, ϕ′) with the origin at O.

The vibrators 1 and 2 are characterized by the constant distributed surface impedances ZS1 and
ZS2. Introduce the vibrator surface impedances, normalized by the wave resistance of the free space,
Z0 = 120πΩ,

Z̄S1,2 = R̄S1,2 + jX̄S1,2 = 2πrzi1,2/Z0, (1)

where j is the imaginary unit, and zi1,2 are the intrinsic linear impedances of the vibrators, (Ohm/m).
We consider that the vibrator impedance is purely reactive; therefore, we assume R̄S1,2 = 0.001, because
it is necessary to bring small losses. It has been put for physically correct description of electrodynamics
process under consideration, because real vibrators always have losses. Examples of concrete realizations
of the surface impedances are given in [5, 6].

Consider the case when vibrators 1 and 2 are excited in-phase by a concentrated electromotive force
with amplitude V0 in the vibrator center C. The complex current amplitudes on the thin horizontal
impedance vibrators placed over an infinite perfectly conducting plane, İHs

01,2
(kr, k̃l, kh), (the superscript

Hs is related to a half-space over the screen) can be obtained as solution of the integral equation by
the asymptotic averaging method using a quasi-one-dimensional Green’s function [5, 6]. If the current
distributions on the vibrators are İ1,2(s) = İHs

01,2
sin k̃1,2(l−|s|) (s is a local coordinate along a vibrator),

the asymptotic expressions with the accuracy to the first order in the small parameter α = 1
2 ln[r/2l]

(|α| � 1) can be written as

İHs
01,2

(
kr, k̃l, kh

)
=

(
1/k̃1,2

)

cos k̃1,2l + α
{
PFs

l

(
kr, k̃1,2l

)
+ PMir

l

[
k(h + r), k̃1,2l

]} . (2)

The complex current amplitudes İHs
01,2

(kr, k̃l, kh) include the approximating analytical functions
ṖFs

l (kr, k̃1,2l) and ṖMir
l [k(h + r), k̃1,2l], which determine the vibrator currents in the free space

(superscript Fs) and the influence of the field reflected from an infinite perfectly conducting plane
(superscript Mir) [5, 6]. The complex numbers k̃1,2 in the above considered formulas can be written as

k̃1,2 = k̃′1,2 + jk̃′′1,2 = k + j(α/r)Z̄S1,2 , (3)

where k = 2π/λ and λ is the wavelength in the free space. Analyzing formula (3), we can state
that the electrical lengths of the vibrators k̃′1,2l are varied by changing the reactive parts X̄S1,2 of the
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vibrator surface impedances Z̄S1,2 in Eq. (1), and hence, the amplitudes and phases of the currents of
the vibrators 1 and 2 in Eq. (2) are varied too.

In a primary diffraction approximation of the UGTD [1, 6], the total radiation fields of each of the
crossed vibrators 1 and 2, Ė1,2(θ, ϕ), can be represented at any observation point (θ, ϕ) as a sum of two
discontinuous geometric optical (GO) fields, Ėi(θ, ϕ), of the spherical waves incident (i = 1) from the
vibrators and reflected from the screen (i = 2), plus the fields of the singly diffracted waves, Ėin(θ, ϕ),
excited by the incident and reflected waves at each of the four screen edges (n = 1, 2, 3, 4) (Fig. 1), viz.

Ėθ1,2(θ, ϕ) =
2∑

i=1

Ėθiχi +
4∑

n=1

2∑
i=1

Ėθinχin,

Ėϕ1,2(θ, ϕ) =
2∑

i=1

Ėθiχi +
4∑

n=1

2∑
i=1

Ėϕinχin.

(4)

Here the coefficients χi are equal to unity in the illuminated area and turn to zero in the shadow zone
of the respective GO wave (i = 1, 2). The coefficients χin are equal to unity in the illuminated area
and become zeroes in the shadow zone of the wave diffracted at edge n. To conveniently represent the
equations of the light-shadow boundary for the sources of GO waves and edge-diffracted waves, we will
analyze the radiated field patterns on the surface of a sphere of infinite radius, with the center at the
origin of a Cartesian frame XY Z (R, θ, ϕ) the point O placed (Fig. 1). The equations of the light-
shadow boundaries in the angular space (θ, ϕ) can be found in [1, 7], and the expressions for the GO
and diffracted fields of the impedance vibrator are given in [6]. The amplitudes of the orthogonal field
components in Eq. (4) of the two crossed vibrators can be determined by summing the fields induced
by vibrators 1 and 2 independently. Therefore, we can write

Ėθ = Ėθ1 + Ėθ2 , Ėϕ = Ėϕ1 + Ėϕ2 . (5a)
Because mutual coupling between two mutually orthogonal vibrators is absent, the square modulus of
the total electric field are defined as∣∣∣Ė(θ, ϕ)

∣∣∣2 =
∣∣∣Ėθ1(θ, ϕ)

∣∣∣2 +
∣∣∣Ėθ2(θ, ϕ)

∣∣∣2 +
∣∣∣Ėϕ1(θ, ϕ)

∣∣∣2 +
∣∣∣Ėϕ2(θ, ϕ)

∣∣∣2 . (5b)

In the next section, we will obtain the expressions for the orthogonal field components of two orthogonal
impedance vibrators excited in-phase in the free space.

3. RADIATION FIELDS OF ORTHOGONAL IMPEDANCE VIBRATORS IN FREE
SPACE

In the frame R, θ, ϕ (Fig. 1) the complex amplitude of the electric field vector of the impedance vibrator
1 oriented along the Z axis in the far zone can be written [6] as

Ėθ1 (θ, ϕ) = Ė0İ
Fs
01
Ḟ1(θ). (6)

The field of vibrator 2 oriented along the Y axis has two components:

Ėθ2 (θ, ϕ) = −Ė0İ
Fs
02
Ḟ2 (θ, ϕ) sinϕ cos θ,

Ėϕ2 (θ, ϕ) = −Ė0İ
Fs
02
Ḟ2 (θ, ϕ) cosϕ.

(7)

In formulas (6) and (7) Ė0 = j Z0
2π

exp(−jkR)
R , İFs

01,2
are the complex amplitudes of the currents on the

impedance vibrators in the free space, derived [5, 6] as

İFs
01,2

(
kr, k̃l

)
=

(
1/k̃1,2

)

cos k̃1,2l + αṖFs
l

(
kr, k̃1,2l

) . (8)

The functions Ḟ1(θ) and Ḟ2(θ, ϕ) are defined as

Ḟ1(θ) =kk̃1 sin θ
cos k̃1l − cos(kl cos θ)

(k cos θ)2 − k̃2
1

, Ḟ2(θ, ϕ) =kk̃2
cos k̃2l − cos(kl sin θ sinϕ)

(k sin θ sinϕ)2 − k̃2
2

(9)
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and k̃1 and k̃2 are expressed by Eq. (3) after substitution of the vibrators impedances X̄S1 and X̄S2 in
the free space.

The complex amplitudes of the orthogonal components of the field produced by the system of the
crossed vibrators exited in-phase in the free space can be written using the expressions (5)–(9) as

ĖFs
θ = Ė0

(
İFs
01
Ḟ1(θ) − İFs

02
Ḟ2 (θ, ϕ) sinϕ cos θ

)
, ĖFs

ϕ = −Ė0İ
Fs
02 Ḟ2 (θ, ϕ) cosϕ. (10)

In the normal direction to the vibrators axes (ϕ = 0◦ and ϕ = 180◦, θ = 90◦, Fig. 1), the complex
amplitudes of the orthogonal field components after formulas (10) are equal to

ĖFs
θ = Ė0İ

Fs
01
k
1 − cos k̃1l

k̃1

, ĖFs
ϕ = −Ė0İ

Fs
02
k
1 − cos k̃2l

k̃2

. (11a)

As is known, the wave polarization is defined by the ratio of the orthogonal field components with the
phase shift ψ = Φϕ − Φθ, viz.

ṗFs =

∣∣∣∣∣
ĖFs

ϕ

ĖFs
θ

∣∣∣∣∣ exp
(
j
(
ΦFs

ϕ − ΦFs
θ

))
. (11b)

So, the circular polarization (the superscript cp) in the normal direction to the vibrators axes can be
formed by choosing the impedances X̄S1 = X̄cp

S1
and X̄S2 = X̄cp

S2
of the respective vibrators, at which

the phase shift between the orthogonal field components is equal to ΦFs
ϕ − ΦFs

θ ≈ ±90
◦
. In the other

directions, an elliptically-polarized wave is formed, which is transformed into a linearly polarized wave
in the vibrators plane (ϕ = 90◦ and ϕ = 270◦, Fig. 1).

The radiation patterns (RPs) for the field components presented in coordinates θ, ϕ are calculated
in coordinates θ′, ϕ′ with account of the interrelation of the coordinates systems (Fig. 1). In coordinates
θ′, ϕ′ the electric field vector can be represented as [1]

	̇Eθ′(θ′, ϕ′) = [Ėθ(θ, ϕ)C22 + Ėϕ(θ, ϕ)C23]	θ′,
	̇Eϕ′(θ′, ϕ′) = [Ėθ(θ, ϕ)C32 + Ėϕ(θ, ϕ)C33]	ϕ′,

(12)

where C22 = C33 = − cos θ cosϕ/D, C23 = sinϕ/D, C32 = −C23, D =
√

1 − sin2 θ cos2 ϕ. If ϕ = 0◦, we
have C22 = −1, C23 = 0. All numerical results in the paper are presented in coordinates θ′, ϕ′.

As is known, the vector of the total electric field circumscribes an ellipse with axes 2a and 2b;
therefore, a vector position (polarization state) can be defined by the ellipse parameters. An equation
for determining the slope angle β of the major ellipse axis is defined by the following formula [8]

tg2β =
2 |ṗ|

1 − |ṗ|2 cos Ψ, (13)

hence
β

(
θ′, ϕ′) =

1
2
arctg

2 |ṗ|
1 − |ṗ|2 cos Ψ. (14)

Let us define an auxiliary angle γ (−π/4 < γ < π/4) such that

±b/a = tgγ (15)

where a and b are the lengths of the polarization ellipse semi-axes. In this way, the magnitude of tgγ
determines the ellipticity σ of the polarization ellipse, while its sign defines clockwise or counterclockwise
rotation of the electric vector. The equation for γ is derived in [8]

sin 2γ = (sin 2ε) sinψ, (16)

where the auxiliary angle ε is defined as
tgε = |ṗ| . (17)

Using expression (15) and taking into account Eqs. (16)–(17), the ellipticity can be written as

σ(θ′, ϕ′) = tg
[
1
2
arcsin

2 |ṗ| · sin Ψ
1 + |ṗ|2

]
. (18)
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If sin Ψ > 0 (0 < γ < π/4), the polarization is right-handed; otherwise, if sin Ψ < 0 (−π/4 < γ < 0) the
polarization is left-handed.

Let us now determine the surface impedances X̄cp
S1

and X̄cp
S2

for the two crossed vibrators excited
in-phase in the free space, at which the circularly polarized radiation can be formed in the normal
direction to vibrators axes (θ′ = 0, ϕ′ = 0) at the wavelength λ = 30 mm. The length and radius of the
vibrators are 2l = 0.5λ and r = 0.1 mm. The orthogonal field components ĖFs

θ and ĖFs
ϕ are calculated

after formulas (11)–(12) by varying the surface impedances X̄S1,2 in the limits from −0.1 to 0.1 with
a step of 0.001. Then the ellipticity σ(0, 0) and angle β(0, 0) of the polarization ellipse in the normal
direction to vibrators axes (θ′ = 0, ϕ′ = 0) in the free space are calculated after formulas (14) and (18).

Figure 2(a) shows the equal-value contour of σ0(0, 0) plotted in coordinates X̄S1 and X̄S2 . From
the data array of Fig. 2(a), we define the maximal values of |σcp(0, 0)| and the impedances X̄cp

S1
and X̄cp

S2

such that the maximum is attained. The extreme values σcp and corresponding impedances, electric
lengths and complex current amplitudes of the crossed vibrators 1 and 2 in the free space are shown in
Table 1.

Table 1. The extreme parameters of the vibrators 1 and 2 in the free space.

σcp X̄cp
S1

X̄cp
S2

k̃′1l k̃′2l İFs
01

İFs
02

−0.99 0.012 −0.041 0.52π 0.4π (−19.4;−17.4) (20.7;−23.06)
0.99 −0.041 0.012 0.4π 0.52π (20.7;−23.06) (−19.4;−17.4).
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Figure 2. Equal-value contours of the radiation characteristics in the normal direction to the vibrator
axes in the free space in coordinates X̄S1 and X̄S2 .

As can be seen, the direction of the electric vector rotation can be changed by mutual interchange
of the vibrator impedances.

Figure 2(b) shows the equal-value contour in decibels of the square modulus of the total electric
field in the normal direction to the vibrator axes |ĖFs(0, 0)|2 calculated after formula (5) and then
normalized to maximum value |Ėmax|2 = |ĖFs

max(0, 0)|2, viz. 10 lg |E(0, 0)|2/|E|2max.
The field maximum |ĖFs

max(0, 0)|2 is reached when the vibrator impedances are resonant. From the
data array of Fig. 2(b) we define the resonant impedances X̄Fs

Sres1 = X̄Fs
Sres2 = −0.013. The same value

is obtained for a single impedance vibrator in the free space (Fig. 4(a), curve 4).
The spatial RPs of the orthogonal field components (20 lg(|Ėθ,ϕ|/|Ėθ,ϕ max|) (Figs. 3(a), (b)) and

polarization characteristics σ0 and β0 (Figs. 3(d), (e)) of the two crossed half-wave vibrators with the
impedances X̄cp

S1
= 0.012 and X̄cp

S2
= −0.041 in the free space (Table 1) are plotted in coordinates θ′,

ϕ′. In this frame the forward and backward normal to the vibrators axes has respective coordinates
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θ′ = 0◦ and θ′ = 180◦. As can be seen from Figs. 3(d), (e), the polarazation varies from the circular in
the normal direction to the vibrators axes to the linear in the vibrator plane, θ′ = 90◦, where the field
has only the E′

ϕ-component. The direction of the electric vector rotation varies in the angular sector
85◦ < θ′ < 100◦.
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Figure 3. The spatial RPs of the two crossed vibrators (X̄cp
S1

= 0.012, X̄cp
S2

= −0.041) in the free space
in coordinates θ′, ϕ′: (a), (b) field RPs, (c) power RP, (d), (e) polarization RPs.
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The power RP (10 lg(|ĖFs|2/|Ėmax|2) (Fig. 3(c)) is defined by summing the squares of the E′
ϕ and

−E′
θ field components in Eqs. (9)–(12) (Figs. 3(a), (b)), that is why zeros radiation levels are absent in

the entire space (including vibrators plane θ′ = 90◦, where the field is determined by the E′
ϕ-component).

4. SYNTHESIS OF CIRCULARLY POLARIZED RADIATION BY THE SYSTEM OF
THE CROSSED VIBRATORS EXCITED IN-PHASE AND PLACED OVER A
SQUARE SCREEN

In this section, we consider a system of crossed vibrators excited in-phase and placed at the different
distances h/λ = 0.1 ÷ 1 over the middle of the square perfectly conducting screen with different side
dimensions L = W = (0.5 ÷ 2)λ (Fig. 1). For comparison, we also consider the vibrator system
placed over an infinite perfectly conducting screen. If the vibrators are placed over an infinite perfectly
conducting plane at the distance h, the RPs of the orthogonal field components, ḟθ′,ϕ′ , in coordinates
θ′, ϕ′ for the normal direction to the screen (defined by the angles θ′ = 0, ϕ′ = 0◦) can be written [9] as

vibrator1 ḟϕ′1(0, 0) = 2j sin(kh)Ḟ1, ḟθ′1 = 0, (19a)

vibrator2 ḟθ′2(0, 0) = 2j sin(kh)Ḟ2, ḟϕ′2 = 0, (19b)

where Ḟ1,2=k
1−cos k̃1,2l

k̃1,2
. The orthogonal components of the electric field of the vibrator system placed

over an infinite screen can be presented as

Ėϕ1(0, 0) = Ė0ḟϕ′
1
(0, 0)İHs

01 , Ėθ2(0, 0) = Ė0ḟθ′2(0, 0)İ
Hs
02 , (20)

where the current amplitudes İHs
01,2

are defined by expressions (2) and (3).
If the vibrator system is placed over the rectangular screen, the RPs of the orthogonal electric field

components can be determined by taking into account the diffracted fields from the four screen edges
using formulas (4), (5a) and (12). The calculations were carried out for the both configurations.

First of all, consider the resonant properties of the single impedance vibrator placed over the screen.
As shown in [5, 6], the vibrator of fixed geometrical sizes located over the screen at the distance h can be
tuned to resonance by using the resonant surface impedance X̄Hs

Sres. Note that there are several criteria
for determination of the X̄Hs

Sres-values: from the condition that the reactive part of input impedance
Xin equals zero, and from the definition of the resonant field square in the normal direction to the
screen |Ėres(0, 0)|2 using formulas (4), (5), (12). Fig. 4(a) shows the plots of the resonant values of
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Figure 4. Resonant impedance X̄Hs
Sres of the vibrator vs the ratio h/λ: (a) 1 — for the infinite screen

(approximate formula); 2 — for the infinite screen and 3 — for the square screen L/λ = 0.8 . . . 1.2
(calculation from the field maximum); 4 — for the vibrator in the free space; (b) square modulus of
resonant field for the screen L/λ = 0.6, 0.9, 1.2 and for infinite plane (curves 1, 2, 3 and 4 accordingly)
vs h/λ.
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the surface impedance X̄Hs
Sres as functions of distances h between the single half-wave vibrator with

ratio l/r = 75 and the screen with various dimensions. There are presented plots for the vibrator
over an infinite screen, obtained by using the approximate formula derived from condition Xin = 0 [5, 6]
(curve 1); for the vibrator over an infinite screen, obtained from calculating the field maximum (curve 2);
for the vibrator over the square screen with dimensions L/λ = 0.8, 0.9, 1, 1.2 (X̄Hs

Sres-values coincide
with curve 3). For comparison the resonant impedance of the vibrator in the free space X̄Fs

Sres = −0.013
(Fig. 4(a), curve 4) is presented here. As can be seen, curves 2 and 3 coincide within graphical accuracy,
i.e., the screen dimensions of the wavelength order practically do not affect the values of the vibrator
resonant impedance, but the curve 1 differs substantially

In Fig. 4(b), the dependences of the normalized square of the resonant field modulus in decibels,
viz. 10 lg |Eres(0, 0)|2/|E|2max, on the distance h/λ in the cases of the square screen with L/λ = 0.6, 0.9,
1.2 and for infinite plane (curves 1, 2, 3 and 4 accordingly) are shown. The |Eres(0, 0)|2-values for each
distance h are reached at the resonant impedances X̄Hs

Sres, shown in Fig. 4(a) (curves 2 and 3).
Let us pass to synthesis of the circularly polarized radiation by the crossed vibrators exited in-

phase and placed over the screen. We have developed the fast active algorithms and created the
software to define the crossed vibrators impedances X̄cp

S1
and X̄cp

S2
, at which a circularly polarized wave

with the ellipticity |σ(0, 0)| ≈ 1 forms in the normal direction to the screen. Figs. 5(a), (b) show the
appropriate impedances X̄cp

S1
and X̄cp

S2
for the crossed half-wave vibrators excited in-phase, which ensure

|σ(0, 0)| ≈ 1 in the case of the screen with L = 1.2λ versus the ratio h/λ. In Fig. 5(c), the dependences
of 10 lg |Ecp(0, 0)|2/|E|2max are shown on h/λ in the cases of exciting the screen with L = 1.2λ by the
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Figure 5. Vibrator impedances (a) X̄cp
S1

and (b) X̄cp
S2

, at which the ellipticity |σ(0, 0)| ≈ 1, vs h/λ;
(c) square modulus of circularly polarized field in cases of exciting the screen L = 1.2λ by the crossed
vibrators with the impedances X̄cp

S1,2
(curve 1) and by the turnstile antenna (curve 2) vs h/λ; (d)

directivity factor D(0, 0) vs h/λ: screen L = 1.2λ (curve 1), infinite screen (curve 2).
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crossed vibrators with the impedances X̄cp
S1,2

(curve 1) and using the turnstile antenna (Z̄S1,2 = 0,
curve 2).

From comparing curve 1 (Fig. 5(c)) with curve 3 (Fig. 4(b)) we can state the equality of the
normalized square modulus of circularly polarized field |Ėcp(0, 0)|2 and resonant field |Ėres(0, 0)|2 in
the direction normal to the screen L = 1.2λ, excited by two crossed orthogonal vibrators and by
the single vibrator respectively. From this fact follows the equality of the directivity factor D(0, 0)
for the both radiating systems (Fig. 5(d)). In [10], it was shown that the maximum directivity factor
D(0, 0) was formed for the impedance vibrator, as well as for the perfectly conducting vibrator, removed
from the screen on h = 0.25λ, in the case of the optimal screen dimensions L = W = (1.15 ÷ 1.2)λ,
Dmax(0, 0) = 7.29.

Figure 6(a) shows equal-value contour of the ellipticity in the normal direction to the screen σ(0, 0)
calculated by the formula (18) and plotted in coordinates X̄S1 and X̄S2 in the case of the screen with
L = 1.2λ and h = 0.25λ. From the data array of σ(0, 0) we find σcp(0, 0) and the corresponding X̄cp

S1
and

X̄cp
S2

. In given case the circularly polarized radiation along the screen normal is formed when σcp = −0.99
(X̄cp

S1
= 0.005, X̄cp

S2
= −0.059) and σcp = 0.99 (X̄cp

S1
= −0.059, X̄cp

S2
= 0.005). Fig. 6(b) presents equal-

value contour of the corresponding square of the field modulus in decibels plotted in coordinates X̄S1

and X̄S2 . The field maximum, |Emax(0, 0)|2, is achieved if the resonant values of impedances X̄Hs
Sres1

and
X̄Hs

Sres2
are equal to −0.025, which coincide with the resonant impedance of the single vibrator with the

screen (L = 1.2λ and h = 0.25λ (Fig. 4(a), curve 3)).
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Figure 6. Equal-value contours (a) of the ellipticity and (b) of the corresponding square of the field
modulus in the direction normal to the screen L = 1.2λ at h = 0.25λ plotted in coordinates X̄S1 and
X̄S2 .

To define the conditions for the formation of the circular polarized radiation with the maximal
achievable directivity in the normal direction to the screen, we develop an algorithm and create the
respective software for computing the directivity factor D(0, 0) and the radiation resistance RΣcp after
the formulas

D(0, 0) = 120
|E(0, 0)|2

RΣ
, RΣ = 30IΣ/(

∣∣IHs
0

∣∣2 π). (21)

Here IΣ =
2π∫
0

dϕ
π∫
0

E2(θ′, ϕ′) sin θ′dθ′, |E|2(θ′, ϕ′) = |Eθ|2(θ′, ϕ′) + |Eϕ|2(θ′, ϕ′).

Let us analyze the parameters of the optimal radiating system: the impedances X̄cp
S1

and X̄cp
S2

of the
orthogonal vibrators, the screen dimension Lopt/λ, and the distance between the vibrator and screen
hopt/λ. Figs. 7(a), (b) show the equal-value contours of the impedances X̄cp

S1
and X̄cp

S2
of the crossed

vibrators at which |σ(0, 0)| ≈ 1, plotted in coordinates L/λ and h/λ. When the impedances X̄cp
S1,2

(L, h)
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and the currents İHs
01,2(h) were determined, the equal-value contours of the square module of the field

in the normal direction to the screen (Fig. 7(c)), of the directivity factor D(0, 0) (Fig. 7(d)) and of the
radiation resistance RΣcp (Fig. 7(e)) were plotted in the coordinates L/λ and h/λ.

The maximal values of Dmax(0, 0) and RΣmax are determined by analyzing the data array of
Figs. 7(d), (e). These values and corresponding optimal values Lopt/λ and hopt/λ are given in Table 2.

The extreme values of |σcp|, the corresponding impedances X̄cp
S1

and X̄cp
S2

, electrical lengths and
current amplitudes of the vibrators 1 and 2 for the optimal circular polarized radiating system
(Lopt = 1.2λ and hopt = 0.25λ) are given in Table 3.
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Table 2. The maximal values of Dmax(0, 0), RΣ max and corresponding values of Lopt/λ and hopt/λ.

D(0, 0) RΣcp, Ohm Lopt/λ hopt/λ

(5.1 ÷ 8.1) (202 ÷ 120) (0.85 ÷ 1.25) (0.34 ÷ 0.2)
(8 ÷ 9.6) (127 ÷ 140) (1.25 ÷ 1.75) 0.71 ÷ 0.75)

(4.1 ÷ 5.7) (208 ÷ 180) (0.7 ÷ 1.25) (0.37 ÷ 0.32)
7.3 152 1.2 0.25

Table 3. The extreme parameters for optimal radiating system.

σcp X̄cp
S1

X̄cp
S2

k̃′1l k̃′2l İHs
cp1 İHs

cp2

−0.99 0.005 −0.059 0.512π 0.359π (−16.45;−16.23) (20.35;−20.79)
0.99 −0.059 0.005 0.359π 0.512π (20.35;−20.79) (−16.45;−16.23)

5. DIRECTIONAL AND POLARIZATION RADIATION CHARACTERISTICS OF
THE OPTIMAL RADIATING SYSTEM

Let us now consider the directional and polarization radiation characteristics of the optimal circular
polarized radiating system (X̄cp

S1
= 0.005, X̄cp

S2
= −0.059, Lopt = 1.2λ and hopt = 0.25λ). To understand

the mechanism of the total field formation in the main observation planes ϕ′ = 0◦ and ϕ′ = 90◦,
we consider the RPs of the field components Fθ,ϕ(θ, ϕ) = 20 lg |Ėθ,ϕ(θ, ϕ)|/|Ė|max separately for each
vibrator (Figs. 8(a), (b)). The cone angles of the edge wave shadows related to the edges n = 1, 2 (β′1,2)
and n = 3, 4 (β′3,4) (Fig. 1) of the rectangular screen are defined by the formulas [1, 7]

β′1,2 = arctg
[
2
√
h2 + (L/2)2/W

]
, β′3,4 = arctg

[
2
√
h2 + (W/2)2/L

]
. (22)

The cone angles β′1,2 and β′3,4 of the edge wave shadow for all edges calculated by formula (22) are equal
to 47.3◦. In the observation plane ϕ′ = 0◦, the light region formed by the edges 1 and 2 is restricted by
angular sectors θ′ ∈ (0◦, 42.7◦) and θ′ ∈ (137.3◦, 180◦), while that from edges 3 and 4 is restricted by
θ′ ∈ (0◦, 180◦). In the observation plane ϕ′ = 90◦, the light region created by the edges 1, 2 and 3, 4 is
restricted by angular sectors θ′ ∈ (0◦, 180◦) and θ′ ∈ (0◦, 42.7◦) and θ′ ∈ (137.3◦, 180◦) respectively.

As can be seen, due to the diffraction at screen edges 3 and 4, vibrator 1 induces Eθ′1 component
of the main and cross polarizations in the planes ϕ′ = 0 (Fig. 8(a), curve 1) and ϕ′ = 90◦ (Fig. 8(a),
curve 2), respectively. Analogously, the vibrator 2 induces Eθ′2 component of the cross and main
polarizations in the planes ϕ′ = 0 (Fig. 8(b), curve 1) and ϕ′ = 90◦ (Fig. 8(b), curve 2). Figs. 8(c)–8(d)
show the genesis of the RP formation of the Eθ′ component of the total field of crossed vibrators (curve 1
is the vibrator 1 RP; curve 2 is of the vibrator 2 RP, curve 3 is the RP of the total field).

The RPs, Fθ,ϕ(θ, ϕ), of the orthogonal field components in the observation planes ϕ′ = 0◦, 45◦
and 90◦ are shown in Figs. 8(e)–8(f). If the screen is square, the RPs of Eθ components created by
vibrators 1 and 2 in the observation planes ϕ′ = 0◦ and ϕ′ = 90 (Fig. 8(e), curve 1) are identical.
The Eϕ′ component (Fig. 8(f), curve 1) is formed by vibrator 1 in the plane ϕ′ = 90◦ and by vibrator
2 in the plane ϕ′ = 0◦. The RPs in the plane ϕ′ = 45◦ are shown as curve 2. The power RP,
G = 10 lg(|Ė|2/|Ė|2max), is shown in Fig. 8(g) in the observation planes ϕ′ = 0◦ and 90◦ by curve 1 (RPs
coincide) and in the plane ϕ′ = 45◦ by curve 2.

The ellipticities in the observation planes ϕ′ = 0◦, ϕ′ = 90◦ and ϕ′ = 45◦ are shown in Fig. 8(h)
(curve 1 and curve 2). The sign of the ellipticity changes when the screen plane (θ′ = 90◦) is crossed. If
the vibrator impedances are X̄S1 = 0.005 and X̄S2 = −0.059, the elepticity is less than zero in the front
half-space (left polarization), and it is greater than zero (right polarization) in the shadow half-space.
If the vibrator impedances are X̄S1 = −0.059 and X̄S2 = 0.005, the elepticity sign is changed.
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Figure 8. RPs of the fields of vibrators 1, 2 and total field in the observation plane ϕ′ = 0◦, 45◦, 90◦
(X̄S1 = 0.005, X̄S2 = −0.059, h = 0.25λ and L = W = 1.2λ).
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The spatial RPs of the field components, power, and polarization are shown in Figs. 9(a)–9(d).
The ellipticity σ and orientation angle of the polarization ellipse β are calculated by formulas (14) and
(18). If the vibrator impedances are X̄S1 = −0.059 and X̄S2 = 0.005, all RPs are shifted by 90◦ relative
to the observation angle ϕ′; the direction of the polarization is also changed.
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6. CONCLUSION

In the framework of the UGTD, an asymptotic solution of a 3D vector diffraction problem for the two
crossed impedance vibrators excited in-phase and placed over a rectangular perfectly conducting screen
of finite dimensions is obtained by using the asymptotic expressions for the current of the impedance
horizontal vibrator over the perfectly conducting plane. An algorithm and respective software for
determining the far zone field components are developed. It is shown that a phase shift between the
currents of the vibrators close to 90◦ can be obtained by the choice of the impedances X̄S1,2 = X̄cp

S1,2
of

the vibrators with the equal geometric lengths. The screen dimensions of the wavelength order do not
affect resonant impedance X̄Hs

Sres1,2
of a thin vibrator, but substantially influence on the X̄cp

S1,2
-values.

The formation of the orthogonal field components in the main observation planes is analyzed in
detail. It is shown that each vibrator field in the normal direction of the screen is determined only by
the component of the basic polarization, while the fields diffracted on the square screens have equal
amplitudes. Therefore, the radiation field in the normal direction to square screens is circularly polarized
for all distances between the vibrators and the screen.

It is also shown that the maximum radiation resistance and directivity in the direction of the
normal to the screen for the circularly polarized radiating system can be achieved by selecting the
optimal screen dimensions and the distance between the vibrator and screen.
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